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Abstract— The deposition of a thin film is a dynamic process
that is complex and subject to unknown disturbances. When
the dynamics and final material properties are dominated
by atomic scale phenomena, it is difficult to apply existing
optimization and control tools to improve process repeatibility
and to optimize the resulting material properties. Currently,
feedback loops are used to control sensed quantities, and
optimization has been applied to macroscopic reactor conditions
like fluid flow. Ultimately, one would like to directly control
the material properties that determine the performance of an
integrated circuit or MEMS device, even when the property of
interest is not directly measured. In this paper an integrated
control strategy is applied to an atomic scale kinetic Monte
Carlo simulation of thin film deposition. A model reduction
approach developed previously for Monte Carlo simulations is
used in the design of the control strategy. An input temperature
profile that minimizes interface roughness is computed with
a gradient optimization, and estimators are designed to infer
surface roughness from a measurement of the density of steps.
A proportional-integral feedback controller is then sufficient to
control surface roughness in the presence of input noise, input
offset, and uncertainty in the initial surface configuration.

I. I NTRODUCTION

Thin film deposition is used to manufacture devices at
small lengthscales, including integrated circuits and MEMS
devices. As the size of devices shrinks toward the size
of individual atoms, and as increasingly complex material
systems are used, the development of new processes becomes
more difficult. The dynamics of the deposition process are
complex, measurements are noisy and slow, and disturbances
due to contamination and drift limit repeatibility of the
material properties that determine device performance [2].

The evolution of a film is often governed by kinetic
processes on the film’s surface, so that the material is
not arranged in its equilibrium configuration [21]. When
this is the case, the final material properties depend on
the time-varying process inputs like temperature and gas
concentration. Sensors are also used during growth, but
must not disrupt the process. This is often accomplished
with an electromagnetic or electron beam, in which surface
structure is inferred from the reflected, scattered, or diffracted
beam [1]. Interpretation of this sensor data is not always
straightforward, and the material property of interest may
not be a quantity that is directly sensed.

Due to the complexities of this control problem, the
current method of process development and control is largely
empirical. Feedback loops are used to control quantities

that are directly sensed [14], and nominal process inputs
are determined empirically or through parameter studies and
design of experiments. It is not practical to consider a large
number of parameters, since individual growth runs are time-
consuming and expensive, so process inputs are typically held
constant in time. Simple time-varying functions like rampsor
pulses have been used in some cases, and have been reported
to be beneficial [15].

The mathematical framework of control theory provides
a systematic alternative for thin film process control. In
the past few years, greater attention has been placed on
process optimization, control, and microstructural modeling,
incorporating high-dimensional computer simulations of the
process dynamics [5], [6], [9], [12], [13]. In the simulation
study in this paper, real-time sensor data is integrated with
dynamic models to infer quantities of interest that are not
directly measured, enabling a comprehensive strategy for
optimization, estimation, and control.

The control objective here is to produce an atomically flat
surface after three atomic layers of growth. Because the film
is extremely thin, the plant model must capture the effects of
atomic discreteness, so a continuum model is not appropriate.
Instead, a kinetic Monte Carlo (KMC) simulation of surface
evolution is used to describe the dynamics. The process input
is the surface temperature, which is allowed to vary in time.
Although the goal is to minimize the surface roughness, the
roughness is not measured directly. Sensing through electron
diffraction is considered, and, using a simple physical model,
the density of atomic height steps is determined from the
diffraction pattern [16].

The KMC simulations are high-dimensional, stochastic,
and rule-based, and are not compatible with existing tools
for optimization and control. In this paper, a model reduction
approach developed previously by the author is used to
generate a low-order deterministic differential equationthat
captures dominant features of the input-output behavior seen
in the Monte Carlo simulations, enabling off-line optimiza-
tion [4], [5]. The model is not linear, so the cost of on-
line optimization is high, and the control strategy pictured in
Figure 1 is adopted here. The reduced-order model is used
for gradient-based optimization of the nominal inputs, for
estimator design, and for design of a feedback controller. This
comprehensive control strategy is designed using a reduced-
order model, and then implemented on KMC simulations.
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Fig. 1. Block diagram of the control strategy used in this paper: nominal
input ū, nominal control objectivēz, measurementy, estimates for statêx
and objectivêz, error in objectivee, control correctionδu, and inputu.

Fig. 2. KMC simulation of thin film deposition, for a surface with 300×300
sites. Light regions denote atomically flat terraces, while each dark circle is
an atom on the edge of an atomic-height step.

II. M ODELING

A. Kinetic Monte Carlo simulations of thin film growth

KMC simulations are commonly used to make predictions
about surface evolution during thin film deposition [7], [8],
[10], [18]. Discrete atoms are modeled, but fast atomic
vibrations are not resolved, enabling the simulation of a large
collection of atoms over time scales of seconds or hours
characterizing the deposition process. A lattice is definedthat
represents the underlying crystal structure, and the stateof
the system is defined by the occupancy of each lattice site.
The lattice occupancy changes as atoms transition between
sites, with transition rates that are dependent on the process
inputs. A KMC simulation is pictured in Figure 2. The
surface is composed of an array of 300×300 atomic sites.
Atoms in an atomically flat terrace are light-colored, while
atoms on the edge of an atomic height step are colored dark.

These simulations are described in greater detail in [4], [5].
The physical parameters are based on a simplified model of
germanium growth in an ultra-high vacuum: material flux
to surfaceF = 1.0 s−1, atomic vibrational frequencyν =
7.8×1012 s−1, activation energy of surface diffusionEdif,0 =
0.70 eV, and bond strength∆E = 0.20 eV.

Each KMC simulation is a stochastic realization of the
probabilistic master equation

d

dt
PH =

∑

H′

k(H ′,H)PH′(t) −
∑

H′

k(H,H ′)PH(t) (1)

〈Y 〉(t) =
∑

H

P (H, t)Y (H). (2)

The probabilityP of each configurationH depends upon
all other configurationsH ′, and uponk(H,H ′), the rate of
transition fromH to H ′ [3], [20]. The transition rates are
dependent on the process inputs, while expected material
properties〈Y 〉 can be expressed in terms of the probabilities
and Y (H), the material property for each configurationH.
Because there are many sites in the lattice, there are also a
very large number of configurations. If the lattice height is
truncated at 10 in the 300×300 site simulation of Figure 2,
there areN = 900,000 sites. Since each of theN lattice sites
may be occupied or not (1 or 0), a total of 2N configurations
are possible, creating an extremely high state dimension.

B. Model reduction of KMC simulations

A method for the reduction of KMC simulations has been
previously presented by the author [4], [5]. Microscopic
configurations having similar overall statistics are grouped,
and the reduced-order model describes the probabilities of
each group of configurations. This theoretically may be
accomplished by a linear coordinate transformation, although
it is not practical to perform the transformation due to the
extremely high dimension of the original master equation.
Instead, KMC simulations are used to generate observability
matrices, which are then used to compute the input-dependent
state matrix as well as the output matrix.

In the example studied here, the surface structure oscillates
as clusters nucleate on a flat surface, grow, and then coalesce
at the completion of each atomic layer. Each configuration
group is associated with some fraction of surface coverage,
and transitions from one to another are only allowed if the
associated surface coverage increases by the amount expected
during one time step. These constraints yield the periodic
system

x[k + 1] = Ak(u[k]) x[k] (3)

y[k + 1] = Ck x[k] (4)

z[k + 1] = Mk x[k]. (5)

This discrete-time model, with timek ∈ Z
+, is associated

with a timestep∆t. The state vectorx ∈ R
n is a probability

vector, with nonnegative elements that sum to 1. The system
is linear in the state, with output measurementsy ∈ R

p,
and control objectivez ∈ R

q. The input u ∈ R
m enters

nonlinearly, through the stochastic matrixAk(u) ∈ R
n×n,

having nonnegative elements and columns summing to one.
The matricesCk ∈ R

p×n andMk ∈ R
q×n are periodic, but

are not dependent on the input. The system of equations (3),
(4), and (5) is a state affine system [17], as is the original
master equation system of equations (1) and (2).

In the original description of the reduced model [4], the
system was formulated with 80 configuration groups, but was
not periodic. Here it is reformulated as an equivalent 10-
periodic system withn = 8 states. The timestep is∆t = 0.1 s,
with p = 1 representing a step edge density measurement and
q = 1 representing the interface roughness to be controlled.
The surface temperature is the only input, so thatm = 1.
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Fig. 3. Evolution of the reduced-order model (ROM) under the nominal
optimal conditions; in the presense of initial condition error, input noise, and
input offset; and with feedback control using a roughness measurement.

III. O PEN-LOOP OPTIMIZATION AND STATE FEEDBACK

The reduced-order model greatly reduces the simulation
time over KMC, making feasible the optimization of growth
conditions using a gradient optimization (using Matlab’s
fmincon). This type of open-loop optimization has been
presented previously [4], [5], and is used here as one compo-
nent of the control strategy of Figure 1. A temperature profile
to minimize interface roughness after three atomic layers of
growth is computed using the reduced-order model, within
the temperature range between 95 and 140 C.

The temperature profile and resulting evolution are shown
with the solid lines in Figure 3 (reduced-order model) and
Figure 4 (KMC simulations). The periodic temperature pro-
file creates a large number of atomic clusters at the beginning
of each atomic layer by lowering atomic mobility, after which
the temperature and mobility are raised to fill in the gaps
between clusters.

Because thin film deposition processes are sensitive to
unknown disturbances like contaminants and deposition of
the reactor walls, feedback control is needed for process
repeatibility. In this paper a simple proportional integral
controller is used to control roughness, withKP = 100 and
KI = 10, based on the observation that, in general, raising
the temperature reduces the surface roughness. Disturbances
are then applied to the simulations—Gaussian input noise
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Fig. 4. Evolution of the KMC simulations under the nominal optimal
conditions; in the presense of initial condition error, input noise, and input
offset; and with feedback control using a roughness measurement.

with a standard deviation of 5 C, a temperature offset
of 15 C, and an initial surface having root-mean-square
roughness 0.4 monolayers (mL) and a step density of 0.16
per atomic site (instead of being atomically flat). A Gaussian
measurement noise with standard deviation of 0.001 is also
added. However, the goal in this paper is to use the sensor
measurements to inform an inaccurate plant model, so the
sensor noise is intentionally kept small.

The evolution of the system under roughness measurement
and feedback is shown in Figures 3 and 4. The PI controller
corrects for deviations from the nominal optimized profile,
within the fixed temperature range between 75 and 150 C.
The controller performs better on the reduced-order model
than in the KMC simulations, but in both cases the final
roughness is closer to the desired value than to the final
roughness without control. This simple feedback strategy
works well when the quantity to be controlled is also mea-
sured. In the remainder of the paper, we consider a problem
in which this is not the case.

IV. OBSERVABILITY

We study here an example in which the step density of
the surface is measured, while the surface roughness is to
be controlled. There is not a one-to-one map between these
two measures, as illustrated in Figure 5. The step density
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Fig. 5. Roughness versus step edge density. The solid line denotes evolution
under the nominal optimal inputs, and the circles mark the roughness and
step density for individual configuration groups at time k = 1.

is plotted versus the roughness for the nominal optimized
temperature profile. Because the state vector is a probability
vector, the step density and roughness are convex combina-
tions of the elements ofCk andMk. These discrete values are
also plotted, for k = 1. Given the step density measurement
alone, the roughness cannot be uniquely determined. A model
is needed to help interpret the sensor data, which is the
concept behind observability and estimation. This point is
also illustrated by Figure 4. While roughness is always higher
than the nominal value, the step density is sometimes greater
and sometimes less. Thus, applying feedback to control step
density about its nominal value does not produce the same
effect as applying a feedback controller to roughness.

A systematic framework has been developed for the ob-
servability of state-affine systems like equations (3), (4),
and (5) [11], [17]. Unlike linear time-invariant systems, the
ability to infer the initial state depends on the inputs applied.
However, for any particular input, a generalized observability
matrix Ou can be constructed, and, if it is full rank, can be
used to determine an initial conditionxo:

Ou ≡











C
CA1(u[1])

CA2(u[2])A1(u[1])
...





















y[0]
y[1]
y[2]

...











= Ouxo. (6)

To quantify the observability properties of the Monte Carlo
simulations, observability matrices were constructed using 30
time steps of data, the same length of time as the optimized
profile. The only measurement is the step density, not the
roughness that is the control objective. Because the state and
output matrices were generated from simulation data, we
might not expect to have completely unobservable modes.
Thus, instead of performing a rank test, a singular value
decomposition is performed, with the singular values for four
inputs shown in Figure 6. For the optimized temperature
profile, the singular values range over many orders of mag-
nitude, but remain above the machine precision. The same
is true for constant temperatures of 100 and 150 C, but is
not for 75 C. During constant growth at this temperature,
the surface evolution is qualitatively different: the surface
roughens monotonically, and does not exhibit the oscillations
seen at the higher temperatures. These results suggest that
the step density measurement contains information about all
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Fig. 6. Singular values of observability matrices associated with four input
profiles: three constant temperatures, and the optimized temperature profile.

modes in the state vector when the growth mode remains an
oscillatory one. However, some modes are more observable
than others, as quantified by the singular values of the
observability matrix.

V. ESTIMATION AND CONTROL

To estimate surface roughness from the step density mea-
surement, two approaches are explored. Both use only linear
computations, exploiting the state-affine properties of the
reduced-order model. The estimators are then incorporated
into the control strategy pictured in Figure 1, and are imple-
mented on the stochastic KMC simulations.

A. Linear least-square observer

The first estimation approach follows directly from the
previous discussion of observability matrices. At each time
step, an observability matrix is constructed from the reduced-
order model, with the number of blocks equal to the number
of time steps executed. At each time step, a linear least
squares computation is performed, with linear constraints
imposed so that each element of the state is nonnegative,
and so that the elements sum to 1. The results are shown in
Figures 7 and 8, as applied to 100×100-site KMC simula-
tions. In Figure 7, uncertainty stems from the deviation of
the initial condition from that used in the optimization, and
from differences between the reduced-order model and the
KMC simulation. The roughness estimate quickly converges
near the actual value. However, the final surface is not very
sensitive to the initial condition, so the controlled case does
not perform significantly better than the uncontrolled case.

Figure 8 pictures a second example, in which the input
offset and Gaussian noise used previously are applied to the
input temperature. In this case, the roughness estimate again
converges to the actual value, and enables compensation for
the disturbances in the input. Note that the observability
matrices are constructed using thenominal inputs, but still
provide a good roughness estimate in the presence of the
input offset and noise.

B. Extended Kalman filter

The least squares observer requires an iterative computa-
tion at each time step to solve the constrained linear least-
squares problem. A second estimation strategy is now con-
sidered that requires less computation. An extended Kalman
filter [19] is designed using the reduced-order model. The
extended Kalman filter effectively linearizes the system about



0 1 2 3

80

100

120

140

te
m

pe
ra

tu
re

 (
C

)

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

ro
ug

hn
es

s,
 K

M
C

 (
m

L)

nominal
uncontrolled
controlled
estimate

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

st
ep

 e
dg

e 
de

ns
ity

, K
M

C
 (

1/
si

te
)

time (s)

Fig. 7. Roughness feedback control using a least-squares observer: initial
condition error only.

the noiseless case, such that the input noise is approximated
as a linear term in the state update equation, multiplied
by the matrix dAk(u)/du. An initial value of the state
covariance matrix is chosen to reflect that fact that the state
is a probability vector—the diagonal elements are positive,
and the off-diagonal elements are negative.

The performance of this estimation and control strategy is
shown in Figures 9 and 10. In Figure 9, the initial condition
error and input noise are applied, while in Figure 10, the input
offset is added. In both cases the roughness estimate con-
verges quickly toward the actual value, but then consistently
overestimates the roughness. After deposition of three layers,
the roughness is slightly lower than the desired value. When
there is no input offset, the feedback controller provides little
benefit, but with temperature offset, the extended Kalman
filter approach works well, despite some discrepancy between
the actual and estimated roughness.

VI. CONCLUSION

A comprehensive control strategy was designed for an
atomic scale KMC simulation of thin film growth. A reduced
model developed previously enabled the design of nominal
inputs, feedback controllers, and roughness estimators. The
reduced-order model is affine in the state, so observability
matrices can be constructed for various inputs. An estimation
strategy using observability matrices was implemented in the
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Fig. 8. Roughness feedback control using a least-squares observer: initial
condition error plus input noise and input offset.

full KMC simulations, as was an extended Kalman filter. The
observability matrix approach provided a better roughness
estimate than the Kalman filter, while the Kalman filter
requires less computation. Both estimators yield a substantial
improvement in roughness tracking in the presence of input
noise and offset. The control strategy developed here com-
bines sensor data with a physical plant model in a systematic
way to control a material property that is not directly sensed.
The strategy was designed using a reduced-order model of
the dynamics, but performs well in the KMC simulations.
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