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Abstract—The deposition of a thin film is a dynamic process that are directly sensed [14], and nominal process inputs
that is complex and subject to unknown disturbances. When are determined empirically or through parameter studies an
the dynamics and final material properties are dominated yagign of experiments. It is not practical to consider adarg
by atomic scale phenomena, it is difficult to apply existing b f t - individual h i
optimization and control tools to improve process repeatibility num er_o parame ers,_smce Incivi ua_ growth runs _are- Ime
and to optimize the resulting material properties. Currently, ~Consuming and expensive, so process inputs are typicddy he
feedback loops are used to control sensed quantities, and constant in time. Simple time-varying functions like rangps

optimization has been applied to macroscopic reactor conditions pulses have been used in some cases, and have been reported
like fluid flow. Ultimately, one would like to directly control to be beneficial [15].

the material properties that determine the performance of an

integrated circuit or MEMS device, even when the property of The mathematical framework of control theory provides
interest is not directly measured. In this paper an integrated g systematic alternative for thin film process control. In
control strategy is applied to an atomic scale kinetic Monte the past few years, greater attention has been placed on
Carlo simulation of thin film deposition. A model reduction L2 . .
approach developed previously for Monte Carlo simulations is process OPt'm'Z_a“Or?v cont_rol, and mlcrostrL_JcturaI_ midgl
used in the design of the control strategy. An input temperature  incorporating high-dimensional computer simulations r# t
profile that minimizes interface roughness is computed with process dynamics [5], [6], [9], [12], [13]. In the simulatio

a gradient optimization, and estimators are designed to infer study in this paper, real-time sensor data is integratedl wit
surface roughness from a measurement of the density of steps. dynamic models to infer quantities of interest that are not
A proportional-integral feedback controller is then sufficient to : . .

control surface roughness in the presence of input noise, input d|re_ct!y r_neasure_zd, e_nablmg a comprehensive strategy for
offset, and uncertainty in the initial surface configuration. optimization, estimation, and control.

The control objective here is to produce an atomically flat

surface after three atomic layers of growth. Because the film

Thin film deposition is used to manufacture devices df €xtremely thin, the plant model must capture the effetts o
small lengthscales, including integrated circuits and MEM atomic discreteness, so a continuum model is not apprepriat
devices. As the size of devices shrinks toward the siZ&stead, a kinetic Monte Carlo (KMC) simulation of surface
of individual atoms, and as increasingly complex materiggvolution is used to describe the dynamics. The process inpu
systems are used, the development of new processes becotfidge surface temperature, which is allowed to vary in time.
more difficult. The dynamics of the deposition process ar8lthough the goal is to minimize the surface roughness, the
complex, measurements are noisy and slow, and disturbané@gdghness is not measured directly. Sensing through etectr
due to contamination and drift limit repeatibility of the diffraction is considered, and, using a simple physical efod
material properties that determine device performance [2] the density of atomic height steps is determined from the

The evolution of a film is often governed by kinetic diffraction pattern [16].
processes on the film's surface, so that the material is The KMC simulations are high-dimensional, stochastic,
not arranged in its equilibrium configuration [21]. Whenand rule-based, and are not compatible with existing tools
this is the case, the final material properties depend dor optimization and control. In this paper, a model redureti
the time-varying process inputs like temperature and gagpproach developed previously by the author is used to
concentration. Sensors are also used during growth, bgénerate a low-order deterministic differential equatibat
must not disrupt the process. This is often accomplisheshptures dominant features of the input-output behavien se
with an electromagnetic or electron beam, in which surface the Monte Carlo simulations, enabling off-line optimiza
structure is inferred from the reflected, scattered, orafited tion [4], [5]. The model is not linear, so the cost of on-
beam [1]. Interpretation of this sensor data is not alwaykne optimization is high, and the control strategy pictlie
straightforward, and the material property of interest magigure 1 is adopted here. The reduced-order model is used
not be a quantity that is directly sensed. for gradient-based optimization of the nominal inputs, for

Due to the complexities of this control problem, theestimator design, and for design of a feedback controllds T
current method of process development and control is kargetomprehensive control strategy is designed using a reduced
empirical. Feedback loops are used to control quantitieder model, and then implemented on KMC simulations.

I. INTRODUCTION



Off-line u The probability P of each configurationd depends upon

Optimization all other configurations’, and uponk(H, H'), the rate of
f Plant transition fromH to H’ [3], [20]. The transition rates are
5)S| Feedback (experimentor | Y dependent on the process inputs, while expected material
Controller | + Monte Carlo . . s
- simulation) properties(Y’) can be expressed in terms of the probabilities
3 andY (H), the material property for each configuratiéh
E X DEsﬁmator Because there are many sites in the lattice, there are also a

very large number of configurations. If the lattice height is
Fig. 1. Block diagram of the control strategy used in thisgrapominal truncated at 10 in the 30(300 site simulation of 'Flgu.re 2,
input T, nominal control objective, measuremeny, estimates for stateé  there arelV.= 900,000 sites. Since each of thelattice sites
and objectivez, error in objectivee, control correctionsu, and inputu. may be Occupied or not (1 or 0), a total d’FZ:onfigurations
are possible, creating an extremely high state dimension.

B. Model reduction of KMC simulations

A method for the reduction of KMC simulations has been
previously presented by the author [4], [5]. Microscopic
configurations having similar overall statistics are gredip
and the reduced-order model describes the probabilities of
each group of configurations. This theoretically may be
accomplished by a linear coordinate transformation, algo
it is not practical to perform the transformation due to the
extremely high dimension of the original master equation.
Fig. 2. KMC simulation of thin film deposition, for a surfacet'B00<300  |nstead, KMC simulations are used to generate obseruabilit
sites. Light regions denote atomically flat terraces, whélehedark circle is . . .
an atom on the edge of an atomic-height step. matrices, which are then used to compute the input-depénden

state matrix as well as the output matrix.
In the example studied here, the surface structure ossllat
II. MODELING as clusters nucleate on a flat surface, grow, and then cealesc
at the completion of each atomic layer. Each configuration
group is associated with some fraction of surface coverage,

KMC simulations are commonly used to make predictiongnd transitions from one to another are only allowed if the

about surface evolution during thin film deposition [7],.[8] associated surface coverage increases by the amountestpect

[10], [18]. Discrete atoms are modeled, but fast atomiguring one time step. These constraints yield the periodic
vibrations are not resolved, enabling the simulation ofrgda system

collection of atoms over time scales of seconds or hours
characterizing the deposition process. A lattice is defthatl X[k+1] = Ag(ulk]) x[k] (3
represents the underlying crystal structure, and the state yk+1] = Cyx[k] 4)
the system is defined by the occupancy of each lattice site.

The lattice occupancy changes as atoms transition between Zk+1] = M x[k]. ®)

sites, with transition rates that are dependent on the PBOCE i discrete-time model. with timé € 7+ is associated

inputs. A KMC simulation is pictured in Figure 2. The with a timestepAt. The state vectox € R™ is a probability

surface_ IS compos_ed of an array of SCE]_EO atomic S|tes._ vector, with nonnegative elements that sum to 1. The system
Atoms in an atomically flat terrace are light-colored, while

atoms on the edge of an atomic height step are colored daI linear in the state, with output measuremepts: R?,
. 9 : '9 P o d control objectivez € R?. The inputu € R™ enters
These simulations are described in greater detail in [4], [5

X o nonlinearly, through the stochastic matri, (u) € R™*",
The physwal param«_aters are bas_ed on a simplified T"Ode' I‘?gving nonnegative elements and columns summing to one.
germanium growth in an ultra-high vacuum: material flu

: taceF — 1.0 s-! atomic vibrati | f - XThe matricesC, € RP*™ and M, € R?*"™ are periodic, but
7085><u1r0%ges—1_acﬁvastior,1 Znoerpgljc :)/:‘ srjnl‘ggz di:‘feuqsl:g{fy _ arenot depe_n dent on the_input. The system Of equatio_ns_ (3),
0‘70 eV and 'bond strengtlr:LEy— 0.90 eV 0= (4), and (5) is a state affine system [17], as is the original
’ ' . RS - L master equation system of equations (1) and (2).
Each KMC simulation is a stochastic realization of the qu_ ! ystem quatl (1) (2)
robabilistic master equation In the original description of the reduced model [4], the
P q system was formulated with 80 configuration groups, but was
d B , , not periodic. Here it is reformulated as an equivalent 10-
= Z k(H', H)Pr(t) - Z K(H, H) Pr(t) (1) periodic system wit, = 8 states. The timestepist = 0.1's,
" " with p = 1 representing a step edge density measurement and
(Y)(t) = Z P(H,t)Y (H). (2) ¢ =1 representing the interface roughness to be controlled.
7 The surface temperature is the only input, so that 1.

A. Kinetic Monte Carlo simulations of thin film growth
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Fig. 3. Evolution of the reduced-order model (ROM) under toenimal  Fig. 4. Evolution of the KMC simulations under the nominal ol
optimal conditions; in the presense of initial conditionogrinput noise, and conditions; in the presense of initial condition error, ubmoise, and input
input offset; and with feedback control using a roughnesssoresnent. offset; and with feedback control using a roughness measuteme

[1l. OPEN-LOOP OPTIMIZATION AND STATE FEEDBACK with a standard deviation of 5 C, a temperature offset

The reduced-order model greatly reduces the simulatidf 1> C, and an initial surface having root-mean-square
time over KMC, making feasible the optimization of growthfoughness 0.4 monolayers (mL) and a step density of 0.16
conditions using a gradient optimization (using Matlab’d€r atomic site (instead of being atomically flat). A Gaussia
f mi ncon). This type of open-loop optimization has beenMeasurement noise with st_andgrd dewapon of 0.001 is also
presented previously [4], [5], and is used here as one COmp@,c_zlded. However, the goal in _thls paper is to use the sensor
nent of the control strategy of Figure 1. A temperature peofilméasurements to inform an inaccurate plant model, so the
to minimize interface roughness after three atomic layérs §€NSOr noise is intentionally kept small.
growth is computed using the reduced-order model, within The evolut|o_n of the system under roughness measurement
the temperature range between 95 and 140 C. and feedback |s.shown in Figures 3 qnd 4. The_ Pl contr(_)IIer

The temperature profile and resulting evolution are shovx/PP”?CtS for_ deviations from the nominal optimized profile,
with the solid lines in Figure 3 (reduced-order model) andVithin the fixed temperature range between 75 and 150 C.
Figure 4 (KMC simulations). The periodic temperature prOIhe c_ontroller perfo_rms b_etter on the reduced-order m_odel
file creates a large number of atomic clusters at the beginnithan in the KMC simulations, but in both cases the final
of each atomic layer by lowering atomic mobility, after whic roughness |s'closer to the de§|re(_j value than to the final
the temperature and mobility are raised to fill in the gapEughness without control. This simple feedback strategy
between clusters. works well when the quantity to be controlled is also mea-

Because thin film deposition processes are sensitive fre€d- In the remainder of the paper, we consider a problem
unknown disturbances like contaminants and deposition 8t Which this is not the case.
the reactor walls, feedback control is needed for process
repeatibility. In this paper a simple proportional intdgra
controller is used to control roughness, wiy = 100 and We study here an example in which the step density of
K =10, based on the observation that, in general, raisirthe surface is measured, while the surface roughness is to
the temperature reduces the surface roughness. Dist@®anice controlled. There is not a one-to-one map between these
are then applied to the simulations—Gaussian input noig&o measures, as illustrated in Figure 5. The step density

IV. OBSERVABILITY
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modes in the state vector when the growth mode remains an
oscillatory one. However, some modes are more observable
is plotted versus the roughness for the nominal optimizeghan others, as quantified by the singular values of the
temperature profile. Because the state vector is a protyabilobservability matrix.
vector, the step density and roughness are convex combina-
tions of the elements af;, and M. These discrete values are
also plotted, for k = 1. Given the step density measurement To estimate surface roughness from the step density mea-
alone, the roughness cannot be uniquely determined. A modglrement, two approaches are explored. Both use only linear
is needed to help interpret the sensor data, which is tf@mputations, exploiting the state-affine properties @ th
concept behind observability and estimation. This point isgduced-order model. The estimators are then incorporated
also illustrated by Figure 4. While roughness is always highénto the control strategy pictured in Figure 1, and are imple
than the nominal value, the step density is sometimes greatgented on the stochastic KMC simulations.
and ;ometime; less. Thus, applying feedback to control st@p | inear least-square observer
density about its nominal value does not produce the same
effect as applying a feedback controller to roughness.

V. ESTIMATION AND CONTROL

The first estimation approach follows directly from the

A systematic framework has been developed for the Otp_revious discussi(_m of ob_se_rvability matrices. At eachetim
servability of state-affine systems like equations (3), (4)step, an obseryabll|ty matrix is constructed from the reduc
and (5) [11], [17]. Unlike linear time-invariant systembet ordgr model, with the number of blopks equal to the number
ability to infer the initial state depends on the inputs &l of time steps exe_cute_d. At each t|me_ ste_p, a linear '?aS‘
However, for any particular input, a generalized obsetitgbi S44ar€s computation is performed, with Ilne_ar constraints
matrix @, can be constructed, and, if it is full rank, can be|mposed So that each element of the state is nonneganv‘_e,
used to determine an initial condition: and so that the elements sum to 1. The results are shown in

Figures 7 and 8, as applied to 20000-site KMC simula-

c y[0] tions. In Figure 7, uncertainty stems from the deviation of
O, = CA;(u[1]) y[1] s 6 the initial condition from that used in the optimization,dan
u= | CAz(u2]) A (u[l]) y[2]| =OuXo- ) from differences between the reduced-order model and the

: : KMC simulation. The roughness estimate quickly converges

) - _ near the actual value. However, the final surface is not very
To quantify the observability properties of the Monte Carlaensitive to the initial condition, so the controlled cases

simulations, observability matrices were constructed@i80 ot perform significantly better than the uncontrolled case
timg steps of data, the same Iength of time as thg optimizedlzigure 8 pictures a second example, in which the input
profile. The only measurement is the step density, not th§fset and Gaussian noise used previously are applied to the
roughness that is the control objective. Because the stake gyt temperature. In this case, the roughness estimate aga
output matrices were generated from simulation data, W&nverges to the actual value, and enables compensation for
might not expect to have completely unobservable modege disturbances in the input. Note that the observability
Thus, instead of performing a rank test, a singular valugatrices are constructed using theminalinputs, but still

decomposition is performed, with the singular values farfo provide a good roughness estimate in the presence of the
inputs shown in Figure 6. For the optimized temperaturg,, t offset and noise.

profile, the singular values range over many orders of mag- _

nitude, but remain above the machine precision. The sanfe Extended Kalman filter

is true for constant temperatures of 100 and 150 C, but is The least squares observer requires an iterative computa-
not for 75 C. During constant growth at this temperaturejon at each time step to solve the constrained linear least-
the surface evolution is qualitatively different: the swéd squares problem. A second estimation strategy is now con-
roughens monotonically, and does not exhibit the osailteti sidered that requires less computation. An extended Kalman
seen at the higher temperatures. These results suggest filtr [19] is designed using the reduced-order model. The

the step density measurement contains information abbut aktended Kalman filter effectively linearizes the systeroutb
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Fig. 7. Roughness feedback control using a least-squasenas: initial

r. Fig. 8. Roughness feedback control using a least-squaseEsas: initial
condition error only.

condition error plus input noise and input offset.

the noiseless case, such that the input noise is approximatgil KMC simulations, as was an extended Kalman filter. The
as a linear term in the state update equation, multiplieghservability matrix approach provided a better roughness
by the matrix dAx(u)/du. An initial value of the state estimate than the Kalman filter, while the Kalman filter
covariance matrix is chosen to reflect that fact that theestafequires less computation. Both estimators yield a subiatan
is a probability vector—the diagonal elements are positivemprovement in roughness tracking in the presence of input
and the off-diagonal elements are negative. noise and offset. The control strategy developed here com-
The performance of this estimation and control strategy isines sensor data with a physical plant model in a systematic
shown in Figures 9 and 10. In Figure 9, the initial conditionyay to control a material property that is not directly sehse
error and input noise are applied, while in Figure 10, theifnp The strategy was designed using a reduced-order model of

offset is added. In both cases the roughness estimate c@fe dynamics, but performs well in the KMC simulations.
verges quickly toward the actual value, but then consistent

overestimates the roughness. After deposition of threeréay Acknowledgments

the roughness is slightly lower than the desired value. When 14 author thanks Richard Murray for his involvement in
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filter approach works well, despite some discrepancy batwee
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