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Abstract— Chemical vapor deposition (CVD) is an impor-
tant step in integrated circuit fabrication and is a dynamic
process that is complex and subject to unmeasured distur-
bances. Currently in semiconductor industry the main form of
advanced process control for CVD is run-to-run (R2R) control.
R2R control is a form of discrete process control in which the
processing recipe is modifiedex situ based on post-process
metrology data. Ideally one would like to monitor and control
film growth in situ during deposition. To achieve this goal anin
situ sensor that can sense film properties in real time is needed.
This paper studied an extended Kalman filter (EKF) based
in situ sensor and demonstrated its application in chemical
vapor deposition of yttria stabilized zirconia (YSZ). The sensor
consists of a reflectometer, a data preprocessing module, and
an EKF algorithm. The reflectometer measures reflected light
intensity from the film surface at two wavelengths, 950 nm
and 470 nm. The data preprocessing module calibrates raw
intensity data, estimates the initial state and triggers EKF.
EKF estimates film thickness, roughness, and growth rate by
minimizing the mismatch between the estimated and measured
reflectance. The estimated film properties were compared with
ex situ characterization using scanning electron microscopy
(SEM) and atomic force microscopy (AFM). Sensitivity and
robustness of EKF were also studied by both simulation and
experimental implementation.

Keywords: In-situ sensing, film growth, chemical vapor
deposition, extended Kalman filter, roughness, soft sensor

I. INTRODUCTION

Chemical vapor deposition (CVD) is a widely used
method to deposit crystalline and amorphous thin films on
solid surfaces [1]. The deposition of material on a solid
surface is used to produce a wide range of industrially im-
portant materials and systems such as ultra-hard mechanical
coatings, fuel cells, and solar cells [2], [3], [4], [5]. CVDis
particularly important in the production of semiconductors
and related electronic components. It is by far the most
important area of CVD and is estimated to comprise three-
quarters of all CVD production [6].

CVD is a dynamic process that is complex and subject
to unmeasured disturbances. It also exhibits steady drift in
performance over time because of the contaminants and
build-up of material inside the deposition chamber. To
compensate for the process variability, improve yield and
reduce cost, significant research efforts have been made to
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develop automatic control for CVD and other processes in
microelectronics manufacturing over the past twenty years.
The early stage of process control is mainly in the form
of statistical process control (SPC). SPC is a technique
that monitors process output in order to detect variations
in the process. Variations are usually identified by applying
a set of rules such as the Western Electric Company Rules
to the output data. SPC is useful to monitor a process’s
stability and consistency, but it does not provide control
actions that are necessary to correct variations [7]. To solve
this problem,run to run control (R2R)was developed in the
1990s and currently it is the main form of advanced process
control implemented in industry. R2R control is a type of
discrete process control in which the processing recipe is
modified ex situ, i.e., between CVD runs, based on post-
processex situ metrology data. In practice a R2R controller
acts as a supervisor for the real-time equipment controller.
Based on post-process measurement, the R2R controller
decides whether a recipe change is needed and suggests
a new recipe for use in the next run. The recipe consists
of the regulatory set points for manipulated variables and
is downloaded to an equipment controller which applies
feedback loops to execute the recipe [8]. The problem with
R2R control lies in its discrete nature, i.e. control actions
only take place between runs and thus it can not correct the
problems that happened in one batch. Ideally one would
like to monitor and control film propertiesin situ during
deposition. Recent work in this direction includesin situ
control of film roughness in simulation using kinetic Monte
Carlo simulations and nonlinear PDEs [9], [10]. Optical
measurements of film properties have been demonstrated
for control of thickness and composition [11], [12] in de-
position and etching, but implementation of in-situ control
has been limited due to the lack ofin situ sensing capability
in practice [7]. In fact in situ sensing has always been
a primary limitation for controller development in semi-
conductor industry. This is because most semiconductor
manufacturing environments involve high temperature, high
vacuum and corrosive materials that makein situ sensor
implementation difficult. In theInternational Technology
Roadmap for Semiconductors2003 edition,in situ sensing
was identified as one of the grand challenges in the near
term (through 2009).

Previous research onin situ sensing has been focused
on usingin situ characterization tools to study the reaction



mechanism and monitor film growth. For examplein situ
mass spectroscopy was used to identify the reactant species
and their concentration in gas phase during deposition [13],
[14]. In situ FTIR and Raman spectroscopy were used to
determine the composition of the deposited film and by-
product [15], [16]. Other tools likein situ X-ray diffraction
(XRD) and X-ray photoelectrons spectrometry (XPS) have
also been reported to identify the crystal structure and com-
position of the film [17], [18], [19]. These tools, however,
are not suitable for the routinein situ sensing and control
in CVD because they are expensive, slow, and difficult to
operate. To solve this problem, some optical sensors were
developed and these include thermal emission, emission
reflectance, and ellipsometry [20], [21], [11], [22]. Optical
sensors are a natural choice forin situ sensing because
they are nonperturbing, sensitive, and can be installed
outside the deposition chamber. Optical sensors are also
cheap, commercially available, and easy to operate. Among
optical sensors laser reflectometry (LR) and spectroscopic
ellipsometry (SE) are the most popular [23], [24], [25], [26].

Optical sensors do not measure film properties (e.g.
thickness, roughness) directly. Instead they measure the
state change of the probe light after it interacts with the
film. For example, spectroscopic ellipsometry measures the
change of the polarization state of the probe light caused
by the film, which is a function of film characteristics.
Laser reflectometry measures specular reflectance change
due to interference as the film grows. Film properties
must be extracted through a model based analysis using
optical physics. For example, in laser reflectometry a thin
film interference model was used to relate film thickness
to reflectance oscillations. Each of the interference peaks
corresponds to a film thickness of half the wavelength of
the light. Therefore by counting the number of interference
peaks film thickness could be estimated [27], [28]. The peak
counting method is extremely easy to use but it requires
multiple interference peaks to process. But in some cases
depending on the film thickness desired and the wavelength
of the light, there may be only a few oscillations during
the entire film growth. Besides, the peak counting method
cannot estimate film thickness between interference peaks
and thus it is not a real-time method in the strict sense. A
more rigorous approach is the least square fitting method.
In this method a sensor model is first developed, and then
measurements are fitted into the model to extract parameters
like thickness and film optical constants. This method can
process measurements between interference peaks but it
is very sensitive to the initial guess of film state. This
is because the least square fit error surface may contain
several local minima. Besides depending on the number
of states to be estimated, multiple measurements have to
be obtained. For example, Breiland used a virtual interface
model to extract three parameters (growth rate and complex
refractive index of GaAs film) plus two fitting parameters
which represented the cumulative optical response of all
the underlying virtual layers [29]. At least five measure-

ments were needed to get a least square solution. The film
properties and growth rate between the five measurements
were assumed to be constant. The sensor models based on
physical optics are usually complicated and in many cases
several assumptions were made to simplify the model. For
example surface roughness was usually discarded. However,
surface roughness could have multiple effects on optical
measurements such as emissivity of the surface and normal
reflectance by scattering the light [30]. By neglecting the
roughness one loses information contained in the raw mea-
surement data, and introduces errors into the estimates of
other properties.

The Kalman filter represents another approach to extract
film properties from indirect measurements. A Kalman
filter is an optimal state estimator applied to a dynamic
system that involves random perturbations. It gives a linear,
unbiased, and minimum error variance recursive algorithm
to optimally estimate the unknown state of a linear dynamic
system from noisy data taken at discrete times [31], [32].
For a nonlinear system, a linearization has to be made at
each local estimated state and has proven to be useful in
many applications. Compared to peak counting and least
square fitting methods, Kalman filter requires only the
most recent measurement to update the state. Therefore
it is more computationally efficient and ideal for in-situ
sensing and feedback control. Kalman filters have been
widely used in many areas of industrial applications such
as video and laser tracking systems, satellite navigation,
etc. [31]. There have also been a few applications of Kalman
filtering in CVD and other surface processing. An early
application of Kalman filtering to in-situ monitoring of a
deposition process appeared in 1984 [33]. Later Woo and
his coworkers applied a modified Kalman filter to estimate
film thickness and growth rate from a laser reflectance
measurement [34]. EKF was also used to estimate etch
rate and end-point in a plasma etch system by Vincent
and Khargonekar [12], [35]. In both their works, adjustable
parameters called forgetting factor in Woo and optical gain
in Vincent have to be included to account for the deficiency
of the sensor model. However, in many cases film roughness
and changing extinction coefficient caused the reflected light
amplitude to decay. By using adjustable parameters, the
information contained in the amplitude change was lost.

This study used a more realistic sensor model that ac-
counts for the reflectance amplitude decay due to surface
roughness and film absorption. A preprocessing module was
used to calibrate the raw reflected light intensity data so
that there is no need for adjustable scaling parameters. The
EKF was capable of adaptive system identification so that
little a priori knowledge of process dynamics is required.
The purpose of this study is to determine the amount
of information that needs to be provided by the process
model in order to simultaneously estimate film thickness
and surface roughness from reflectance measurements.
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Fig. 1. Schematic diagram of the two layer model with rough surface for
YSZ deposited on a silicon wafer.

II. MODEL

A. Sensor model

The performance of a Kalman filter is highly dependent
upon the accuracy of the sensor model. There have been
extensive research efforts on the modeling of light scattering
on rough surfaces using various techniques such as ray
tracing, Beckmann-Kirchhoff scattering model, and virtual
interface model [36], [37]. The computational requirements
of these models also vary. Most of these models deal with
reflection from a single rough surface, but in our case the
film interference effects also must be incorporated. In this
paper the sensor model is based on the work of Filinski [38].
Yin et al. used this model to determine optical constants of
diamond films with rough surfaces [39]. In that study the
diamond film was free standing, so both sides of the film are
in air. However, the derivation is easily modified to the case
of a thin film deposited on a smooth silicon substrate. For
the completeness of this paper, the derivation procedure is
presented here. Figure 1 is the schematic diagram of the two
layer model. It is well known that there is a native silicon
oxide layer on top of a pure silicon wafer. The ellipsometry
measurements of the silicon substrate used in this work
indicated a native silicon oxide layer of around 1.6 nm
was present. After heating up to deposition temperature
(e.g. 700◦C) the thickness increased to 16.3 nm (under a
vacuum of 1.5 torr). In either case the presence of thin oxide
layers do not significantly affect YSZ film reflectance [40].
Therefore we could assume that no silicon oxide layer was
present, which greatly simplified the derivation. Filinski’s
model started with Fresnel formulas which describe the
amplitude of reflected and transmitted light when a beam
of light is incident on an optically smooth surface, from
medium 0 to medium 1. For normal incidence, the Fresnel
formulas are

r01 =
n̂1 − n̂0

n̂1 + n̂0

(1)

t01 =
2n̂0

n̂1 + n̂0

where n̂0 and n̂1 are the complex refractive index of
medium 0 and 1, respectively. When the surface is rough,
part of the light is scattered and this causes the reflected

intensity in the specular direction to decrease. In Filinski’s
model the amount of reduction was expressed in terms of
scattering factors which depend on the root-mean-square
(rms) surface roughnessσ. The three scattering factors are
expressed as follows:
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where S01 is the scattering factor when light is incident
from medium 0 to medium 1.S10 is the scattering factor
when light is incident from medium 1 to medium 0.St is the
scattering factor for transmitted light.St does not change
when incident direction changes. Using the above scattering
factors, the intensity of the beams shown in Figure 1 can
be expressed as:

I = St · t01

II = I · r12

III = II · S10r10 = I · r12 · S10r10 (3)

IV = III · r12 = I · r2
12 · S10r10

V = IV · S10r10 = I · r2
12 · (S10r10)

2

V I = V · r12 = I · r3
12 · (S10r10)

2

Note that in the above equations, the interface between
the YSZ film and the silicon substrate was assumed to be
smooth. This assumption was proved to be appropriate as
AFM scans of our silicon substrates indicated a roughness
less than 10 nm over an area of100 × 100 µm. The
total amplitude of reflected light is the summation of all
individual reflected light. Multiple reflections in a thin film
lead to an infinite series for transmitted and reflected light
which is expressed as follows:

r = S01r01 + II · Stt10 · e
−i2δ +

IV · Stt10 · e
−i4δ + V I · Stt10 · e

−i6δ + ...

= S01r01 + Stt10 · (4)

(II · e−i2δ + IV · e−i4δ + V I · e−i6δ + ...)

= S01r01 + I · r12 · Stt10 · e
−i2δ ·

[

1 + r12S10r10e
−i2δ +

(

r12S10r10e
−i2δ

)2
+ ...

]

where e−i2δ, e−i4δ, and e−i6δ are the phase factors of
different beams as they traveled different distance. The
phase factorδ is a function of the average thickness of
the film d, such thatδ = 2πn̂1d/λ.



Using
∑∞

k=0
xk = 1

1−x
for x < 1, eq. (4) becomes

r = S01r01 (5)

+I · r12Stt10e
−i2δ ·

1

1 − r12S10r10e−i2δ

=
S01r01 + S01S10r

2
01r12e

−i2δ + S2
t t01t10r12e

−i2δ

1 + r01r12S10e−i2δ

When the roughness is zero, the sensor model of eq. (5)
reduces to a well known expression for the reflectance of a
smooth thin film on a thick substrate. The virtual interface
model used by Breiland and Killeen [29] is the special case
of eq. (5) in whichσ = 0. r is a complex number containing
phase information. It was used to calculate the normal
reflectance through the following expression:R = r∗ · r,
where r∗ is the complex conjugate ofr. R represents
the percentage of the energy of incident light that was
reflected back from the surface. The part of the reflected
light that is detected by the reflectometer depend on the
reactor geometry, relative position, and optical aperture
of the photodiode sensor. ThusR is proportional to the
measured raw voltage signal.

B. Process model

The sensor model in eq. (5) indicates that film thickness
will cause reflectance oscillations through the phase factor
e−i2δ. Therefore when using a least square fitting method
to invert the sensor model, it is possible to get multiple
solutions depending on the initial guess. One distinction
of the Kalman filter is that it can utilize information from
various sources including a process dynamic model to yield
a more balanced estimate. Incorporating a process dynamic
model could help the Kalman filter to identify the direction
of state evolution and thus help it jump out of the local
minima on the error surface.

There have been some research efforts on the modeling of
process dynamics of YSZ thin film growth. The dynamics
of YSZ deposition fall into two regimes, the precursor diffu-
sion controlled regime and the surface reaction controlled
regime, depending on the deposition temperature. In the
surface reaction controlled regime, Akiyama et al. obtained
an Arrhenius-type equation to relate deposition rate with
deposition temperature by using a simplified Monte Carlo
simulation and then comparing to experimentally observed
step coverage on micro-scale trenches [41].

Having a process model could improve the ability to
estimate film properties. However in many cases, especially
for a new material system, the dynamics of deposition are
not well understood. In order to make the Kalman filter a
general tool, a technique called Kalman filter with adaptive
system identification was developed [42]. The basic idea is
to treat some set parameters as a random constant vector and
make it a new state variable so that it is optimally estimated
in an adaptive way. The detailed algorithm is presented in
next section. The simple process model used in this work

is shown below,

h[j + 1] = h[j] + G[j]∆t

σ[j + 1] = σ[j] + w1[j] (6)

G[j + 1] = G[j] + w2[j]

whereh, σ, andG are film thickness, rms roughness, and
film growth rate, respectively.σ and G were treated as
random constant variables and are to be estimated adap-
tively. h is simply the integration ofG. By integratingG
over time, the process model could inform the Kalman
filter that film thickness is changing monotonically and
thus help identify direction of the estimate.w1 andw2 are
are assumed to be uncorrelated zero mean Gaussian white
noises. For correlated and colored systems, a noise modified
Kalman filter could be applied but is not discussed in this
study.

More complex process models could be used instead. For
example, the real and imaginary parts of the film’s refractive
index affect the reflectance, and could also be estimated.
However, given the simple process model and lack of
coupling between states in the process model, the limited
measurement data would not be sufficient to estimate both
roughness and index of refraction. In fact, there is additional
coupling in the process between the states (e.g. growth
rate would affect roughness), which could be exploited
to improve the observability properties of the system. At
this time we do not have quantitatively accurate model
to describe it. Instead, we use a qualitatively reasonable
process model and a detailed sensor model, and investigate
how the simple process model can aid in prediction.

III. EXTENDED KALMAN FILTER

A Kalman filter is the optimal linear estimator for a linear
system [32], but our sensor model is a nonlinear function
of the states in the process model. We applied the standard
approach for the extended Kalman filter to our nonlinear
system, in which the system is linearized about the current
estimate at each point in time [31]. For the nonlinear system

xk+1 = fk(xk) + Hk(xk)wk (7)

yk = gk(xk) + νk

wherexk is the state at timek andyk is the measurement,
and additive noise terms are included in the process (wk)
and measurement (νk). The extended Kalman filter equa-
tions are

Pk,k−1 =

[

∂fk−1

∂xk−1

(x̂k−1)

]

Pk−1,k−1

[

∂fk−1

∂xk−1

(x̂k−1)

]T

+Hk−1(x̂k−1)Qk−1H
T
k−1(x̂k−1)

x̂k|k−1 = fk−1(x̂k−1)

Gk = Pk,k−1

[

∂gk

∂xk

(x̂k|k−1)

]T

· (8)

[[

∂gk

∂xk
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]

Pk,k−1[
∂gk

∂xk

(x̂k|k−1)

]T



+Rk]−1

Pk,k =

[

I − Gk

[

∂gk

∂xk

(x̂k|k−1)

]]

Pk,k−1

x̂k|k = x̂k|k−1 + Gk

(

yk − gk(x̂k|k−1)
)

wheref is our linear process model in eq. (6), andg is our
nonlinear sensor model in eq. (5). The Kalman gain at time
k is Gk, and the a priori and a posteriori error covariance
matrices arePk|k−1 andPk|k, respectively. The estimate for
the state at timek is x̂k. Because the EKF equations are
recursive and algebraic, there is little computation required,
making them ideal for real-time estimation and control.

In our reactor we have two reflectance measurements,
at 470 nm and 950 nm, so that the system has two
measurements and three states. Due to the coupling of
the growth rate and thickness states, the linearized system
is observable, for any linearization of the sensor model,
which can be established by checking that the observability
matrix is full rank. If more wavelengths were available for
measurement, then it might be possible to independently
estimate the real or complex refractive indices of the film,
but with two measurements we are limited to estimating film
thickness and one other film property (roughness here).

The peak counting method of Zuiker [28] used one
wavelength to estimate thickness, roughness, and absorp-
tion. This was only possible because three measurements at
three adjacent extrema in the interference oscillations were
used, and the growth rate, roughness, and absorption were
assumed to remain constant over this entire interval. Thus,
the problem reduced to the solving of three equations for
three unknowns. The primary disadvantage of the method
is that it provides infrequent estimates. Additionally, since
it uses three measurements to compute three properties, it
is extremely sensitive to noise.

IV. SIMULATION

A. Sensor model simulation

The sensor model in eq. (5) indicates that film thickness,
roughness and refractive index affect reflectance in different
ways. Before applying EKF, it is beneficial to understand
how these different film properties affect reflectance. By
doing so we can get a general idea what information
was contained in the measurement data and judge if the
estimated film properties are physically realistic. The fol-
lowing simulation uses a wavelength of 470 nm. The optical
constants of silicon, YSZ, and yttria used in the simulations
are from the literature [43], [44], [45].

Figure 2 shows the reflectance data simulated at three
different film growth rate (10, 20 and 40 nm/min) but with
the zero surface roughness and extinction coefficient. As
shown, a faster film growth rate gives a shorter oscillation
period. Film thickness enters the sensor model through a
phase factore−i2δ. Becauseδ = 2πn̂1d/λ, each oscillation
corresponds to a thickness of half a wavelength in the film.
This is the idea behind the peak counting method.
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Fig. 2. Effect of film growth rate on reflectance.
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Fig. 3. Effect of constant surface roughness on reflectance.

Figure 3 shows the reflectance data simulated at three
different rms roughnesses (20, 40 and 50 nm) but with the
same film growth rate and extinction coefficient (imaginary
part of the refractive index). As shown, a larger surface
roughness causes more reduction in reflected light ampli-
tude due to more energy loss in light scattering. However
constant surface roughness does not cause the amplitude
decay which was observed in many CVD experiments.
Surface roughness enters sensor model through the three
scattering factors. From the definition in eq. (2), the scat-
tering factors are all real numbers and thus do not cause
any phase change. Zuiker [28] used the following formula
to calculate roughness.

σ =
1

k

√

1

2
ln

[

2r01
√

Rmax + Rmin

]

(9)

wherek = 2π/λ, andRmax and Rmin are the peak and
valley values of reflectance, respectively. This is consistent
with Fig. 3, as overall amplitude reduction(Rmax +Rmin)
suggests a rougher surface.

In a real CVD process, the surface roughness would
change with experimental and surface conditions. Luo et
al. observed a reflectance increase in the first few minutes
after deposition, after which it decayed gradually [46]. SEM
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Fig. 4. Effect of increasing surface roughness on reflectance.
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Fig. 5. Effect of extinction coefficient on reflectance.

pictures of the film suggested the increase of reflectance
was caused by the coalescence of scattered polycrystalline
grain islands to form a continuous film which had less
roughness. As the film continued growing, the surface be-
came rough again and reflectance decayed. The reflectance
decay could be explained quite well by Figure 4, which
shows simulated reflectance at different roughening rates
(3 nm/min, 5 nm/min and 7 nm/min). Also note that
increasing roughness caused the peak reflectance to decay
much more than the valley reflectance.

Figure 5 shows the reflectance data simulated at three
different extinction coefficients (0.1, 0.3 and 0.5) but with
the same film growth rate and a smooth surface. As shown,
film extinction coefficient also causes reflectance decay.
But in contrast to roughness, it affects both peak and
valley reflectance. Also light scattering due to roughness
is a surface phenomenon, therefore for constant roughness,
the film growth would not cause reflectance decay. How-
ever extinction coefficient is a film property, and for a
constant extinction coefficient a thicker film would cause
reflectance decay because the distance light traveled in the
film increased. Also note that when thickness approaches
infinity, according to the sensor model, the reflectance
would approachS01r01 which is the reflectance on the air-

YSZ interface. This information was exploited by Breiland
to extract the refractive index of a GaAs film [47].

B. Extended Kalman filter simulations

Before applying the EKF to real experimental reflectance
data, we run simulations first in order to understand some
characteristics of the filter, including robustness and sensi-
tivity to tuning parameters. By doing so one could have a
guideline in tuning EKF for real experimental data. EKF
starts with four inputs: initial state estimatêx0, initial esti-
mate covariance matrixP0,0, covariance matrix of process
model disturbanceQk, and covariance matrix of sensor
model noiseRk. The initial state estimate and its covariance
matrix could be characterized ex-situ. For example one
could measure initial film thickness using ellipsometry or
SEM offline before CVD. Process model disturbances were
difficult to model so in our implementation of EKF,Qk was
used as a tuning parameter. Sensor noise, however, could be
obtained from the histogram of the measurement. Therefore
in the following simulation the effects of tuning parameters
Qk and initial state estimate on the performance of EKF
were studied. It was observed in many CVD experiments
that film deposition rate was not constant throughout the
reaction. This might be because the surface morphology
(e.g. roughness, composition etc.) changed when a film
was deposited on the substrate. Surface morphology then
caused surface emissivity to change which determines heat
radiation rate and surface temperature. Deposition rate is
strongly dependent on deposition temperature. Therefore
in this simulation we used an exponential decay function
to simulate the film growth rate. Film thickness was then
integrated over time. Surface roughness was also simu-
lated using a linear function. It was observed that surface
roughness increased during deposition and was attributed to
textured growth in which slowly growing crystal faces are
buried by faster growing faces. Extinction coefficients of
YSZ were assumed to be random variables with mean value
equal to that at room temperature. The standard deviation of
sensor noise was chosen to be 0.001 which represents the
noise level in our reflectometer. Figure 6 shows a typical
simulated reflectance data. It has the main features of many
reported reflectance measurements.

In the first simulation, EKF used the same initial state es-
timate as that used in data generation in order to investigate
the effect of the turning parameterQk. For Case I, Figure 7
compares EKF estimated states and actual states. Figure 8
compares EKF generated reflectance from estimated states
and model generated reflectance data as in Fig. 6. For
Case II, simulation results were presented in Fig. 9 and
10. As shown, bothQk can give satisfactory estimates for
film thickness. Surface roughness and film growth rate were
not estimated exactly. However increasingQk gives a better
estimate for both surface roughness and film growth rate. It
was clear from Fig. 9 that the trend of exponential decay of
film growth rate and the linear increase of surface rough-
ening rate were captured quite well. They were assumed



0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (s)

re
fle

ct
an

ce
reflectance 950 nm
reflectance 470 nm

Fig. 6. Simulated reflectance at 950 nm and 470 nm based on exponential
decay of film growth rate and linearly increasing roughness.

TABLE I

SIMULATION PARAMETERS.

Qk x̂0

Case I
[

0.1 0
0 0.1

]

[120 10 10]T

Case II
[

100 0
0 100

]

[120 10 10]T

Case III
[

100 0
0 100

]

[120 5 5]T

Case IV
[

100 0
0 100

]

[110 5 5]T

to be random constant variables so that EKF can estimate
them adaptively. The covariance matrix of process model
disturbances,Qk, essentially specifies the range that EKF
could adjust these random variables. LargerQk gave EKF
more flexibility to adjust roughness and growth rate and thus
made it more possible to capture the trend of roughness and
growth rate change. Therefore when applying EKF to real
experimental data,Qk should be tuned higher to get better
performance in the presence of an uncertain process model.

In Case III of Table I, the effect of the initial state esti-
mate on EKF performance was studied. Generally speaking,
discrepancy in the initial state estimate could cause errorin
later estimates. In the extended Kalman filter the new esti-
mate was calculated by linearizing the process and sensor
models at the previous state estimate. Therefore erroneous
initial estimates can propagate into later estimates. The EKF
had different sensitivities to different state variables.Figure
11 shows the simulation results when the EKF used the
largerQk in Table I and an erroneous initial state estimate
(Case III). The initial film thickness estimate is correct
but both roughness and film growth rate have an error
of 50%. As shown, the EKF still yielded a satisfactory
estimate. However, using the initial estimate of Case IV
in Table I, which used an initially correct roughness and
growth rate estimate, but only a 10% error in thickness,
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Fig. 7. Comparison of estimated and actual states for Case I of Table I.
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Fig. 8. Comparison of estimated and actual reflectance for Case I of
Table I.
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Fig. 9. Comparison of estimated and actual states for Case IIof Table I.
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Fig. 11. Comparison of estimated and actual states for Case III in Table
I.

the EKF cannot yield a satisfactory estimate, as shown
in Figure 12. The oscillations in reflectance are strongly
correlated with the film thickness, and a small error in initial
film thickness can lead to a large discrepancy between the
measured and estimated reflectance. Once the estimate gets
ahead or behind by one oscillation, we observe that the EKF
is not able to correct for this error due to the nonlinear
nature of the reflectance oscillations.

V. EXPERIMENTAL

A. Chemical vapor deposition reactor

Yttria-stabilized zirconia (YSZ) deposited by metal-
organic chemical vapor deposition (MOCVD) was used
to demonstrate the feasibility of the EKF based soft sen-
sor. This material system was selected for its utility in
demonstrating concepts, but is also of interest in a wide
range of applications [48], [49], [50]. Figure 13 shows
a photograph of the apparatus. A schematic is shown in
Figure 14. It mainly consisted of three parts: material supply
system including Ar and O2 gas supply and two precursor
evaporators, a deposition chamber with in-situ reflectome-
ter/pyrometer, and a vacuum system with automatic pres-
sure control. Theβ-diketonates Zr(tmhd)4 and Y(tmhd)3
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Fig. 12. Comparison of estimated and actual states for Case IV in Table
I.

Fig. 13. Photograph of the CVD reactor.

Fig. 14. Reactor schematic.



[Strem Chemicals, Inc.] were used as the precursors due to
their high volatility at temperature below 250◦C and their
thermal stability in the gas phase at elevated temperatures
[51]. The precursors were evaporated in separate stainless-
steel evaporators and carried to a flow manifold via Ar
gas. Another stream of Ar with the same flow rate as
the Ar carrying precursors entered the manifold from the
other side. The manifold consisted of four bellows-sealed
valves (two normally closed and two normally open) from
Swagelok. These valves were controlled by solenoid valves
thus allowing us to either flow precursors over the reactor
to deposit, or to bypass the reactor and flow pure Ar over
the substrate during heat up and cool down steps of the
processing. Oxygen was piped through a separate tube and
mixed with the precursor stream as it entered the deposition
chamber, since premature reactions between the precursors
and oxygen can lead to undesired gas-phase particle for-
mation. Another Ar stream with relatively slower flow rate
was used as purge flow to prevent precursor condensation
on the sensor viewport. Pipes carrying precursor vapor were
kept at a temperature slightly higher than the evaporation
temperature in order to suppress condensation. All gas flow
rates were controlled by mass flow controllers from MKS.
The vacuum system was made up of a vacuum pump,
a pressure transducer, a pressure controller and a throttle
valve from MKS. The system was designed to operate
at a pressure range of 1–10 torr which is common for
most MOCVD processes. Before the vacuum pump a liquid
nitrogen trap was used to capture escaped precursors.

The deposition chamber consists of two standard
stainless-steel ultra-high vacuum (UHV) reducing crosses,
with a chamber diameter of 2”. The growth chamber was
enclosed in an oven to prevent precursor condensation on
the chamber walls. A 1” diameter resistive sample heater
with a substrate block designed for oxidizing conditions,
both supports and heats the substrate. A vertical flow geom-
etry was selected for the MOCVD reactor. This geometry
is typically used in cold wall designs for rapid thermal
processing, with cold walls creating a temperature gradient
and the need for temperature control. Another reason for
the popularity of the vertical flow geometry is the existence
of a one-dimensional similarity solution in the limit of an
infinite wafer.

The in-situ sensor used in this study is actually an
emissivity-correcting pyrometer. This unit [from SVT Asso-
ciates] contains all the optics and electronics, and requires
only a single normal-incidence viewport. The pyrometer
measures the emission at 950 nm and 850 nm, and the
LED reflectometer measures normal reflectance at 950 nm
and 470 nm. Its sampling time is 1 sec. This system
was designed to be used with semiconductors that are
opaque at 950 nm which is the case for silicon substrate.
In this study, only the reflectometer data were processed.
By incorporating pyrometer data into the estimator, more
information could be interpreted. This work is currently
underway.

TABLE II

DEPOSITION CONDITIONS.

Evaporation temperature: Z(tmhd)4 (◦C) 205
Evaporation temperature: Y(tmhd)3 (◦C) 125
Deposition temperature (◦C) 700
Total pressure (torr) 2-6
Deposition time (min) 240
Molar ratio of O2 25%
Total gas flow rate (sccm) 500

The reactor was operated using a custom LabView pro-
gram, which also acquires experimental data. The reactor
was operated under conditions similar to those previously
reported in the literature [52]—typical experimental condi-
tions were listed in Table II. Films were deposited on 1”
(100) Si wafers with one side polished obtained from Nova
Electronic Materials, Inc, and were cleaned with organic
solvents.

Ex-situ characterization of the YSZ films was performed
to validate the estimated film properties. Film thickness was
measured with a M-2000 ellipsometer (J. A. Woollam Co.,
Inc.). Surface roughness was measured using a PicoPlus
AFM (Molecular Imaging). Ellipsometry measurements of
the YSZ film were not well fit with a three-phase model
(air, YSZ, silicon), suggesting that the film may be rough
or nonuniform over the large spot size of the ellipsometer.
However, the number of oscillations in the data indicated
a thickness in the range of 600 to 700 nm. AFM images
before and after growth indicated that the initial silicon
surface has an rms roughness of 10 nm, while after growth
the surface roughness is 65 nm.

VI. EXPERIMENTAL RESULTS

A. Raw data preprocessing

When applying EKF to real experimental data, the reflec-
tometer must be calibrated first so that the raw voltage sig-
nal acquired by the sensor can be transformed to reflectance
that the EKF can use. The reflectometer measures the inten-
sity of the light reflected back from the surface and captured
by the detector. Therefore reflectance is a linear function
of voltage. The linearity depends on the reactor geometry,
relative position and optical aperture of the sensor. The
reflectometer was first calibrated at room temperature with a
zero reflectance case and a known reflectance of a substrate.
The zero reflectance case was performed with the substrate
missing, and represents a baseline measurement for which
stray light is accounted for in the calibration. A known
substrate reflectance was obtained by using a bare silicon
wafer. The normal reflectance of silicon at room temperature
can be calculated from its refractive index.

This sensor calibration was performed at room temper-
ature. However when the silicon wafer was heated up to
reaction temperature (e.g. 700◦C), erroneous reflectance
readings were observed. Figure 15 shows a typical measured
reflectance data when YSZ was deposited on a silicon
wafer at 700◦C. The oscillation after around 8000 s was
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Fig. 15. Reflectance vs. time during heating up of the wafer (before
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caused by the film growth. The data before 8000 s are
measured reflectance when the wafer was heated up from
room temperature to the reaction temperature. As shown,
reflectance at 470 nm decreased gradually while reflectance
at 950 nm increased first (up to 3000 s) and then decreased
sharply. The change of reflectance during heatup cannot be
explained the temperature dependence of the optical con-
stants of silicon. According to Jellison, refractive indexof
silicon increases with temperature for all light wavelengths
longer than 365 nm [43]. An increasing refractive index
should cause the increase of reflectance. The reflectance
change in Fig. 15 is also not repeatable. However in
all experiments, after reaction temperature was stabilized,
reflectance also stabilized as shown in Fig. 15 (after around
7000 s). This led us to believe that the linear relation
obtained at room temperature calibration may have changed
when the wafer was heated up due to thermal expansion and
shifting alignment.

If the erroneous reflectance data was fed to EKF directly,
our preliminary results indicated that the EKF would fail
because the mismatch between the measured and predicted
reflectance was too large to handle. Adding additional fitting
parameters to compensate for the sensor model deficiency
was found to be helpful [12], but by doing so, information
embedded in the measurement, such as amplitude decay
in Fig. 15, can not be extracted. The method used in this
study was to calibrate the reflectometer at high temperature
after reaction temperature was achieved, and the reflectance
measurement stabilized. The reflectance of bare silicon at
reaction temperature (e.g. 700◦C) could be used as the
first point for calibration because its reflectance could be
calculated from its refractive index at that temperature. The
second point for calibration was chosen to be the first
peak of reflectance at 470 nm. The reflectance at this point
was calculated from the sensor model eq. (5). The data
preprocessing could also obtain initial film thickness and
growth rate estimates. The thickness was calculated from
the half wavelength in the film. Thickness divided by the
time gives an estimate of film growth rate. A disadvantage
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Fig. 16. Estimated film properties from preprocessed reflectance data.
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with this data preprocessing method is that the data before
the first peak appeared is not estimated.

B. Application of EKF for in-situ sensing YSZ

When applying EKF to preprocessed reflectance data,
the understanding of the behavior of EKF obtained in
the simulation study proved to be quite helpful. Generally
speakingQk should be set large enough for EKF to adjust
the random state variables adaptively. The initial estimate
of film thickness should be as accurate as possible. The
thickness at that point was calculated to be 120.8 nm based
on the refractive index of the yttria film at the growth
temperature. The average film growth rate from start of
the reaction to the first peak at 470 nm was calculated to
be around 11 nm/min. The silicon wafer roughness after
heating up to reaction temperature and then cooling down
was ex-situ characterized with AFM and found to be in
the range of 20 to 30 nm. This roughness is actually that
of the interface of SiO2 on top of the silicon substrate.
The surface roughness at the first peak is not known but
assumed to be the same as that of the silicon substrate,
so an initial state estimate of[120.8 1 11]T was used.
The covariance matrix of sensor noise was chosen to be
the same as in the simulation study. The estimated states
are shown in Fig. 16. Figure 17 compares the predicted



reflectance with measured data. As shown in Fig. 16, the
film growth rate was estimated to decrease from 11 nm/min
to 5 nm/min. As discussed in the sensor model simulation
section, film growth rate determines the period of oscil-
lation. The measured reflectance in Fig. 17 indicated an
increasing oscillation period which is consistent with the
estimated growth rate decay. Figure 16 also shows the esti-
mated thickness to be 535 nm. The monotonic increase of
the thickness indicated that a simple process model helped
EKF to determine the direction of thickness evolution. The
film thickness increased nonlinearly until the end of the
experiment where it nearly stopped increasing. Again this
is consistent with the estimate of growth rate decay. The
estimated film roughness did not change significantly from
the initial estimate. When we used a different initial estimate
of film roughness, the new estimated roughness did not
change either and was always close to the initial estimate.
As discussed in the sensor model simulation section, in-
creasing surface roughness would cause the peak value of
reflectance to decay but does not affect valley reflectance
very much. The reflectance data in Fig. 17 did not have
this kind of feature so EKF had no necessary information to
adjust the roughness. The data suggests that the roughness is
not changing significantly over the growth period, although
the roughness at the initial calibration point may in fact be
nonzero. Further ex-situ characterization and validationof
the sensor model is need, but the preliminary experimental
results show that inclusion of a process model can aid in
the interpretation of the sensor data to infer thickness and
roughness.

VII. SUMMARY AND CONCLUSIONS

An extended Kalman filter was used to estimate film
thickness, roughness, and growth rate during chemical
vapor deposition from reflectance measurements at two
wavelengths. A sensor model was derived to incorporate
the effect of roughness and refractive index on surface
reflection, and a simple process model was used to specify
the direction of thickness evolution. The EKF captured
the trend of film growth decay and overcame the problem
of local minima encountered in the least square fitting
method. Preliminary results suggest that the EKF or other
systematic estimation techniques could be a viable approach
for estimating film properties in-situ during deposition.

The application of feedback control in chemical vapor
deposition is challenging, because the sensors do not pro-
vide direct measurements of the properties to be controlled,
and because the systems are batch and nonlinear. For both
reasons, a good understanding of the process dynamics is
needed to develop a model to interpret the sensor data.
In many cases the required model is multiscale. Discrete
models describing individual atomic interactions or the
velocity profiles of discrete grains may be needed to de-
scribe the process dynamics [53], [54], [55]. However, a
detailed model also has disadvantages in process control.
It reduces the applicability of the controller, and the time

required to build the model may not be cost-effective.
Additionally, it may have a large number of parameters that
need to be estimated periodically to account for equipment
drift. Also, fast computation is required for online imple-
mentation. Ongoing research in multiscale modeling may
reduce the computation enabling online implementation,
with approaches including equation-free computing [56],
adaptive tabulation [57], or reduced-order modeling [58].
In addressing problems in sensing in CVD, this tradeoff
must be continually assessed to reduce model complexity
while retaining the dynamics of interest.
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