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ABSTRACT

In this paper we describe the response of a Kinetic Monte Carlo model to time-varying
growth conditions. We vary temperature and partial pressure sinusoidally and identify be-
havior typical of low-dimensional nonlinear systems. In particular, the frequency content of
the roughness response is sensitive to the presence of steps in the surface.

INTRODUCTION

Deposition of a thin film from vapor-phase precursors is an industrially-important process
which depends strongly on growth conditions. However, the dynamics associated with growth
conditions are not well-understood, and films are typically deposited under constant growth
conditions. Recent experiments and simulations indicate that dynamically-varying growth
conditions may produce beneficial morphology [4, 5], which motivates our investigation of
the time response of a kinetic Monte Carlo simulation.

We consider a crystal surface with steps. When diffusion is high, step flow growth
dominates, and the natural response of the system does not possess a natural frequency.
The steps do not play an important role when diffusion is low. Instead, the film grows by
island nucleation and coalescence, in which the time required to deposit a monolayer of film
is the characteristic time.

We will take as actuators the precursor partial pressure, which directly alters the incident
flux of precursors, and the substrate temperature, which alters the surface kinetics. Because
these macroscopic actuators cannot be varied on fine spatial scales, we focus on temporal
variations and search for previously unrecognized dynamics to alter morphology.

MONTE CARLO FILM MODEL

We studied the surface morphology of a growing crystal with a kinetic Monte Carlo
model. We consider a single-species material on a cubic lattice, and we increment time as in
Fichthorn and Weinberg [1] to achieve a physically-based time. Vacancies in the crystal are
prohibited. We define reaction rates for adsorption, desorption, and surface diffusion based
on a nearest-neighbor bond-counting model:
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where i, ranging from 0 to 4, is the number of adjacent side neighbors, kads is the adsorption



rate, kdes,i is the desorption rate for a surface site with i nearest neighbors, and kdif,i is the
diffusion rate for a surface site with i nearest neighbors. The Boltzmann constant is denoted
with kb, Planck’s constant is h, the sticking coefficient is γ, the mass of the particle is m,
temperature is T , and the precursor partial pressure is Pj. The chemistry model has four free
parameters: three activation energies and a constant in the adsorption rate. The activations
energies Edes,0, Edif,0, and ∆E are the depths of the potential energy wells associated with
the occurrence of a surface event. Specifically, Edes,0 is the energy for the desorption of an
atom with no side neighbors, Edif,0 is the energy for the diffusion of an atom with no side
neighbors, and ∆E is the additional energy barrier associated with a single side neighbor.

DISCUSSION

We performed simulations on a 256×256 domain and deposited 20 layers of atoms. Eight
steps were inserted into the initialized lattice, and periodic boundary conditions were used
to simulate an infinite train of steps. The reaction rate parameters were γ(2πmkb)−0.5 =
5
√

KPas−1, Edes,0 = 2.64 × 10−18J , Edif,0 = 3.02 × 10−19J , and ∆E = 7.59 × 10−20J . The
activation energy for desorption is sufficiently high such that desorption is negligible in the
simulations. We considered a nominal partial pressure Pj,o = 1 Pa and nominal temperatures
To of 900 K, 1050 K, and 1150 K. We present here the results of sinusoidal forcing with
amplitudes ∆T = 25 K and ∆Pj = 0.95 Pa. The temperature and partial pressure are
varied 180o out of phase, which produces the greatest effect. The simulations are performed
for sinusoidal forcing with periods at 1 s intervals, ranging from 1 s to 23 s.

Throughout the simulations we sample the average thickness, surface roughness, number
of empty side bonds, adatom density, and island density. In this paper we present the
frequency response of the surface roughness W for various forcing frequencies and for the
three nominal growth conditions considered. In the frequency response we consider a scaled
time which is proportional to the thickness, which produces a more defined peak at the
monolayer frequency.

We consider three nominal growth conditions, which represent a wide range of morpholo-
gies. At To = 1150 K, diffusion is high relative to the step width, and step flow growth
dominates, as pictured in Figure 1. Conversely, at To = 900 K, diffusion is low relative to
the step width, and the steps do not dominate growth. Islands nucleate instead, produc-
ing rough three-dimensional growth as in Figure 2. We present in Figure 3 the frequency
response of the surface roughness under sinusoidally-forced growth conditions for the three
nominal temperatures. The vertical line denotes the monolayer frequency, and the curved
lines mark the forcing frequency and its harmonics. Note that the curved lines pass through
the base of each frequency response.

Figure 3(a) contains the frequency content of the surface roughness for To = 900 K. The
response is dominated by the forcing frequency. This peak grows as the forcing period grows
because the surface has more time to adjust to slower forcing. In addition to the forcing
frequency, a peak is also present at the harmonics of the forcing frequency. This response is
excited when the harmonics pass through the monolayer frequency. We do not believe that
the harmonics enter the response through algebraic nonlinearities in the actuators. We have
conducted simulations in which only the partial pressure is varied, so that the adsorption rate
is also forced sinusoidally. The peaks at the harmonics of the forcing frequency still appear
in the roughness response, indicating that the film system itself contains nonlinearities.

The response can be understood from a physical point of view by considering the number



Figure 1: Step flow growth dominates when surface diffusion is high.

Figure 2: Island growth dominates when surface diffusion is low. Note that the surface
contains eight steps.
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Figure 3: Frequency response of surface roughness for Pj,o = 1 Pa and To = (a) 900 K, (b)
1050 K, (c) 1150 K. Period of forcing ranges from 1 s to 23 s (top to bottom). Vertical scale
is arbitrary.



of adatoms deposited during each forcing cycle. When the forcing frequency is equal to
the monolayer frequency, the number of adatoms deposited per forcing cycle is equal to the
number of atoms in a layer of the crystal. At the end of each forcing cycle, exactly one layer
of atoms has been deposited. If we consider the end of each forcing cycle to be the point when
temperature is high and adsorption is near zero, the surface approaches a smooth morphology
at the end of each cycle. Conversely, if the forcing is slightly slower, a few adatoms will be
remain on the terraces at the end of each cycle. At this relatively low temperature, diffusion
is low, so the extra adatoms will tend to form islands instead of attaching to the steps. The
surface will not approach a smooth surface at the conclusion of each layer of growth, and will
primarily respond at the forcing frequency. The monolayer frequency is also excited when
any integer layer of adatoms is deposited during a forcing cycle. At the conclusion of each
forcing cycle, the surface again approaches a smooth surface. We observe this excitation of
the monolayer response in Figure 3(a) when the first and second harmonics of the forcing
frequency equal the monolayer frequency.

This type of behavior is seen in low-order nonlinear differential equations and is referred
to as superharmonic resonance [3]. Superharmonic resonance specifically refers to a steady-
state response in which the forcing frequency induces a response at the natural frequency
when the natural frequency is an integer multiple of the forcing frequency. We note that our
system is technically not in steady state, because the surface is continually roughening. It
is also possible that behavior similar to subharmonic resonance could occur in our system
when the forcing frequency is twice or three times the monolayer frequency. However, at
frequencies faster than the monolayer frequency, we observe little response at any frequency.

At a higher nominal temperature of 1050 K, the diffusion rate increases, and the steps
play a greater role in the frequency response. This frequency response is shown in Figure
3(b). As at 900 K, we see a large response at the forcing frequency, and a smaller response
when the forcing harmonics pass through the monolayer frequency. The major difference
between the two cases is that at higher temperature, the oscillations induced when the
forcing and forcing harmonics pass through the monolayer frequency are excited even when
the forcing frequency is slightly less than the monolayer frequency. This change is a result
of the increasing importance of the steps at higher temperature. Let us consider again the
situation when a single layer of adatoms is deposited during a forcing cycle. The adatoms
will tend to form a smooth surface at the end of the cycle. Now consider the case when
slightly more than a layer of atoms is deposited during a cycle. These extra adatoms will
now be more likely to diffuse to the step edges instead of nucleating islands on the terrace,
so at the end of the forcing cycle, the surface will again approach a smooth surface. The
growth mode is now a combination of island nucleation and step flow growth, with periods
of island growth alternating with periods of step flow growth. The natural frequency of the
system is pulled from the monolayer frequency to the forcing frequency, or to a harmonic
of the forcing frequency. This is another behavior seen in nonlinear systems and is called
synchronization [2].

Synchronization is said to occur when forcing near the natural frequency produces a re-
sponse at the forcing frequency, but forcing far from the natural frequency yields a response
with components at both the natural and forcing frequencies. In our system, we observe
synchronization-like behavior associated with the forcing frequency and its harmonics. The
synchronization appears to occur when the forcing frequency is slightly less than the mono-
layer frequency. It also may occur when the forcing frequency is greater than the monolayer
frequency, if atoms detach from steps to fill vacancies in a nearly complete layer. However,



detachment from steps will always be less probable than atom diffusion to steps, so we should
expect this effect to be less pronounced.

The frequency response associated with the final nominal temperature is simpler than
the previous cases. At To = 1150 K, diffusion is high, and the steps dominate growth. The
dominant response occurs at the forcing frequency. The monolayer frequencies ceases to be a
natural frequency for the system, because island nucleation and coalescence does not occur.
At steady growth conditions, growth occurs by step flow growth as adatoms attach to step
edges. When the growth conditions are forced sinusoidally, the roughness is perturbed at
the forcing frequency alone.

CONCLUSIONS

Although the surface evolution is defined by a series of reaction rate equations, not differ-
ential equations, we have identified system dynamics suggesting that the surface response to
temperature and partial pressure might be described by a differential equation. This insight
is beneficial in creating low-dimensional models. We are currently developing a set of rate
equations, with the goal of capturing the essential dynamics of the Monte Carlo simulation
with differential equations for island density and island coverage.

While we have demonstrated that open loop excitation of the system is enough to alter
morphology, real-time measurements are possible and may be accomplished with reflective
high energy electron diffraction (RHEED). Insight into the surface dynamics would also be
beneficial in implementing closed-loop control.
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