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SUMMARY

This thesis describes the development of an empirical model of focus beam

reflectance measurements (FBRM) and the application of the model to monitoring

batch cooling crystallization and extracting information on crystallization kinetics.

Batch crystallization is widely used in the fine chemical and pharmaceutical in-

dustries to purify and separate solid products. The crystal size distribution (CSD)

of the final product greatly influences the product characteristics, such as purity, sta-

bility, and bioavailability. It also has a great effect on downstream processing. To

achieve a desired CSD of the final product, batch crystallization processes need to be

monitored, understood, and controlled.

FBRM is a promising technique for in situ determination of the CSD. It is based

on scattering of laser light and provides a chord-length distribution (CLD), which is

a complex function of crystal geometry. In this thesis, an empirical correlation be-

tween CSDs and CLDs is established and applied in place of existing first-principles

FBRM models. Built from experimental data, the empirical mapping of CSD and

CLD is advantageous in representing some effects that are difficult to quantify by

mathematical and physical expressions. The developed model enables computation

of the CSD from measured CLDs, which can be followed during the evolution of the

crystal population during batch cooling crystallization processes.

Paracetamol, a common drug product also known as acetaminophen, is selected as

the model compound in this thesis study. The empirical model was first established

and verified in a paracetamol-nonsolvent (toluene) slurry, and later applied to the

paracetamol-ethanol crystallization system. Complementary to the FBRM measure-

ments, solute concentrations in the liquid phase were determined by in situ infrared

xii



spectra, and they were jointly implemented to monitor the crystallization process.

The framework of measuring the CSD and the solute concentration allows the es-

timation of crystallization kinetics, including those for primary nucleation, secondary

nucleation, and crystal growth. These parameters were determined simultaneously

by fitting the full population balance model to process measurements obtained from

multiple unseeded paracetamol-ethanol crystallization runs.

The major contributions of this thesis study are (1) providing a novel methodology

for using FBRM measurements to estimate CSD; (2) development of an experimental

protocol that provided data sets rich in information on crystal growth and primary

and secondary nucleation; (3) interpretation of kinetics so that appropriate model

parameters could be extracted from fitting population balances to experimental data;

(4) identification of the potential importance of secondary nucleation relative to pri-

mary nucleation. The protocol and methods developed in this study can be applied

to other systems for evaluating and improving batch crystallization processes.
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CHAPTER I

INTRODUCTION

Crystallization from solution is a common technique which utilizes the phase sep-

aration induced by cooling, antisolvent addition, or evaporation. From lab scale

recrystallization to massive production of valuable molecules in the solid state, this

technique participates in almost all the processes related with chemical development

and manufacturing. The crystallization processes determine the quality of the prod-

uct. For example, the crystal forms of active pharmaceutical ingredients (APIs) and

their particle size distributions are vital properties in the pharmaceutical industry for

the achievement of high purity, efficacy, and stability of drug products.

Batch crystallization is often used in fine chemicals and pharmaceutical industries,

since only a small quantity of the valuable compound is available at one time. Batch

operation is very flexible and multiple methods of crystallization, such as cooling and

antisolvent addition, can be jointly used to maximize the yield. Obtaining a proper

crystal size distribution (CSD) is another objective, because it not only relates with

the purity and bioavailability of the drug, but also determines the ease of downstream

processing. The batch process move through transient states, so a good design of the

operation policy is required to achieve the desired yield and CSD.

To obtain better knowledge of batch processes, in situ equipment has been de-

veloped to track the evolution of the crystallization process in both liquid and solid

phases. These techniques employ certain optical or spectroscopic properties of the

system, so that sample removal from the system is not required. However, the disad-

vantage of in situ measurements is the implicit transformation between the variables

being measured and the measurements. For example, realtime IR spectra do relate to
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solute concentrations, but they are functions of both solute concentration and tem-

perature. Although a qualitative trend can be seen from the spectra, quantifying the

solute concentration is more difficult than with HPLC analysis.

A challenging problem among the online techniques for crystallization systems is

to measure the CSD, which is often performed by off-line laser diffraction or sieve

analysis. The procedures of off-line techniques are laborious and time-consuming,

and online decisions cannot be made promptly based on the offline results.

FBRM is a promising method for CSD estimation, which employs a rapidly rotat-

ing laser to scan particles and detects the intensity of the reflected laser. This method

measures the time of receiving the reflected laser from the surface of the crystals, and

calculates the lengths of paths (called chords) crossing the crystal surface. FBRM

can detect numerous chords within each interval. These chords are organized as a

histogram, called chord length distribution (CLD) histogram, which is determined by

the CSD.

The goal of this study is to investigate the relationship between CLDs and CSDs

and use the relationship to establish a framework that can measure the crystallization

process. With the process measurements, crystallization kinetics can be analyzed and

estimated by population balance modeling. Paracetamol in an ethanolic solution is

chosen as the model system, where polymorphic transformation and agglomeration

are insignificant. Our aim is to use the framework to observe nucleation and growth

of paracetamol crystals. The current situation, techniques, and obstacles related with

our topic are reviewed in Chapter 2.

The first step in this thesis is to establish an empirical linear model of the FBRM,

hypothesising that crystals from certain size ranges have their characteristic CLDs.

This idea and the empirical model are explained and tested in a nonsolvent (toluene),

as discussed in Chapter 3. A numerical algorithm that estimates CSDs from CLDs is

described in this chapter as well.
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The feasibility of the empirical model is demonstrated in a real unseeded batch

cooling crystallization of paracetamol-ethanol in Chapter 4. The model obtained

from Chapter 3 is adopted and combined with concentration measurement from ATR-

FTIR, providing the number density of the crystal population and solute concentra-

tion at the same time. A two-stage cooling process has been tested with the in situ

measuring framework. Advantages of the empirical model are shown by comparison

between the estimated CSDs and CLDs.

With the measurement techniques, a series of unseeded experiments can be per-

formed with controlled supersaturation at the onset of nucleation. The CSDs mea-

sured by sieving and FBRM, and the supersaturation profiles measured by ATR-FTIR

are fitted by the solution of a population balance equation (PBE). Three crystalliza-

tion phenomena – primary nucleation, secondary nucleation, and crystal growth – are

simulated to interpret the experimental results. This work is presented in Chapter 5.

Chapter 6 summarizes the main findings in the previous chapters and concludes

the thesis. Recommendation for future studies are discussed for further development

of the FBRM model and evaluation of kinetic parameters.
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CHAPTER II

BACKGROUND

2.1 Crystallization fundamentals

2.1.1 Thermodynamics of crystallization

Crystals are the solid substances that has a periodical arrangement of atoms or

molecules, and such arrangement can be achieved by crystallization in amorphous

solid, liquid, or gaseous state. A necessary condition for crystallization is supersatu-

ration, which is the state that one component of a mixture exceeds its thermodynamic

equilibrium. Such equilibrium for a liquid solution system is often called solubility.

Solubility is determined by quantifying the amount of solute in an equilibrated

solution. To measure the solubility, excessive amount of solute is added to the solvent,

left in a water bath or oven, and maintained at a fixed temperature. The container

is sealed and kept in agitation to enhance mass transfer between the solid and the

solution. Equilibrium can often be achieved in a few days, and then the liquid phase

is sampled. The solute concentration, or solubility at this particular temperature, is

measured by some chemical analysis methods, such as high performance liquid chro-

matography (HPLC), thermal gravimetric analysis (TGA), etc.

When the concentration of a compound is higher than its solubility, the solute

molecules tend to crystallize out from the supersaturated solution. Supersaturation

can be achieved by multiple ways, such as cooling, evaporation of solvent, addition

of antisolvent, and changing pH. Supersaturation is essentially the driving force of

crystallization, determining the crystal form and the rate of crystallization.

Crystal forms, or the spatial arrangements of molecules, may vary under different

supersaturation and solvent compositions. Solvent molecules may also participate
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Figure 2.1: Crystal structures of paracetamol: (a) Form I (b) Form II. Reprinted
with permission from [8]. Copyright 2001 American Chemistry Society.

in crystallization to form hydrates and solvates. For example, paracetamol, an API

in Tylenol, has three known crystal forms [17]. Form I (monoclinic) is the ther-

modynamically stable form, which can be obtained at room temperature. Form II

(orthorhombic) is metastable at ambient condition. Form III has the most unstable

structure and it can be only obtained from melt crystallization. As shown in Fig-

ure 2.1, molecules in Form I are arranged in pleated sheets, whereas Form II has a

layer-by-layer stacking structure. As a result, their mechanical properties are differ-

ent: Form I is stiff and requires binders when compressed, while Form II deforms

relatively easily. The crystal structure of Form III has not been reported yet.

In fact, solubility changes with crystal forms and it reflects the stability of

the crystal structure [97]. The most stable form usually has the lowest solubility.

According to the Ostwald’s step rule, the metastable form may nucleate first, and

later transform to the stable form. As illustrated in Figure 2.2, the solubility of the
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Figure 2.2: Solubility curves for two crystal forms. Form I is the stable form and
Form II is the metastable form

metastable Form II is larger than the solubility of the stable Form I. Suppose a so-

lution at a undersaturated state A is cooled to supersaturated state B. Nucleation

of Form I can occur. If the cooling is rapid and the solution reaches state C, there

are two possible kinetic events that can happen. One is the thermodynamically fa-

vored nucleation of Form I, and the other one is the kinetically favored nucleation

of Form II. Depending on the nucleation rates of the two forms, they can happen

simultaneously. If the metastable Form II crystallizes out first, there is a tendency of

polymorphic transformation from Form II to the stable Form I. If the solution has a

concentration at any point below the solubility line of Form II, the crystals of Form

II can dissolve. Crystals in Form I will keep crystallizing. Eventually, all the crystals

should be in Form I, if the solution is given enough time to reach equilibrium.

2.1.2 Kinetics of crystallization

In a clear unseeded supersaturated solution, nucleation is always the first kinetic event

to occur, followed by crystal growth. Nucleation is the formation of a tiny crystal in

a particular structure. Growth is the expansion of the crystal volume from the de-

position of solute molecules to the crystal surface. Nucleation can occur without any

other crystalline matter, or take place in the vicinity of crystals [97]. The former one

is called primary nucleation, which can be divided to homogeneous and heterogeneous

6



mechanisms. The latter one is called secondary nucleation, which is attributable to

the influence of the detachment of nuclei from the surface of pre-existing crystals.

For primary nucleation, classical nucleation theory (CNT) considered the Gibbs

Figure 2.3: Categories of nucleation

free energy balance between the bulk and the surface of a crystal to model homoge-

neous nucleation, assuming the formation of the nuclei is similar to the formation of

a water droplet by condensation of water vapor [28, 135, 6]. Suppose in a supersatu-

rated solution, a round particle with radius r is formed, which results in the change

of overall free energy ∆G. On one hand, the free energy change of the crystallization

is proportional to the volume of the particle 4πr3/3. On the other hand, the nucle-

ation process needs to overcome the interfacial tension because of the newly-created

solid-liquid surface 4πr2. In total,

∆G =
4

3
πr3∆Gv + 4πr2σ (2.1)

in which ∆Gv is the volumetric free energy change [J/m3] and σ is the interfacial

tension [J/m2]. In Equation (2.1), the first term is negative, decreasing with r3, and

the second term is positive, increasing with r2. The different signs of the two terms

indicate that there exists a maximum of ∆G, as shown in Figure 2.4.

The critical radius that leads to the highest free energy change can be obtained

by taking the derivative of r in Equation (2.1).

rc = −2σ/∆Gv (2.2)
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Figure 2.4: Total free energy change from solid crystal (∆Gv) and from interface
(∆Gs = 4πr2σ)

and the maximum of ∆G is

∆Gcrit =
16πσ3

3(∆Gv)2
(2.3)

If the radius of a newly created crystal is less than rc, it tends to dissolve because the

total free energy decreases if r becomes smaller. If the radius is greater than rc, it

can grow. Therefore, the physical meaning of rc is the smallest size of nucleus that is

stable in the solution and capable of growing. Using ∆Gcrit as the activation energy

of nucleation, the primary nucleation rate can be written in the Arrhenius form.

B1 = kb1 exp(−∆Gcrit/kT ) (2.4)

in which kb1 is the primary nucleation constant, k is the Boltzmann constant, and

T is the absolute temperature of the system. The critical free energy change can be

written as [97]

∆Gcrit =
kT lnS

ν
(2.5)

in which S = c/cs is the supersaturation ratio (concentration over solubility) and ν is

the volume of the solute molecule. Combining Equations (2.3), (2.4), and (2.5), one

8



Figure 2.5: Reduction of ∆Gcrit by nucleation on a foreign surface

can obtain the homogeneous nucleation rate

B1,hom = kb1 exp

[
− 16πσ3ν2

3k3T 3(lnS)2

]
(2.6)

Besides Equation (2.6), the primary nucleation rate can be also written empiri-

cally [98]

B1 = kb1(S − 1)b (2.7)

where S is the supersaturation ratio, defined as S = c/cs. If there are some foreign

particles, nuclei can form on the surface of the particles, as shown in Figure 2.5, and

∆Gcrit is lowered, because the shape of nuclei does not have to be a full sphere. The

heterogeneous nucleation rate is written as [97]

B1,het = kb1,het exp

[
− 16πσ3ν2

3k3T 3(lnS)2

]
(2.8)

We can see that only a different nucleation coefficient is used to explain the decrease

of critical free energy. It is found that some engineered surface features can control

the morphology of crystals and accelerate nucleation [18, 39, 109].

In the secondary nucleation mechanism, creation of nuclei depends on the pre-

existing crystals. The mechanism is often referred as contact nucleation [97, 117].

Nuclei can be stripped off due to the mechanical forces applied on the crystalline

surface, including fluid shear, collision with other crystals and crystallizer internals.

Unlike those primary nuclei discussed above, the secondary nuclei have no ∆Gcrit to

overcome, and thus are more common in most industrial applications [119]. Due to

its complex origins, an empirical model is often used:

B2 = kb2(S − 1)αmβ
s (2.9)
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in which kb2 is the coefficient for secondary nucleation, ms is the mass of crystals in

the crystallizer, and α and β are the exponents for (S − 1) and ms.

As shown in Equation (2.9), the secondary nucleation rate is related to supersat-

uration and the mass of crystals. High supersaturation often leads to a rapid growth

rate, which makes the crystal surface rougher and more nuclei can detach. The mass

of crystals is proportional to the momentum of solid, which is related to the force

applied to the crystals. Other factors relating to mixing, such as power of mixing and

types of stirrer, can be incorporated into kb2, if they are unchanged.

Once the nuclei have formed, they start to grow. The growth of crystals involves

two steps: (i) the transport of solute molecules from bulk phase to the vicinity of crys-

tal surface; (ii) the integration of the solute molecules into the crystal lattice. Solvent

molecules also need to diffuse away from the crystal surface. A simple empirical form

for the growth rate can be written as

G = kg(S − 1)σ (2.10)

in which kg is the growth constant [97, 117]. S−1 is sometimes replaced by ∆c = c−cs.

If temperature effect is considered

G = kg exp(−Ea/RT )(S − 1)σ (2.11)

in which an activation energy Ea is used to describe the temperature dependence [140,

22]. If the growth rate is size-dependent, the following equation is often used

G = kg exp(−Ea/RT )(S − 1)σ(1 + aL)η (2.12)

in which q and η are used to explain the observation that large crystals grow faster

in some cases [2, 11].

Agglomeration and breakage might also occur during crystallization, but generally

less often than nucleation and growth. In some particular systems, when two crystals

contact at a certain angle, a bond is formed to connect the surfaces of the crystals [126,
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150]. The net effect of agglomeration is the increase of the number of large crystals at

the expense of small crystals. Breakage usually occurs with needle-shaped crystals,

or when some external energy is applied to solutions, such as ultrasound [37] and

milling [134].

2.2 Simulation of crystallization

2.2.1 Population balance equations

The governing equation of crystallization should address the changes in both liquid

and solid phases. In a well-mixed crystallizer, the liquid and the solid phases are

uniform throughout the suspension. However, crystals dispersed in the solution have

their individual features, such as sizes and morphologies. To distinguish such features,

a population balance model is used [117].

∂n

∂t
+∇ · (vin)−B +D = 0 (2.13)

in which vi is called internal coordinates, n is the number density or number of

crystals in the space of vi, B is the birth rate of crystals and D is the death rate

of crystals. The internal coordinates vi may have multiple dimensions, and some

of them are continuous while others are discrete. For example, size of crystals is a

continuous variable (subscript “c”) and the morphology is discrete (subscript “d”).

As a result,

n = n(vi,c,vi,d) (2.14)

The integral of n over the entire space (vi,c,vi,d) should give the total number of

crystals.

For a lab-scale batch cooling crystallizer, Equation (2.13) is usually simplified. If

only one crystal form nucleates and the aspect ratio of the crystals is constant, only

one internal coordinate is required, which is the size. If agglomeration and breakage

can also be neglected, so birth of critical nuclei is the only factor that needs to be

11



considered. The population balance equation (PBE) is simplified to

∂n

∂t
+G

∂(n)

∂L
= 0 (2.15)

in which G is the size-independent growth rate and L is the size of crystals. The

boundary condition is

n(t, L = 0) =
B

G
(2.16)

2.2.2 Method of Moments

Solving the population balance model is computationally intensive, even for the most

simple form of Equation (2.15), because the partial differential equation (PDE) re-

quires both spatial and temporal discretization. The moment transformation of pop-

ulation can reduce the PDE to a system of ordinary differential equations, which is

relatively simple to solve numerically. Define µi as the ith moments of the CSD by

µi =

∫ ∞
0

nLi dL (2.17)

The PBE of Equation (2.15), if the transformation in Equation (2.17) are applied to

n, can be written as

dµi
dt

= 0iB + iGµi−1, i = 0, 1, 2, ... (2.18)

Comparing Equation (2.18) with Equation (2.15), it can be seen that the variable

n ranging from 0 to ∞ turns into a set of equations with an infinite numbers of

moments. The CSD is often assumed to be a normal, log-normal, or β function, so

only a few moments are needed for the reconstruction of the CSD [19, 52, 114].

The mass balance of the batch crystallizer gives the concentration of solute

c = c0 +ms,0 − kvρsµ3 (2.19)

in which c0 is the initial concentration, ms,0 is the mass of seeds at the beginning of

the batch, kv is the volume factor for the crystals, ρs is the density of the crystals.

In application, µ0 to µ3 are usually used when modeling the crystallization process.
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The zeroth moment µ0 is the total number of crystals, µ1 is the total length of the

CSD (sum of the one dimensional sizes of crystals), µ2 is proportional to the total

surface area of solid phase, and µ3 is the total volume of crystals, proportional to the

mass of crystals. However, applications of this ordinary method of moments (MOM)

are limited to certain types of systems, in which the growth rate is size-independent

or linearly size-dependent. In other cases, the problem is not closed, i.e. the lower

moments are functions of higher moments.

Developed by McGraw [87], quadrature functions are used to approximate the

CSD, so that the moments are written as a combination of quadrature functions.

The quadrature methods of moments (QMOM) has been used to solve PBEs with

size-dependent growth [2], and agglomeration-breakage [86]. It can also be embedded

into a computational fluid package to simulate a complicate mixing situation with

crystallization [85, 147].

2.2.3 Numerical methods of the full PBE

Many methods have been developed in order to directly solve the PBE and obtain

the evolution of the CSD during crystallization. Considering the characteristic lines

in the PDE system, methods of characteristic [47, 64, 65, 66] have been successfully

applied to solve nucleation and size-dependent growth [2].

Another type of approach is to completely discretize the space-time domain and

apply the mathematical relations implied by the governing equations. This type

of method is discussed by LeVeque [69], including finite-difference method (FDM),

finite-volume method (FVM), and finite-element method (FEM). The key is how to

approximate the ∂(Gn)/∂L term.

Generally, FDM has strong numerical leaks and oscillations around shock waves.

Bennett et al. [7] combined two FDMs (Lax-Wendroff and Crank-Nicholson) to sim-

ulate a continuous crystallizer. Muhr et al. [96] found that the simulation results
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may depend on the spacing of grid points in size domain in the simulation of primary

nucleation in a jet mixer, if the spacing is not fine enough. Weighted essential non-

oscillatory (WENO) methods, using more neighboring points to evaluate the deriva-

tive, can enhance the accuracy near a sharp front. A few modifications of WENO

methods were examined by Hermanto et al. [43] for seeded processes.

FVM separates the size domain into many cells and assumes a piece-wise constant

solution throughout each cell. The number of crystals in each cell is solved, instead of

directly solving for the number density as in FDM. Essentially, the mass is conserved

so that oscillation is greatly reduced. However, FVM suffers from numerical diffusion,

which smooths the steep gradients around shock waves. Developed by Sweby [127],

high resolution FVM methods with flux limiter are used to solve PBE with nucle-

ation, growth, agglomeration, and breakage [111, 112, 113]. Good performance of

this method was shown by Qamar et al. [112], compared with first-order FVM and

PARSIVAL (a commercial simulation package, using FEM).

FEM, assuming the CSD function is a linear combination of orthogonal colloca-

tion functions, can be an alternative to solve the PBE. The solution variables are

replaced by the coefficients of the orthogonal functions. Wulkow et al. used Galerkin

functions with self-adaptive grid constructions to simulate a crystallization process

[142, 143], which led to the commercial package PARSIVAL. However, in a compar-

ative study, Mesbah et al. showed that the FEM with Galerkin’s technique was less

appealing than high resolution FVM and method of characteristics (MOC) in their

simulation [89].

Two recent studies [95, 112] introduced another numerical scheme called conser-

vation element/solution element (CE/SE) method, developed by Chang [13]. It used

a different approach to discretize the spatial-time domain and implement the conser-

vation law. CE/SE method was shown to be more accurate than FVM and MOC

for both batch and continuous crystallization. Details can be found in later chapters.
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In summary, the simulation of PBE has been extensively studied, and models

from simple ODEs to complicated numerical schemes are available. Crystallization

kinetics such as nucleation, growth, agglomeration, and breakage can be simulated

with a proper solution method.

2.3 Off-line measurements of crystallization processes

The off-line methods are those techniques that analyze samples taken from the process

and undergone some irreversible treatments. In crystallization, the process variables

of interest are solute concentration and information of crystals, such crystal forms and

size distribution. The solute concentration can be determined by standard analytical

chemistry methods, such as HPLC, titration, or TGA. Information about crystals can

be measured by the following methods.

Sieve analysis is a simple and common method for the determination of size dis-

tribution. The sieve trays are weaved with metal wires, and the alignment of wires

allows crystals less than a particular size to penetrate. The sieve trays are assembled

vertically in the size-descendent order from top to bottom. The crystals are placed

at the top tray and the trays are secured in a shaker. Shaking the trays allows the

crystals to penetrate openings and eventually stay in the proper trays. The mass of

crystals in each tray can be measured, which gives the mass or volume density of the

CSD. Sieve analysis is straightforward, but it requires preprocessing such as washing

and drying that may alter the CSD. The sizes of the openings correlate with the

second longest dimension of crystals. When the aspect ratio is high, poor penetration

through the openings is a disadvantage of sieve analysis.

A method that requires less preprocessing is laser diffraction [50]. When a laser

beam passes through a dilute suspension, the diffraction pattern is affected by the

particle size distribution of the suspension, as shown in Figure 2.6. According to

Fraunhofer and Mie diffraction theories, large particles scatter light at small angles
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relative to the laser beam and small particles scatter light at large angles, as illus-

trated in Figure 2.7. The diffraction pattern is then deconvoluted to estimate the

particle size distribution, which is reported as a volume-equivalent sphere diameter.

Figure 2.6: Mechanism of laser diffraction, image courtesy of shimadzu.com

Figure 2.7: Comparison of laser diffraction patterns of large and small particles, image
courtesy of sympatec.com

A more straightforward way than laser diffraction is to analyze the microscopic

pictures of the crystals. The size in the microscopic images is measured, if the mag-

nification is known. Meanwhile, the aspect ratio and the morphology of the crystals

can be determined. However, to obtain accurate statistics of the crystal size, a large

number of crystals should be pictured, which makes it a very time-consuming task

due to manual determination of the dimension of the crystals.

Crystal form is also a critical quality. Off-line methods, such as X-ray diffraction

(XRD) and differential scanning calorimetry (DSC) are usually used to determine the
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crystal forms after the samples are properly prepared [36].

2.4 On-line measurements

On-line methods, on the contrary, are those techniques that can analyze the samples

automatically and promptly. One type of on-line techniques is in situ methods, which

take measurements directly inside the crystallizer (Another type is those sampling de-

vice that measures properties ex situ, such as automatic HPLC). The equipment uses

some light rays targeting at certain properties associated with particular wavelengths.

The detection ends are usually just probes put in the slurry. Therefore, the in situ

methods demands no preprocessing and have the minimum interference to the process.

Four types of methods are introduced here.

2.4.1 Focused beam reflectance measurements

Focused beam reflectance measurements (FBRM) utilize a focused laser beam cast

into the liquid phase and measure the intensity of the laser that is reflected back to

the detector. If the liquid is inhomogeneous, i.e. there are some particles or another

liquid phase dispersed, the FBRM can collect the reflected laser signal. The configu-

ration of the probe tip is shown in Figure 2.8.

Figure 2.9 shows how the FBRM measures the particles, when a slurry is being

measured. The focused beam rotates and swipes many crystals on its circular path.

For the examples shown in Figure 2.9, four line segments with high backscattered

intensity, corresponding to the paths scanned across the surfaces of four crystals, are

detected. These paths are called chords, which are defined as lines connecting two

arbitrary edging points. As the focused beam rotates, numerous chords are detected

by the FBRM, and the distribution of chords are displayed as a histogram, named

the chord-length distribution (CLD) histogram. The chords between 1–1000 µm are

measured and divided into 100 logarithmic-spaced bins.

17



Figure 2.8: The schematic of FBRM, image courtesy of us.mt.com

The relationship between the CLD from FBRM and CSD has been investigated

Figure 2.9: Chords measured by the FBRM, image courtesy of us.mt.com

extensively [4, 42, 146], which revealed that more particles lead to more chord counts

and large particles have longer mean chord lengths. Such properties provide the

FBRM the ability to qualitatively detect the onset of nucleation, crystal growth, and

dissolution, and changes in the form of the CLD linked to crystal morphology [5].
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Therefore, FBRM was used to study nucleation kinetics [91] and control crystal-

lization [23, 44, 131, 140]. It can also be used to study polymerization [49] and

emulsions [68].

To make quantitative estimation of the CSD, researchers have attempted to es-

tablish a mathematical model of FBRM that correlates CLD with CSD. The physical

phenomena are simplified and first-principles models are built, assuming:

• the particles are spheres with a known diameter

• the laser beam scans the 2D projections of these particles

• the projections are non-overlapping

• chords can be assumed as straight lines cutting though random places on the

2D projections

As we can see, the model includes two steps: the particles are first projected to a

2D space, and then the laser beam is scanned randomly. This type of models, based

on the geometric orientations, is called the geometric model. The illustration of this

model is shown in Figure 2.10. The line segments in the blue circles are chords.

If the shape of particles is regular, such as a sphere or ellipsoid, the CLD can be

Figure 2.10: Illustration of geometric model: blue circles are the projections of spher-
ical particles and red lines mimic three scans
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Figure 2.11: Illustration of chord splitting. Reprinted with permission from [3]. Copy-
right 2010 American Chemistry Society

solved analytically [74, 124, 129, 144]. When the shape is a cube or polyhedron, the

2D projection is difficult to resolve by analytical methods. Therefore, Monte Carlo

simulation [102, 120] is used to model the projection of a given shape at random

orientations. The possibility of crystals being sampled by the laser beam is assumed

proportional to the size of particles. For the geometric model, agreements of CLD

data to model predictions have been reported in various suspensions, especially with

those of opaque and sphere-like particle systems, such as ceramic beads, aluminium

particles, and polymer beads [73, 129, 139].

In a crystallization process, the simple assumptions of the geometric model may

be insufficient to estimate the CLD; e.g., the laser may not be backscattered com-

pletely because of the transparency of the crystals. Due to the edges and facets

of the crystals, the laser scattered from the crystal surface is not as stable as from

opaque particles, which is called known as chord splitting [3] (see Figure 2.11). If two

particles are close, the light signals can be identified as one chord, known as chord

concatenation [55]. In actual measurements, such as the CLD of glycine crystals in

ethanol, the peaks of the CLD have no dependence on the size of the crystals and

only the skewness of the CLD differs [146], as shown in Figure 2.12. This observation

violates the conclusions from the geometric model.

Kail et al. [56, 57] stated such issues for the geometric model and built an op-
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Figure 2.12: The CLDs of glycine crystals at difference sizes. Reprinted with permis-
sion from [146]. Copyright 2008 American Chemistry Society

tical model that has many physical subtleties, including laser intensity profile, chord

discrimination criteria, refractive indices, particle velocity and so on. Chords are

identified if the simulated backscattered laser intensity is greater than a threshold

value. These processes are modeled by Monte Carlo simulation, which is much more

complicated than that used in the geometric model. The optical model predicts the

FBRM measurement much better than the geometric model. It has been applied to

estimate the crystal size distribution (CSD), for example, in preferential crystalliza-

tion [16].

To achieve accurate CSD estimation in crystallization, first-principles models can

be very sophisticated. Yet they may still neglect some factors that influence the

lengths of chords, for example, the surface roughness of crystals may develop when

the crystals are growing. As a result, the backscattering intensity varies as the laser

scans across a crystal. Such microscopic features are difficult to model especially when

crystal surface is changing due to crystal growth. In batch crystallization, where small

crystals grow significantly over time, the CSD estimation can be greatly affected by

such phenomenon.

In summary, FBRM is a promising technique that can provide in situ information
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about crystal size. In order to obtain quantitative size measurements, a model be-

tween CLD and CSD must be established. With certain simplifications of the FBRM,

a first-principles model was developed, but it is difficult for the first-principles models

to characterize and incorporate the surface features of crystals.

2.4.2 ATR-FTIR spectroscopy

Infrared spectra are usually determined ex situ, where the infrared ray travels through

the sample and the absorbance (or transmittance) is measured. The sample can be

liquids, solutions, solids, or thin films. In the determination of solution concentration,

the Beer-Lambert law is often used.

A = εlc (2.20)

in which l is the path length, c is the solution concentration, and ε is an intrinsic

constant that relates chemical properties and ambient conditions. Equation (2.20)

suggests that the concentration is linearly correlated with absorbance A, which is

defined as

A = − ln(I/I0) (2.21)

where I0 and I is the intensity of the incident radiation and transmitted radiation,

respectively. To measure the solute concentration during crystallization processes,

practical difficulties are:

• ensure no solids remains in the sample

• select proper length path or dilution ratio in order to obtain effective absorbance

• avoid phase change, such as nucleation, crystal growth, dissolution, and evapo-

ration of solvent
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These are common error sources when performing off-line IR spectroscopy. On-line

method can use external circulating lines to introduce a solid-free stream to the IR

measuring cell. However, it is difficult to ensure the circulation path is solid free,

making this on-line method fragile.

Attenuated total reflectance (ATR)-FTIR allows the in situ measurement of IR

spectra without any preparation of samples. By using an ATR crystal, IR absorption

only takes place at the interface of the ATR crystal and the solution. As shown in

Figure 2.13 [93], there is a small penetration of the infrared light into the sample

at each IR reflection. Absorpance occurs when the wave penetrates into the sample.

Multiple total reflections happen on the interface and the IR spectrum of the solution

is determined.

The ATR crystal and other optical devices are incorporated into a probe, which

Figure 2.13: The schematic of ATR-FTIR. Reprinted with permission from [93].
Copyright 2010 Royal Society of Chemistry.

is placed in the crystallizer and measures the IR spectra in situ. Since the depth of

evanescent wave is only a few micrometers, the influence of solids can be neglected if

no crystals attach to the ATR crystal. Therefore, the ATR-FTIR can provide robust

in situ measurements of the solution.

The IR spectra from a solution are determined by two factors: (i) the concentration

of the chemical species ; (ii) the temperature of the solution.

y = f(c, T ) (2.22)
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where y ∈ RNw is the IR absorpance at Nw wavenumbers. Estimation of the solu-

tion concentration c requires the inversion of Equation (2.22) with known y and T .

Therefore, h = f−1 should be determined by some training experiments.

c = h(y, T ) (2.23)

The heights or areas of some prominent peaks can be used as the index of concen-

tration to establish the correlation h. Then h is a polynomial function of the peak

heights (or areas) and the temperature. Another approach to determining the solute

concentration is using chemometric methods [15, 26, 130], such as principle compo-

nent analysis and partial least squares regression.

ATR-FTIR is widely used to provide prompt solution measurements in process

monitoring [20, 70, 72] and control [23, 33, 34, 78] of crystallization. With simi-

lar physical principles, ATR-UV/Vis [21, 121, 12] employs the radiation at different

wavelengths to determine solution concentration.

2.4.3 Raman spectroscopy

Different from light transmittance in IR or UV/Vis, Raman spectroscopy is a light

scattering technique. The samples are illuminated by a monochromatic laser source

and the scattered light is shifted to different wavelengths due to the interaction of

photons with the molecular vibrations of the sample. The scattered light at various

wavelengths is collected and can be used to analyze the composition of the sam-

ple [80, 41]. The schematic is shown in Figure 2.14.

In crystallization applications, one major disadvantage of in situ Raman spec-

troscopy is that both liquid and solid phase can result Raman scattering. Properties

of both phases need to be considered for quantitative purposes, and thus, a number

of factors, such as suspension density, solute concentration, crystal size, and temper-

ature can influence the Raman spectra [15]. However, with a robust chemometric

method, the Raman spectroscopy can distinguish the changes within the solid phase,
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Figure 2.14: The schematic of Raman spectroscopy, image courtesy of www-
che.engr.ccny.cuny.edu/courses/che5535

such as polymorphic transformation. The development of the chemometric methods

are similar to what has been used for ATR-FTIR and ATR-UV/Vis, with the training

samples coming from multiple crystal forms. Therefore, polymorphic transformation

can be monitored and modeled [106, 108, 137]. Raman spectroscopy is often ap-

plied together with other probes to facilitate monitoring and control polymorphic

transformation [9, 24, 107, 115].

2.4.4 Particle image analysis

Real-time images can be taken with a probe that integrates a camera with illumina-

tion. Size and morphology of the crystals can be qualitatively determined from the

images. To obtain quantitative information about the CSD, not only high-resolution

and sharp-contrast images are required, but also powerful image processing algorithms

are essential to the identification and sizing of the crystals. Algorithms have been

developed to isolate particles from their background for both prismatic [10] or needle-

shaped crystals [116, 67]. When the slurry has high solid concentration, overlapped

particles are problematic [136]. A Review of current image processing methods can

be found in Zhou et al. [149].
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2.5 Parameter estimation of crystallization kinetics

As described earlier, the crystallization processes are determined by the thermody-

namics and kinetics. The thermodynamics property is a function of state, irrelevant to

the path that system acquires the state. It can be measured if sufficient time is given

to the system to achieve equilibrium. On the other hand, kinetics are the rates of

occurrence for certain events, dependent on the transient states of the system. There-

fore, in the study of crystallization kinetics, measurements must be taken during the

process, and certain models are required to describe the phenomena of crystallization.

2.5.1 Induction time experiments

Induction time is usually related to the nucleation rate [97]. For a supersaturated so-

lution, there is a delay between the achievement of saturation and the observation of

crystallization in an unseeded process. In induction time experiments, the supersatu-

ration is assumed to be achieved instantaneously, such as quenching a small amount

of solution or mixing anti-solvent with a solution. The time of delay is defined as

induction time.

The observable nucleation is the outcome of primary nucleation and growth of

nuclei to an observable size. Therefore, the induction time consists of time spent on

primary nucleation tind and time of growth tg [54].

tind = tn + tg (2.24)

Usually tg is negligible, compared with tn, hence

tind = tn (2.25)

If the appearance of the first nucleus indicates the onset of nucleation, then

tn = 1/B1 (2.26)
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Therefore, tind is the reciprocal of the nucleation rate [58]. From Equations (2.6),

(2.7) and (2.8), the induction time can be related with the supersaturation, the tem-

perature, and the interfacial tension. For Equations (2.6) and (2.8),

ln tind = −lnkb1 +
B

T 3(lnS)2
(2.27)

Equation (2.27) has been applied in many experimental observations, in which straight

lines were fitted [30, 31, 83, 138]. In some studies [46, 77, 109, 122, 125], two regimes

that had different slopes were observed, as shown in Figure 2.15. The two regimes are

usually explained by the transition from heterogeneous nucleation to homogeneous

nucleation when supersaturation increased. Steep slope with low (lnS)−2 (high S)

suggests high interfacial tension, which means that homogeneous nucleation occurs

with high supersaturation.

Figure 2.15: Two regimes in induction time measurements. Induction time denoted
by τ . Reprinted with permission from [109]. Copyright 2001 American Chemical
Society.

External energy exerted on the solution is found to enhance the nucleation rate

and reduce the induction time. Two energy sources have been studied, including

sonication and shear rate (agitation). Experimental evidence has been shown that
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ultrasound can change the intercepts [38, 81] and slopes [82] of the fitted straight

lines, i.e. the rate constant and interfacial tension were influenced by the sonication.

Induction times under different shear rates were measured in a Taylor-Couette flow

system [79]. The results suggested that the rate constant of primary nucleation

increased when high shear was applied.

Another phenomenon associated with induction time is its high variability, as can

be seen in the wide error bar in Figure 2.15. The stochastic model of the induction

time assumes that the number of nuclei at time t follows Poisson’s law [51, 110].

P (m, t) =
N(t)m exp(−N(t))

m!
(2.28)

in which P (m, t) is the probability of finding m nuclei at time t, and N is the expected

number of nuclei. Then the probability of no nucleation at t is

P (m = 0, t) = exp(−N(t)) (2.29)

Therefore, the probability of the onset of nucleation at t is

Pnuc(t) = 1− exp(−N(t)) (2.30)

Equation (2.30) explains the probability of nucleation happens before time t, i.e.

tind < t. Therefore, Pnuc(t) is the cumulative density function of tind,

P (tind < t) = 1− exp(−N(t)) (2.31)

Therefore, the probability density function of tind is the derivative of t

P (tind = t) = exp(−N(t))N ′(t) (2.32)

and N(t) can be calculated by

N(t) =

∫ t

0

BVcryst dτ (2.33)

where Vcryst is the volume of the crystallizer.
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According to this stochastic model, the effects of the primary nucleation rate

B [51, 53, 63, 145] and the volume of crystallizer Vcryst [53, 54, 123] on induction time

were investigated. Figure 2.16 shows the cumulative distributions of tind at different

supersaturations. Kinetic parameters of primary nucleation can be estimated by

fitting the stochastic model with the measured distributions. Figure 2.17 shows that

a large volume of crystallizer reduces the randomness of the onset of nucleation.

Figure 2.16: Cumulative distribution of induction time changed with supersaturation.
Isonicotinamide nucleates at 5 different supersaturation ratios S = 1.26 (orange dots),
1.30 (brown X), 1.36 (red dots), 1.40 (green triangles), 1.44 (pink squares) and 1.48
(blue diamonds). Reprinted with permission from [63]. Copyright 2013 American
Chemical Society.

2.5.2 PBE-based approach

The kinetic parameters can be estimated by fitting the solution of the PBE to exper-

imental data, if some ex situ or in situ measurements are available, such as sieving,

laser diffraction, IR spectra, FBRM, or Raman spectra. Two categories of modeling

methods are candidates for solving PBE: one is based on the moments transformation

of PBE (MOM, QMOM) and the other one is directly solving the PBE with proper
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Figure 2.17: Metastable zone width measured in different crystallizer volumes in
paracetamol-water system. Reprinted with permission from [54]. Copyright 2012
Elsevier.

numerical methods. The choice of the modeling method is determined by the mea-

surements one can obtain.

Studies on crystallization kinetics that combined measurement tools and PBE

models are summarized in Table 2.1. As we can see, earlier studies used the density

of liquid to correlate with concentration, which may not be applicable for some sys-

tems, as stated by Hu et al. [48]. The development of ATR-FTIR has made the in

situ determination of concentration achievable and it has facilitated many studies in

crystallization kinetics [2, 45, 77, 92, 140]. However, parameters of nucleation and

growth cannot be resolved only with concentration data [27], since both can decrease

the concentration. As a result, additional measurements from CSD are necessary for

estimation of kinetic parameters.

The measurement of the CSD has advanced significantly from off-line methods to

on-line or in situ, as we can see in Table 2.1. FBRM has been commonly used to

monitor the change of the particle size. However, quantification of the CSD is still

a challenging task, so the moments of the CLD are usually used, assuming they are
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proportional to the moments of the CSD. The correlation is based on the assump-

tion that the mapping between the CLD and the CSD is static, i.e. the mapping is

constant regardless of the changes of the CSD. In fact, it may not be always hold

in a crystallization process, where the size of crystals varies by nucleation, growth,

breakage, and agglomeration. The first-principles models (the geometric model and

the optical model) have been applied successfully [140, 16], but they are less popular

due to their complexity.
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2.6 Summary

In this chapter, several important aspects of crystallization have been reviewed, in-

cluding thermodynamics, kinetics, modeling, and current measurement techniques.

Thermodynamics and kinetics have been studied for over a century. Major kinetic

events have been identified and the mathematical models are available. The popula-

tion balance model, incorporating the kinetic equations, can be solved with various

numerical methods. Currently, the research about crystallization is largely limited

by the observation techniques. When the crystals are considered as a population, the

observations on the macroscopic scale are of great help in understanding various crys-

tallization kinetics, which leads to better manipulation of manufacturing processes.

Concentration can be successfully measured, as reported in many studies. Informa-

tion about CSD is critical to understand crystallization kinetics, but the use of CSD

is limited by the lack of a convenient and powerful measuring tool. Such service can

be potentially provided by the FBRM, which is the objective of this doctoral study.
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CHAPTER III

ESTABLISHMENT OF THE EMPIRICAL FBRM MODEL

IN NONSOLVENT

3.1 Objective

To establish a descriptive yet simple FBRM model is the aim of this chapter. An

accurate first-principles model is preferred but it demands a dedicated Monte Carlo

model that can mimic the FBRM process. In addition to the Monte Carlo model,

many calibration experiments are required in order to determine the parameters in

the model. However, there are always some features that are difficult to describe by

physical model, such as surface roughness of the crystals. Therefore, an empirical

model of FBRM is proposed and established, which neglects the physical process in

the FBRM measurement. Assuming a linear transformation from CSDs to CLDs, the

model considers the FBRM as a blackbox model, taking the sizes of crystals is as

the input and providing the CLDs as responses, thus it is a matrix mapping CSDs

to CLDs. The matrix can be determined experimentally by adding crystals from a

specific sieve tray to a nonsolvent. The recorded CLD is defined as the fingerprint

vector of the size range. Linearity and additivity of the empirical model should be

validated by experimental results as well. If the results is successful, algorithms that

estimate CSD from CLD can be developed.

Procedures and results in this chapter are reprinted with permission from [71].

Copyright 2013 Elsevier.
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3.2 Method

3.2.1 Theoretical derivation of the FBRM model

The empirical model is generated from a discretized equation for modeling the CLD-

CSD relationship. The experimental data are used to estimate the values of every

entry in the transformation matrix.

Chord length distribution q(s) is a density function, deduced as a convolution

form [139]. Define n(L0) as the number density of crystals at an infinitely small size

interval around L0 in the sampling volume of the FBRM. Such crystals at L0 lead to

a certain CLD qL0(s) by a transformation function qp(s, L0).

qL0(s) = qp(s, L0)n(L0)dL (3.1)

The resulting qL0(s) also depends on FBRM settings, for instance, the sampling

time, but all those factors are incorporated in qp(s, L0) as long as they are kept

unchanged. Notice that both sides of Equation (3.1) are distribution density functions

and n(L0)dL is a scalar, so qp(s, L0) stands for the CLD induced by crystals at size

L0. If such equations of crystal size from zero to infinity are summed up, we have the

following equation:

q(s) =

∫ ∞
0

qp(s, L)n(L)dL (3.2)

where q(s) [#/µm] is the total CLD as a function of chord length s. n(L) [no./(µmmL)]

is the CSD function, and qp(s, L) is the CLD for a single crystal CLD at size L. Thus,

the unit of qp(s, L) is mL/µm.

By defining

qi =

∫ si+1

si
q(s)ds

si+1 − si
(3.3)

nj =

∫ Lj+1

Lj
n(L)dL

Lj+1 − Lj
(3.4)

Equation (3.2) can be reformulated into a discrete matrix form:

q = An (3.5)
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where q and n are chord length density and population density vectors, respectively.

If qp(s, L) in a size bin [Lj, Lj+1] is assumed to be constant, the square root of LjLj+1

is assumed to be the representative size for the jth bin. Each element in the matrix

A, Ai,j, is obtained as

Ai,j =
Lj+1 − Lj
si+1 − si

∫ si+1

si

qp(s,
√
LjLj+1)ds (3.6)

In order to turn the density vectors into histogram vectors, decomposing the equation

with the bin width ∆s and ∆L leads to the following equation:

1/∆s1 0 . . . 0

0 1/∆s2 . . . 0

...
...

. . .
...

0 0 . . . 1/∆sp





q1∆s1

q2∆s2
...

qp∆sp


=

A



1/∆L1 0 . . . 0

0 1/∆L2 . . . 0

...
...

. . .
...

0 0 . . . 1/∆Lr





n1∆L1

n2∆L2

...

nr∆Lr


(3.7)

The histogram vector for s has the same bin discretization as the FBRM data, so the

measured chord length histogram (CLH) from the FBRM can be used directly. Note

that the number of bins for chord length is p and that for crystal size is r.

Two vectors b and x are defined to stand for CLH and crystal size histogram

(CSH), respectively.

b =



q1∆s1

q2∆s2
...

qp∆sp


x =



n1∆L1

n2∆L2

...

nr∆Lr


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The matrix U is defined as

U =



∆s1 0 . . . 0

0 ∆s2 . . . 0

...
...

. . .
...

0 0 . . . ∆sp


A



1/∆L1 0 . . . 0

0 1/∆L2 . . . 0

...
...

. . .
...

0 0 . . . 1/∆Lr



Equation (3.7) then can be rewritten as

b = Ux =
r∑
i=1

xiui (3.8)

Here b and x are vectors that stand for histograms of CLD and CSD, respectively,

in which each element is the number in a particular bin. Thus, b has the same

format as the data structure of the FBRM (chord count no.) so that the FBRM

measurement can be used directly. Similarly, x represents the crystal size population

histogram, containing the volumetric concentrations of crystals in each size interval

[# of crystal/mL]. Therefore, matrix U relates the CLH b and CSH x.

The transformation matrix U is determined from experimental results instead of

a first-principles model, since it is unknown that how a chord is generated and what

factors have an impact on the measurement. However, from a statistical point of view,

it is assumed that for a given size range of a fixed shape, the CLH is a constant vector

ui. Note that ui, the fingerprint for size range i, is the ith column of U as shown

in Equation (3.8). The CLH, b, is a linear combination of the different fingerprints,

where the coefficients are the crystal concentrations xi [#/mL].

3.2.2 Inversion Techniques

Inversion of Equation (3.8) is required to estimate the CSH. Usually if a matrix is

ill-conditioned, which is true for this case, the inversion would be subject to oscil-

lation. One solution to this problem is using a smoothing term which numerically

approximates the derivative at each data point [141]. Regularized minimization is
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used:

min
x

‖ Ux− b ‖ +λf(x) (3.9)

s.t. xi ≥ 0, i = 1...r

f(x) =
r−2∑
i=0

[
(x/∆L)i+2 − 4(x/∆L)i+1 + 3(x/∆L)i

Li+2 − Li

]2
, x0, l0 = 0

The second term in Equation (3.9) penalizes the change of derivatives to make the

function smooth, using the first-order finite difference approximation for the first

derivatives. The value of its weight λ is important to the accuracy because a large

weight may emphasize too much on smoothing, failing to maintain the shape of the

original CSD. Conversely, a small weight helps little on the oscillation suppression.

Another method uses principal component analysis (PC method), which considers

the important features of the transformation matrix U to regress x. Multiplying UT

on both sides of Equation (3.8) and defining b̃ = UT b and Ũ = UTU , we have

b̃ = Ũx (3.10)

The important features are identified by the eigenvalues of Ũ according to Grover

et al. [35]. The errors are greatly amplified on those features with small eigenvalues,

and thus these small-eigenvalue features are neglected. Suppose k eigenvectors, ci, i =

1, ..., k, corresponding to large eigenvalues, are chosen as principal components. x is

a linear combination of these principal components with a non-negativity constraint,

as shown in Equation 3.11. Both of the two optimization problems are quadratic and

solved by fmincon of MATLAB on a Core i3 CPU.

min
µ

‖ Ũ(
k∑
i=1

µici)− b̃ ‖ (3.11)

s.t. xi ≥ 0, i = 1...r

x =
k∑
i=1

µici
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3.3 Materials and Experiments

To construct U , we carry out experiments to obtain CLH and CSH. Paracetamol

(SigmaAldrich, 99%) crystals, which are obtained by batch cooling crystallization

from its ethanolic solution, are sieved into nine size fractions. Then a known amount

of crystals is added to toluene (BDH, 99%). As a nonsolvent of paracetamol, toluene

does not induce significant change in the shape and size of the crystals, which is

confirmed by our microscopy observations. The experiments are carried out in a 500

mL vessel with 400 rpm agitation to guarantee sufficient mixing.

The CLH vector b is measured by a D600 FBRM (Mettler Toledo) every ten

seconds. The FBRM is set in fine mode, and the 1- to 1000- µm chord range is

divided into 90 bins logarithmically. The noise of the FBRM is always an issue that

affects measurement of CLH, especially when the solid fraction is low. To minimize

the signal-to-noise ratio, the focal point was adjusted to 250 µm. However, even

under such settings, chord counts in the first 30 bins (1 to 30 µm) are noisy and those

in later bins are nearly zero. Therefore, only bins in the middle range are considered

as qualified data for modeling. For the non-weighted CLH, the 46th to 75th bins are

selected, which is from 30 µm to 300 µm. The CLH vector b ∈ R30 is the system

output that can be analysed under various CSH inputs x ∈ R9, as discussed in the

following section. For length weighted or length-square weighted CLH, the 47th to

84th bins (34–584 µm) are selected.

3.4 Results and Discussions

3.4.1 Sieving and FBRM Tests

Paracetamol crystals were sieved into nine fractions (20–53 µm, 53–75 µm, 75–106

µm, 106–150 µm, 150–200 µm, 200–250 µm, 250–300 µm, 300–425 µm, and 425–

500 µm) and optical photomicrographs of three fractions are pictured in Figure 3.1.

Paracetamol has three polymorphic forms and the stable and dominating form is
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Figure 3.1: Microscopic photo of three size ranges: (a) 20 µm to 53 µm; (b) 106 µm
to 150 µm; (c) 250 µm to 300 µm

Form I (monoclinic) according to the Beyer et al. [8]. Crystals obtained in this form

from batch cooling crystallization appeared as octahedrons as shown in Figure 3.1.

However, in all three size fractions in Figure 3.1, a portion of the crystals are imperfect

octahedrons, presumably because of stirrer-crystal collision or crystal agglomeration.

Accounting for these irregular shapes and their optics in first-principles models may

be time consuming or even impossible. This is one motivation for developing an

empirical model.

Another reason for developing an empirical model is that, if we put four different

sizes into the non-solvent toluene, the normalized CLHs have similar shapes, as shown

in Figure 3.2. It can been seen that there is no significant differences except a peak
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Figure 3.2: Chord length distributions of four size ranges measured by the FBRM. The
histograms are direct unweighted FBRM measurements and plotted as dots instead
of bars to make them clear.
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around 20 µm, which is probably caused by a scratch on the probe window. This is

inconsistent with first-principles models, where the simulated CLHs should follow a

fixed shape. Furthermore, according to such models, the statistics of the CLH, such

as modes, means, and longest chords, should be proportional to the crystal size being

used in the simulation, but such features are not observed in Figure 3.2. Therefore, an

empirical model is needed to incorporate all the factors that cause these phenomena.

3.4.2 Verifying Linearity: Single Size Crystal Addition

To demonstrate our empirical approach, we observe the chord count vector b when

the crystals only from the kth size range are added into the vessel. The change in

CLH after each addition is investigated. In Equation (3.8), if xi = 0, i = 1, 2, ...r for

i 6= k, we have

b = xkuk (3.12)

Summing all components,
p∑
i=1

bi = xk

p∑
i=1

uk,i (3.13)

which means the total chord counts should be proportional to the number of crystals.

To obtain uk for a given xk, we can use

uk =
b

xk
(3.14)

Crystals from 212 µm–250 µm, corresponding to k = 6, are chosen as an example. In

our case, p = 30 and r = 9.

In Figure 3.3(a), the total chord count of non-weighted CLH in bins 46–75 is plot-

ted against the crystal concentration. As we can see, the crosses on Figure 3.3(a)

indicate a linear trend, as fit by the straight line. The linearity is also demonstrated

by the convergence of fingerprint vector u6 in Figure 3.3(b). Since the signal-to-noise

ratio is relatively high when the crystal concentration is small, u6 is subject to notice-

able variability in Additions 1, 2, and 3 in Figure 3.3(b). However, once the crystal

42



0 500 1000 1500
0

100

200

300

400

500

600

x
6
, crystal concentration [#/ml]

Σb
, t

ot
al

 c
ho

rd
 c

ou
nt

 [#
]

(a)

0 100 200 300
0

0.01

0.02

0.03

0.04

0.05

Chord length [µm]

u 6 [m
l]

(b)

 

 

Addition 1
Addition 2
Addition 3
Addition 4
Addition 5
Addition 6

Figure 3.3: (a) Total chord count vs. crystal concentration for crystals in the 212-250
µm tray; (b) Fingerprint vector u6 calculated after each addition

concentration is high enough, the noise is no longer significant and u6 becomes con-

stant (Additions 4, 5, and 6). Therefore, u6 is determined by b/x6 after the final

addition and is named as the fingerprint of the crystals of size 212–250 µm.

The same experiments for all nine size fractions were carried out and the finger-

prints for the nine ranges were obtained, as shown in Figure 3.4(a). Figure 3.4(b) is

the sum of each fingerprint vector,
∑p

i=1 ui,k for size range k, against the size of the

crystals to show the crystal size dependence of total chord count. It can be seen that
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Figure 3.4: (a) Fingerprint for each size range; (b) Chord generation vs. crystal size
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the chord count trend is nearly proportional to the size of the crystals except for the

last data point. An explanation for this outlier is this size may reach the limit of

the empirical model. To validate this point, more data from crystals above 500 µm

may be needed. However, for the purpose of crystallizing APIs, it is rarely necessary

to estimate the fraction of this size range and any range above, since the population

densities are usually negligible. Generally, the figure demonstrates that larger crys-

tals have a higher possibility to be detected by the FBRM, which corresponds to the

usage of length-weighted crystal size distribution in the construction of the mapping

matrix by first principles [139].

After obtaining the fingerprints for individual size ranges, the next step is to check

the interactions between crystals of different sizes.

3.4.3 Verifying Additivity: Mixing of Different Sizes

In this section, we use a crystal suspension to investigate whether the fingerprint

vectors are sensitive to pre-existing crystals of a different size. The following equation

describes the additivity

b = xkuk + xjuj, k 6= j (3.15)

Assuming xk is known and invariant, we treat the data (b−xkuk) and uj in the same

way as in the previous experiments.

In one of the experiments, a 400-mL toluene suspension containing 5 gram of

106–150 µm (bin 4) crystals is prepared, and crystals of size 75–106 µm (bin 3) are

then added to the suspension. Because x4 is known and invariant, in Figure 3.5(a)

the total chord count
∑p

i=1(bi−x4u4,i) is plotted against the concentration of 75–106

µm crystals. The resulting linearity of adding 75–106 µm crystals is not interfered

by the pre-existing 106–150 µm crystals. In Figure 3.5(b), the converged fingerprint

(b−x4u4)/x3 is compared with three fingerprints from Section 4.4.2. The fingerprint

for bin 3 obtained in this experiment is nearly identical to the fingerprint in the single
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crystal addition in Section 4.4.2. The fingerprints of neighboring fractions (53–75 µm

and 106–150 µm) are also shown in this figure. As can be seen in this figure, a notable

difference is observed from the neighboring fingerprints, and the slight deviation due

to the pre-existing crystals can be considered negligible. From this experiment, we

conclude that the fingerprints are nearly constant under 3% volume fraction [vol. of

crystal / vol. of toluene], although there is another size of crystal present in the

suspension.
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Figure 3.5: (a) Total chord count of 75–106 µm crystals in a suspension containing
106–150 µm crystals at each addition; (b) Fingerprint obtained in this experiment
and comparison with previous fingerprint results

3.4.4 Length Weighted and Length-Square Weighted Fingerprints

Besides the non-weighted CLH, length-weighted CLH and length-square-weighted

CLH as alternatives in estimating CSD are also investigated. In theory, the weight-

ing methods should make no impact on the linearity and additivity because they are

just different linear numerical treatments. Nevertheless, a better weighting leads to

construction of a better conditioned matrix U .

The range of chord lengths included in the analysis is limited to 34 µm to 584
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µm, which totals 38 bins. The weighted value in each bin is the product of the chord

count and the geometric mean of that bin as shown in Equation (3.16) (or the square

of the geometric mean for length-square weighting in Equation (3.17)).

bl,i = bil̃i (3.16)

blsq,i = bil̃
2
i (3.17)

where,

l̃i =
√
lili+1 (3.18)

By comparing Figure 3.6 with Figure 3.3, It can be seen that the differences between

sizes are more obvious when the weighting strategies are applied. In length-square
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Figure 3.6: (a) Fingerprints from length weighted CLD; (b) Fingerprints from length-
square weighted CLD

weighting, the shape of each fingerprint turns into a curve with a peak in the middle,

whereas the shape of the non-weighed fingerprints always has a monotonically decreas-

ing slope. Such a difference may impact the inversion of the transformation matrix,

which is used in estimating CSD from measured CLH. As shown in Table 3.1, all

the matrices are ill-conditioned, which means that the FBRM measurement is domi-

nated by large particles since their fingerprint vectors are much higher. Length-square
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Table 3.1: Comparison of different weighting methods

Weighting Bin Condition number of UTU
Nonweighted 46–75 1.06× 107

Nonweighted 38–84 9.48× 106

Length 38–84 1.99× 106

Square 38–84 1.96× 106

weighting and length weighting have similar condition numbers, which is almost one

order of magnitude smaller than the non-weighted one. Because the length-square

weighting has the smallest condition number, we employ this weighting approach in

the study.

3.4.5 Matrix Inversion for CSD Estimation

3.4.5.1 Simulation Study

The two techniques explained in Section 2.2 are studied with simulated data in this

section. The simulated CLH is corrupted by an uncorrelated Gaussian noise, whose

amplitude is estimated from the experiments. The CLH, b = Ux + ε, is formulated

with the U matrix and a designed CSH x. Ten noise-corrupted CLH data sets were

created for a monodispersed distribution, a unimodal distribution, and a bimodal

distribution, respectively. The estimated results and the known x are converted

to n, the population density distribution. Note that nine sieve trays are used to

approximate a crystal size distribution, where the crystal size of each point is the

geometric mean of its size ranges.

For the regularization method (see Equation (3.9)), the objective function has two

terms in order to decrease the difference between estimation and observation as well

as to suppress oscillations. Five weighting values of λ are chosen, 1 × 102, 1 × 103,

1 × 104, 1 × 105, and 1 × 106, which represent five smoothing strategies from weak

to strong. A known histogram x0, is estimated in N runs with varied noise, denoted
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as xi, i = 1, ..., N . x̄ = (
∑N

i=1 xi)/N is the mean of the CSH estimates and the CSD

estimates {x̄j/∆Lj}, j = 1, ...r, are plotted in Figure 3.7. In our case, N = 10 and

r = 9.

For the unimodal distributions, as can be seen in Figure 3.7(a) and (b), when

λ is decreased, no oscillations appear and the estimates converge to the true value.

On the other hand, given a bimodal distribution, the number of modes and their
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Figure 3.7: CSD used in simulation and estimates with five λ values: (a) Monodis-
persed distribution; (b) Unimodal distribution; (c) Bimodal distribution

locations depend on the value of λ. When λ is greater than 1× 104, the second mode

disappears. Weak smoothing can reveal the second mode but the location of the first

mode is shifted. Therefore, if this method is used, the value of λ should be selected

carefully, particularly if the CSD is not expected to be smooth.

Define estimation error as
N∑
i=1

||xi − x0||22

where x0 is the true CSD. To expose the variation introduced by the noise, the

maximum deviation over all bins is divided by the largest value in the estimate to

define the maximum variation:

max
j=1,..,r

√∑N
i=1

1
N−1(xi,j − x̄j)2

max
j=1,..,r

x̄j
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Table 3.2: Estimation results for regularized optimization

Distributions λ (×104) Estimation Error (×105) Max. Variation (%)

Monodispersed 0.01 0.84 17
0.1 1.5 11
1 3.8 3.6
10 6.4 1.6
100 10.7 0.5

Unimodal 0.01 500 22
0.1 264 14
1 219 4.3
10 442 2.6
100 1620 2.3

Bimodal 0.01 158 99
0.1 71.7 44
1 80.0 17
10 87.5 9.3
100 87.4 9.5

Table 3.2 shows that mild smoothing is preferred to reduce the estimation error. The

maximum variation column represents the robustness of this method against noise,

which is the ratio of the maximum variation from the mean value divided by the max-

imum value of the estimated CSD. It illustrates that, for the unimodal distribution,

the method is very robust with λ larger than 1× 103. For the bimodal distribution,

noise makes the CSD even more difficult to estimate. Notice that lowering the esti-

mated error and decreasing the maximum error cannot be achieved at the same time.

As a result, there is a trade-off between these two objectives. A value of λ between

1 × 103 to 1 × 104 decreases the estimated error and keeps the fluctuation of the

estimates relatively low.

The simulated results of using different numbers of principal components are

shown in Figure 3.8. As can be seen, the averaged CSD estimate from ten noisy

CLH samples displays varied shapes with different number of principal components.

49



Detailed results on various regression settings are shown in Table 3.3. Similar to

the regularization method, the PC method needs a user-defined parameter—number

of principal components. Using fewer principal components leads to losing features.

When more components are considered, noise amplifies the estimation error. There-

fore, five principal components are selected to balance these two effects. Note that

the bimodal distribution is not accurately estimated with either inversion method,

indicating that the information content in the FBRM alone is not sufficient for this

challenging distribution.
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Figure 3.8: CSD used in simulation and estimated CSD by principle component
method: (a) Monodispersed distribution; (b) Unimodal distribution; (c) Bimodal
distribution

3.4.5.2 Experimental Validation

Based on the results above, the regularization method with λ = 1× 103 and the PC

method with five principal components are validated in this section, using experimen-

tal CLH data.

A CSD, x0, was prepared by adding a known amount of crystals from each size

fraction into a known volume of toluene, and its CLH is measured by the FBRM for

this CSD. As the first step, some monodisperse suspensions were tested, which con-

tain crystals only from one size fraction. In Figure 3.9, crystals of sizes 106–150 µm
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Table 3.3: Estimation error results for principal component method

Distributions No. of PC Estimation Error (×105) Max. Variation (%)

Monodispersed 4 7.58 4.50
5 6.58 4.50
6 7.08 0.451
7 7.33 0.979

Unimodal 4 497 7.82
5 215 6.83
6 255 14.2
7 42.3 6.04

Bimodal 4 51.8 15.6
5 48.6 24.8
6 57.6 40.5
7 136 111

and 250–300 µm are measured by FBRM and the CSDs are estimated, respectively.

It can be seen that both the regularization method and the PC method can estimate

the correct peak location but they also expand the width of the peak.

The estimated CSD in Figure 3.10(a) is a mixture of four size fractions from 106
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Figure 3.9: Monodispersed CSD estimation: (a) 106–150 µm crystals; (b) 250–300
µm crystals

µm to 300 µm. The estimated xREG approximates the shape successfully, but with a

certain amount of error. The PC method obtains the same peak location while the
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peak is estimated to be wider. In Figure 3.10(b), the corresponding four CLHs are

plotted. The match between the experimental length-square weighted CLH and our

estimated CLH, UxREG and UxPC , validates that the algorithm is capable of find-

ing the best estimate. Moreover, the prediction of CLH by our empirical fingerprint

model Ux0 is also close to the measured CLH, which demonstrates the fingerprint

approach is able to describe the FBRM measurement.

A more challenging case was also explored, which is a bimodal distribution of
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Figure 3.10: (a) Estimated CSDs with different methods; (b) Measured CLH and
reconstructed CLHs

106–150 µm and 250–300 µm crystals. In this test, as shown in Figure 3.6(b), the

fingerprint vector of the 250–300 µm crystals is much larger than that of the 106–

150 µm crystals, which poses the challenge of identifying the smaller size crystals

from the mixture. The crystal population densities of the two sizes of crystals are

the same order of magnitude. As a result, the contribution of 250–300 µm crystals

is dominant in the measured CLH, when multiplying a large fingerprint vector. In

Figure 3.11(a), the regularization method finds two modes at lower bins. Two modes

are also located by the PC method but the crystals are distributed into more size

ranges. One reason is that large particles dominate the CLH and interfere with the
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detection of small particles. Figure 3.11(b) shows that another reason is the differ-

ence between the experimental CLH and the model prediction by Equation (3.8),

Ux0. This mismatch originates from potential lack of linearity at large crystal sizes

as observed in Figure 3.4(b). The measurement at around 275 µm (seventh point

from left) corresponding to the larger crystals of the bimodal distribution is above

the straight line, which might indicate that our calculated fingerprint overvalues the

true one. As a result, Ux0 is not consistent with the measured CLH. Such issues will

be further studied in future research.

Since both optimization problems are quadratic and small-scaled, it only takes less

than one second to perform the optimization, which allows on-line estimation feasible.

Moreover, a Kalman filter combining a process dynamic model and sequential CLH

measurements can reduce the variability of estimates caused by measurement noise

[84].
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Figure 3.11: (a) CSD estimation for a bimodal distribution; (b) Comparison of mea-
sured and estimated CLH

3.5 Conclusion

The primary contribution of this work is the development of a method by which chord

length data obtained with an FBRM instrument can be used in an empirical model to
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estimate crystal (or particle) size distribution. The model offers the potential of real-

time estimation of the CSD in crystallization processes from chord length histogram

generated by the FBRM. This chapter illustrates how a matrix to transform from

chord length measurements to CSD is determined from experimental data. In the

process of developing the method, the linearity and additivity of such measurements

have been validated.

To invert the transformation matrix properly, regularized least square and princi-

ple component analysis are first developed and then investigated in a simulated study.

Both techniques are applied to systems of paracetamol crystals suspended in the non-

solvent toluene. Our results showed the success of the empirical model in estimating

CSD in a number of cases and we point out concerns about its general applicability.

We also have shown the potential of on-line implementation. To demonstrate the

advantages of the empirical model we have developed, our work will focus on how to

overcome the high solid fraction and apply such model to a crystallization process.
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CHAPTER IV

APPLICATION OF THE FBRM MODEL TO BATCH

CRYSTALLIZATION

4.1 Objectives

In the previous chapter, the potential of FBRM as an in situ CSD observer has been

shown in crystal-toluene slurry. Two algorithms of estimating the CSD from the CLD

measured by the FBRM have been tested, and the CSD estimates are comparable

with the experimental results with both two methods with a unimodal CSD. The

estimate can be inaccurate when a bimodal distribution is measured.

This chapter targets at development of a framework that can determine the

solute concentration and CSD from the IR spectra and the CLD measurements.

Paracetamol-ethanol is selected as the model system. Modifications and reconstruc-

tion to the empirical model described in last chapter include:

• determination of fingerprint matrix in ethanolic solution of paracetamol

• validation of the linear model in the system

• quantification of the solute concentration from the IR spectra

• implementation of mass balance of the solute in solid and liquid phases

• refinement of the algorithm for CSD estimation

Procedures and results in this chapter are reprinted with permission from [72]. Copy-

right 2014 American Chemical Society.
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4.2 Experimental setup

The experimental setup is shown in Figure 4.1. The ATR-FTIR is manufactured

by Mettler Toledo, and it is commercially called ReactIRTM iC10. The FBRM R©

D600 is also from Mettler Toledo. All the other parts, including the temperature

probe, stirring system, a 1-L glass crystallizer, and heating/cooling metal jacket, are

assembled into the OptiMaxTM from Mettler Toledo. The IR spectrum of the solution

Figure 4.1: Experimental setup

from 653 cm−1 to 2998 cm−1 was measured every minute. The ReactIRTM, purged by

compressed air, is equipped with a diamond probe on a AgX interface. The FBRM R©

D600 was set in the fine mode, and the chord range from 1 to 1000 µm was divided

logarithmically into 100 bins. The CLD histogram was recorded every ten seconds at

2 m/s scanning speed with 0 µm focal point, smoothed by an exponential filter. The

temperature range was from 0◦C to 70◦C and the stirring speed was set at 400 rpm.

These instruments monitored the crystallization process and communicated with a

computer via the iC software from Mettler-Toledo (iC FBRM 4.2.234, iC IR 4.3.27,

and iControl 5.1.29).

Paracetamol (SigmaAldrich, 99%) powder was dissolved in ethanol (SigmaAldrich,

HPLC grade), some of which was recrystallized by batch cooling crystallization. The

crystals are in Form I (monoclinic), which were in the shape of octahedra by our
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micrograph observation. They were sieved into nine fractions (53–75 µm, 75–106

µm, 106–150 µm, 150–200 µm, 200–250 µm, 250–300 µm, 300–355 µm, 355–425 µm,

and 425–500 µm) in a Ro-Tap R© RX-29 shaker. To measure the fingerprint CLD

histograms, the crystals were added to a 400 mL saturated solution at 24◦C. From

the infrared spectrum, no change in solute concentration was observed on addition of

the crystals. This indicated that the solution was well-equilibrated and no change in

crystal size occurred after addition to the solution.

4.3 Method

4.3.1 Fingerprint model

The fingerprint for size range i is obtained in the following procedure: 1) the crystals

in size range i are obtained from sieving, and these crystals are added to a saturated

solution at multiple times. For each addition, the mass of crystals being added is

measured, in order to calculate the crystal concentration in the suspension [# of

crystals/mL]; 2) After the jth addition, the crystal concentration xj was calculated.

Since only xi,j is nonzero and xk,j = 0 for k 6= i, xj can be calculated by:

xi,j =
mcrystal

kV ρl3i Vsolution
(4.1)

where mcrystal is the mass that has been added to the saturated solution, ρ is the

density of paracetamol crystals, which equals to 1.263g/cm3, li is the geometric mean

of the ith size range, and Vsolution is the volume of the solution, which is assumed

to be the volume of the ethanol that was used to prepare the solution. From our

inspection with an optical microscope, the crystals have an octahedral shape, and the

aspect ratio of longest and second longest dimensions is around 2.0. Thus the shape

factor kV is determined to be 1/3; 3) Fingerprint ui for the same size range can be

obtained by

ui =
1

xi,j
bj (4.2)

57



where bj is the CLD measurement of the FBRM, which has unit [# of chords] and

xi,j is crystal concentration [# of crystals/mL], the fingerprint ui carries the unit of

[# of chords·mL/# of crystals]. After several additions, ui converges and its values

are defined as the fingerprint for the ith size range. More details on the procedure

can be found in our previous work [71].

Estimating the CSD histogram x from a known b requires the inversion of Equa-

tion (3.5). In practice, the matrix A is often ill-conditioned. To deal with this

problem a regularization term is added to the least square minimization, as shown in

Equation (4.3).

min
x
‖ Ux− b ‖22 + λf(y) (4.3a)

s.t. xi ≥ 0, i = 1, 2, ..., r (4.3b)

yi = l3i
xi

Li − Li−1
, i = 1, 2..., r (4.3c)

f(y) =
r−2∑
i=0

(
yi+2 − 4yi+1 + 3yi

li+2 − li

)2

, y0 = 0 (4.3d)

li =
√
LiLi+1, i = 1, 2, ..., r (4.3e)

where r is the number of size ranges, Li and Li+1 are the boundaries of the ith size

range, and li is the geometric mean of the boundary values for the average size in

each size range. The first constraint Equation (4.3b) enforces non-negative values for

crystal concentrations. The second constraint Equation (4.3d) defines a penalty term

that suppresses the oscillation in the CSD estimate; y is defined as the volume- or

mass-weighted number density. The penalty function f(y) is the sum of square of the

forward difference approximation of the first-order derivative on the spatial direction.

This function is multiplied by λ, which is the weight for the penalty term and chosen

to be 1× 10−10 [µm/mL]−2.
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4.3.2 Quantification of IR spectra

In addition to information on the solids from the FBRM, the solution concentration

is also investigated. As shown in Figure 4.2, paracetamol is highly soluble in ethanol;

its solubility was reported in several references [31, 40, 140]. We suspect these values
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Figure 4.2: Solubility of paracetamol in ethanol

vary because of differences in methods and materials used in the experiments. Here,

the lower bound of the solubility data was used to fit the third-order polynomial for

the solubility cs [g solute/g solvent] at the temperature T [K]:

cs = 7.915× 10−7T 3 − 6.439× 10−4T 2 + 1.765× 10−1T − 16.17 (4.4)

The infrared spectrum of the liquid phase is measured by attenuated total re-

flectance - Fourier transform infrared (ATR-FTIR) spectroscopy to estimate solute

concentration. For paracetamol dissolved in ethanol, the spectrum depends on both

temperature and concentration. We measured the IR spectra at various paracetamol

concentrations (between 0.0 and 0.5 g solute/g solvent) and temperatures (between

0 and 70 ◦C). There are several approaches to quantify the solution concentration

from the in situ spectra [15], including peak height/area regression, multi-wavelength
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regression, principal component regression, and partial least square regression. In

this study, we found that using peak heights is simple and sufficiently accurate. The

AU at 1667 cm−1 is chosen as the characteristic peak of paracetamol and the AU at

wavenumber 1048 cm−1 represents ethanol as shown in Figure 4.3, for such choice

leads to good fitting between the peak height ratio and concentrations.

The ratio h = AU(1667)/AU(1048) was correlated with temperature T [K−1] and
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Figure 4.3: Infrared spectrum of paracetamol dissolved in ethanol

molar percentage of paracetamol X as in the equation:

h = k1X
2 + k2X(T − 273.15) + k3X + k4(T − 273.15) + k5 (4.5)

The calibration experiments were carried out in a sealed and jacketed vessel. Five

solutions with known concentrations were cooled from high to low temperature for cal-

ibration. With known h, X, and T , linear fitting yields estimates of k1 = −8.781(−),

k2 = 1.974 × 10−3(K−1), k3 = 3.648(−), k4 = −2.546 × 10−4(K−1), k5 = −2.819 ×

10−4(−) with R2 = 0.988. The parity plot of the fitting is shown in Figure 4.4. The

molar fraction can be calculated accordingly if h and T are obtained. Then the con-

centration estimated by IR, cIR, is then: cIR = Mw,paracetamolX/Mw,ethanol(1−X).
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Figure 4.4: Calibration of peak height ratio to concentration at various temperature

We also carried out an ad hoc correction against day-to-day variability, which

are mainly caused by differences on the background spectrum and optical fiber cur-

vature [32]. In-run calibration is used by assuming that the concentration reaches the

solubility value when the temperature is kept constant for a sufficiently long time.

More specifically, the temperature is kept at 34◦C and 0◦C for about an hour in our

experiment. Pure ethanol is also used for this calibration at X = 0 at temperatures

from 0◦C to 20◦C. These three concentrations are used to linearly correct cIR against

the day-to-day variability. One example is shown in Figure 4.5
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Figure 4.5: Ad hoc calibration to correct day-to-day variablity
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4.3.3 Combination of FBRM and ATR-FTIR

The FBRM and ATR-FTIR measurements can be combined by the following mass

balance equation:

msolid +mliq = mtot (4.6)

where msolid and mliquid are the mass of solute in solid and liquid phases, respectively,

and mtot is the total amount when the solution is prepared. If mliquid and mtot are

known, msolid can be calculated accordingly. The mass of the solid phase can be also

obtained by:

msolid(xest) ≈
r∑
i=1

mcrystal,ixest,i (4.7)

where mcrystal,i is the mass per crystal in size range i. However, the CSD estimate xest

by Equation (4.3) may not always satisfy Equation (4.6) due to estimation error. In

particular, large crystals have a stronger influence on the mass estimate and thus any

slight error at the large crystal size can cause significant differences in the evaluation

of crystal mass. We introduce a modification by calculating a scaling coefficient:

x̂ =
mtot −mliq

msolid(xest)
xest (4.8)

which satisfies msolid(x̂) +mliq = mtot. We use x̂ as the estimate of CSD throughout

this study.

Since the solid phase information and solution concentration are connected via the

mass balance, we need to synchronize the two measurements from their own sampling

intervals. The CLD measurement interval is set at ten seconds and the IR spectrum

is taken every one minute. For each IR spectrum, four temporally closest CLDs are

selected and their averaged CLD is calculated and defined as the CLD at the moment

when the IR spectrum is recorded. Temperature values at each IR sampling time are

obtained similarly. After the CSD estimates are obtained, a low pass filter, which is a

moving average with window width of 10, is applied to reduce the fluctuation of the

estimates in the temporal direction.
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4.4 Results

4.4.1 Fingerprint CLD histograms

The fingerprint histograms of sieved paracetamol crystals were measured in saturated

ethanolic solution, displayed as number-based and mass-based versions in Figure 4.6

and 4.7, respectively.
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Figure 4.6: Number-based fingerprint histograms

The number-based fingerprint CLD histograms are shown in Figure 4.6, on the

basis of the number of crystals suspended in the unit volume of the solution as derived

in Equation (4.2). In the calibration of fingerprints, five or six additions are used and

each addition has 0.2 to 2 g of crystals. The results are shown as the thin lines, which

exhibited spikes, especially in the 65.3–85.7 µm region, probably due to the fouling

of the probe. This region usually included three to five points and was smoothed by

linear interpolation according to the neighboring data. The other slight oscillations

were smoothed by a moving average filter using three data points to obtain the final

fingerprints (thick lines). Figure 4.6 shows that the fingerprints become higher and

wider when the crystal size increases, because large crystals occupy more space and

have greater chance to reflect the laser beam. Such an observation suggests that
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Figure 4.7: Mass-based fingerprint histograms

large crystals are more influential to the CLD than small crystals. The shapes and

heights of the fingerprints suggest that this effect is very significant in our case. This

property causes the ill-conditioning of the system, which requires the regularized

least square method as shown in Equation (4.3). Assuming the growth of crystals is

the prevailing process in the crystallizer, the total chord count should increase even

though the number of crystals is approximately constant. Therefore, an increase in

total chord count can result from growth and should not always be attributed to the

birth of crystals.

On the other hand, since kinetics processes such as ripening or agglomeration

may happen only within the solid phase, we are also interested in the mass-based

fingerprint histograms. The mass-based fingerprint histograms are directly calculated

by dividing the number-based fingerprints by the mass of one crystal (ui/mcrystal,i).

These fingerprint histograms have the opposite trend as shown in Figure 4.7; for

a fixed mass of crystals, more chords are observed if that mass is made of smaller
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crystals. This is because, compared to the same mass of large crystals, small crystals

can spread more pervasively, and therefore their chance of being detected is greater.

If the crystals are agglomerating or ripening, for example, 1 gram of crystals at 50

µm turns into 1 gram of crystals at 100 µm due to agglomeration, we could expect

that the total chord count would decrease.

4.4.2 Model Validation

To confirm the linearity of the FBRM model, we experimentally tested to see if the to-

tal chord count of a CLD changes linearly with a change of the CSD. If Equation (3.5)

holds, then the following relationship is satisfied:

p∑
i=1

bi =

p∑
i=1

(Ux)i (4.9)

Here we use two crystal size distribution samples: Sample 1 and Sample 2. These

two samples have their own mass-based CSD histograms, x1,N and x2,N . The mass of

crystals in x1,N or x2,N is 1.0 g. If we change the CSD histogram by adding crystals

either from Sample 1 or Sample 2, the CSD can be written as xγ = kα1 x1,N + kβ2x2,N ,

where k1 and k2 are the masses of crystal from Sample 1 and Sample 2, and the

superscript α = 1, 2, ..., P and β = 1, 2, ..., Q represent the time index of additions of

Sample 1 and 2 with the total number of additions γ = α + β. Hence xγ is the CSD

histogram after the γth addition of crystals. Equation (4.9) can be reduced to

p∑
i=1

bi = kα1

p∑
i=1

(Ux1,N)i + kβ2

p∑
i=1

(Ux2,N)i (4.10)

where
∑p

i=1(Ux1,N)i and
∑p

i=1(Ux2,N)i are constant. If we sequentially made P ad-

ditions of Sample 1 and then Q additions of Sample 2, the total chord count should

increase linearly, exhibiting two slopes,
∑p

i=1(Ux1,N)i and
∑p

i=1(Ux2,N)i.

Samples 1 and 2 with CSD histograms shown in Table 4.1 were used to test the

model in a saturated solution of 500 mL prepared at 24.2 ◦C. The mass-weighted

mean sizes of crystals are 218 µm for Sample 1 and 247 µm for Sample 2. The first
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seven additions of Sample 1 were all chosen to be less than two grams so that we can

investigate if there exists a threshold where the CLD starts to behave nonlinearly.

Figure 4.8 shows that the linear trend is well-maintained through the 14 additions of

Sample 1 (P = 14). Six additions (Q = 6) of Sample 2 also showed proportionality

between mass of crystals and total chord count with the presence of Sample 1. No-

tice that the slope of Sample 1 is higher than that of Sample 2, which agrees with

the finding in the mass-based fingerprint discussion that small crystals generate more

chords per unit mass. The normalized CLD histogram measurement calculated from

the final slurry (x20) was compared with the normalized simulation result of Equa-

tion (3.5). The consistency of these two normalized CLDs also validates the linear

model.

Table 4.1: The compositions of two CSD histograms

Pore opening Mass percentage [%]
[µm] Sample 1, x1 Sample 2, x2

500 0.86 7.20
425 1.53 4.86
355 3.15 10.47
300 10.52 15.05
250 16.63 19.72
212 19.41 16.54
150 31.36 19.44
106 11.57 5.70
75 3.82 1.03
53 1.15 0.00
20 0.00 0.00
0 0.00 0.00

4.4.3 CSD monitoring

An experiment of batch cooling crystallization of paracetamol was monitored by both

FBRM and ATR-FTIR, with the initial concentration at 0.385 g solute/g solvent. The

cooling profiles were designed to include two cooling steps. The first one was cooling

the clear solution to a temperature that created a high supersaturation and triggered
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Figure 4.9: Comparison of model simulation and measurement of CLD of x20

primary nucleation. Then the temperature was held so that the crystals generated

consumed the remaining supersaturation. The second cooling further decreased the

temperature to the lowest operating temperature in order to induce further crystal

growth in the absence of primary nucleation.

After the temperature was held at the final value for about 100 minutes, two

post-run actions were performed sequentially to confirm that the supersaturation

had been completely consumed: (1) adding paracetamol crystals to the slurry and

(2) increasing temperature by 1◦C. The purpose of adding crystals is to eliminate any
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remaining supersaturation for the ad hoc concentration correction mentioned earlier.

Furthermore, by comparing the concentration and solubility change after the slightly

increase of temperature, we can confirm our concentration prediction is accurate.

Such a minor increase of temperature is assumed not to change the CSD significantly

for the subsequent sieving test.

The experimental procedure produced results referred as Run I and Run II. Since

these two runs are similar, we discuss Run I first, and discuss Run II only briefly.

4.4.3.1 Run I: temperature and concentration

Temperature and concentration profiles for Run I are shown in Figure 4.10. In the

first cooling step from 70◦C to 34◦C, the concentration was constant as there was no

crystallization. The concentration then started to drop drastically at Point A, which

is evidence that primary nucleation occurred at about 34◦C, and the concentration

rapidly decreased to the saturation value. Cooling was resumed at B and stopped

at C when the temperature reached 0◦C. In the period from B to D, supersaturation

increased modestly and was depleted when cooling stopped.

In order to check the assumption of saturation at the end of the run, (1) 2.0
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grams of crystals were added at D and (2) the temperature was raised to 1.0◦C at

E. Step (1) had no effect on the concentration. At Step (2) the concentration and

solubility changed simultaneously and both increased by 0.002 g/g, which indicates

there was little supersaturation before E.

The supersaturation ratio (c/cs) during Run I is shown in Figure 4.11. Note that

from Point B until the end of the experiment, the supersaturation ratio was lower

than 1.1. From the variation of supersaturation, we cannot infer whether secondary

nucleation occurred, but this question will be revisited later in the manuscript.
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Figure 4.11: The supersaturation profile of Run I

4.4.3.2 Run I: tracking key parameters of CSD

The total number of crystals and mean size of the crystal population calculated from

the CSD estimates are shown in Figure 4.12(a) and (b). They are compared with the

total chord count and mean length from the CLD histogram, which are commonly

used to represent the number of crystals and size of crystals.

Figure 4.12(a) shows that the total number of crystals obtained from the CSD

estimates resulting from the developed model is more representative of the process
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Figure 4.12: Comparison between CLD histogram measurement and estimated CSD
histogram of Run I: (a) total chord count and estimated number of crystals (black
lines for guiding the eye); (b) mean chord length and estimated mean size of crystals
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than simply using the total chord count. For example, an increase in both the total

chord count and the number of crystals indicate primary nucleation at A, but the

subsequent total chord count shows a rapid increase at B that could be misinterpreted

as nucleation. However, since the supersaturation ratio was close to 1 at B, as shown

in Figure 4.11, the increase in chord counts is much more likely due to growth than to

nucleation. This is an example of our analysis of fingerprint histograms in Figure 4.6:

the total chord count highly increases with the size of the crystals, i.e., growth of

crystals leads to an increase of the total chord count. Note that the estimated number

of crystals was constant after B. When the process was approaching C, there was a

slow increase in the number of crystals from 300 minutes to 350 minutes, probably

caused by secondary nucleation. Such a change was not seen from the total chord

count.

At D, neither of the total chord count nor the number of crystals responded to

the addition of 2.0 g of crystals. Because these crystals were taken from the 100-g

product of batch cooling crystallization operated similarly, it is reasonable that the

2% change in the population can hardly affect the CLD and the estimated CSD. At

E, temperature was increased by 1.0◦C, which corresponds to a crystal mass decrease

of only 1.5% according to the solubility dependence on temperature. This minor

dissolution of crystals was overestimated by the total chord count, which dropped

suddenly. On the contrary, there was no substantial change in the estimated number

of crystals.

For tracking the change of crystal size, the comparison in Figure 4.12(b) shows the

capability of the mean size of the estimated CSD over the mean chord length. During

the crystallization process, the crystal mean size was estimated from 130 µm at B

to 175 µm at C, whereas the mean chord length varied only between 80 to 100 µm,

which is not as large as that of the mean size. The CLD measurements prior to the

red vertical line were considered as noise, since it was confirmed by visual inspection
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that no crystals had been formed before A.

4.4.3.3 Run I: validation of CSD estimates

The estimated CSD density functions at A, B, C, and D are shown in Figure 4.13(a),

which is obtained by applying Equation (4.3) and then transforming the estimated

CSD histogram to the number density. The evolution of the CSD densities is consis-

tent with our understanding of the kinetics of the process. At A, crystals appeared

due to primary nucleation. The CSD at B was obtained after the supersaturation ac-

cumulated in the first cooling step was consumed. From B to C, the density functions

had approximately the same height, whereas the numbers of crystals at small sizes

decreased and those at large sizes were greatly increased, which suggests the growth

of crystals in the second cooling step. The change from C to D, corresponding to the

depletion of the remaining supersaturation after C as can be seen from Figure 4.11,

also implied a slight growth of crystals.

These changes from A to D are also shown in the three-dimensional Figure 4.13(b).

In addition, we can see that crystals at the first bin (smallest size) started to increase

slowly at C, which indicates secondary nucleation. The secondary nucleation may

have been triggered because the supersaturation was accumulated to its maximum

value at C. In the subsequent period to D, these new-born crystals became larger and

moved to the second bin (75 – 106 µm), and secondary nucleation gradually ceased

because of the depletion of supersaturation. Therefore, the number density of the

smallest size dropped again.

The estimated CSDs are demonstrated to be sufficiently accurate by comparing

the final estimate with the sieving result, as shown in Figure 4.14. After the ex-

perimental run was completed, crystals were filtered, washed with toluene, and then

dried in an oven. The mass histogram was obtained by sieving and recalculating

to the number density. Only minor differences are seen between the estimated and
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Figure 4.13: Estimated crystal number density of Run I: (a) at A, B, C, and D; (b)
evolution of CSD estimates

measured population densities; the shape and magnitude of the density functions are

remarkably similar. Moreover, the sieving result estimated the total number of crys-

tals to be 2.72×104 per mL and mean size to be 150 µm while values estimated from

our model were 2.42×104 crystals per mL and 141 µm, respectively.
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4.4.3.4 Run II: different cooling rate and post-run analysis

The first cooling step from 70◦C to 34◦C in Run II was reduced by 1/3 that of Run I

(0.2◦C/min vs. 0.3◦C/min), while the initial concentration, instrument settings, and

second-stage cooling rate were the same as in Run I. The temperature and supersat-

uration profiles are shown in Figure 4.15. The rapid decrease in supersaturation at

A’ (about 42◦C) is indicative of primary nucleation; the decrease continued until it

became nearly constant. Cooling ended at B’, and the supersaturation again began

to decrease. The second-stage cooling began at C’, and again the supersaturation

began to increase until at D’ cooling was stopped.

The effects of the post-run analysis are shown in the inset of Figure 4.15. They

indicate the solution was saturated at around 350 minutes (i.e. at F’). To confirm

this, we added 1.0 gram of paracetamol powder (not crystals as were added in Run

I). We chose to add powder in expectation of the greater surface area inducing more

rapid consumption of any remaining supersaturation. (Microscopy confirmed the

powder was of smaller size and had significantly greater surface area per unit mass.)

Nevertheless, the supersaturation ratio did not drop significantly even after this ad-

dition. Furthermore, when the temperature was increased by 1.0◦C at F’, the solute

concentration increased slightly while the supersaturation ratio remained constant.

From these observations, we conclude that supersaturation indeed reached 1.0, and

the ATR-FTIR measurement and solubility model are accurate.

Estimates of the crystal population density at each of the times identified in the

previous paragraph were obtained by applying our model to in situ measurements

of CLD data from Run II shown in Figure 4.16. Crystals started to appear at A’,

which indicates primary nucleation. The crystal population developed to the CSD

estimate of B’ at the end of the first-stage cooling. Slight growth occurred in the

temperature plateau from B’ to C’, where large crystals increased and small crystals

decreased. The crystals grew significantly in the subsequent cooling stage, as shown
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in the evolution from C’ to E’.

Table 4.2 lists key variables and observations associated with Runs I and II, which
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Figure 4.16: Development of CSD number density of Run II

were begun with identical conditions and operated identically, with the exception of

the first-stage cooling rate. Run I had a wider metastable zone than Run II (21◦C

vs.13◦C), and thus the supersaturation at primary nucleation in Run I was much

higher than in Run II. Higher supersaturation at nucleation usually leads to higher
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production of a larger number of crystals, but in these two runs that seems not to

have been the case; in other words, comparison of N1 (the number of crystals per

unit volume at B in Figure 4.11 and C’ in Figure 4.15) for the two runs shows similar

values. Interestingly, nucleation in Run I occurred during the constant-temperature

plateau, while in Run II it occurred while the temperature was still decreasing. It

is unclear whether these two factors (i.e. higher supersaturation at nucleation and

cooling at nucleation) played similar roles in producing similar numbers of crystals.

Starting from the similar CSD, the second stages of the two runs were at the

same cooling rate, and the supersaturation ratios for both followed similar patterns,

which was shown in Figure 4.11 and 4.15. The maximum supersaturation ratios of

1.10 were achieved at the end of the second-stage cooling in the two runs. If sec-

ondary nucleation had been a major factor in either of the runs, the final population

density function would be expected to be bimodal. Since that is not the case with

either run, as confirmed by our model predictions and sieving at the end of Run I,

we conclude that secondary nucleation was a minor factor in determining the final

crystal size distribution. Figure 4.17 shows remarkable similarity between population

density functions predicted for Runs I and II.

Table 4.2: Comparison between Run I and Run II

Run dT/dt (◦C/min) Tnuc(
◦C) ∆T (◦C) Snuc N1 (#/mL) S2,max Nend (#/mL)

I -0.3 34 21 1.55 1.40×104 1.10 2.35×104

II -0.2 42 13 1.40 1.47×104 1.10 2.19×104

dT/dt is the cooling rate in first cooling stage;
Tnuc is the temperature when primary nucleation occurred;
∆T = Tsat−Tnuc, where Tsat is the temperature at which the solution is saturated (S=1);
Snuc is the degree of supersaturation when primary nucleation occurred in first cooling stage;
N1 is the number of crystals at the end of the temperature plateau;
S2,max is the maximum degree of supersaturation in second cooling stage;
Nend is the number of crystals at the end of the crystallization run (D for Run I and E’ for Run II).
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4.5 Discussion

4.5.1 The advantages of the model

The empirical model is simple to construct, and it can be inverted by applying regu-

larized least square minimization. As we showed in our two example runs, the CSD of

crystallization processes are well monitored, not only agreeing with our understand-

ing of the crystallization kinetics, but also being consistent with the sieving results.

This method is applicable to various crystallization processes, if the crystals have no

high aspect ratio and the shape is fixed. For needle-shaped crystals, the method can

still be valid but the issue would be finding a way of separating these crystals into

different size ranges.

4.5.2 The nature of the FBRM and the empirical model

We create the model based on a simple linear system, which directly relates CSD

to CLD from experimental results. Therefore, the model depends on the technique

of classifying the crystals with respect to their size. In this study, we used siev-

ing to separate the crystals into nine size ranges and measured the fingerprint CLD
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histograms. The fingerprints also revealed the nature of the FBRM—the CLD mea-

surement is dominated by the large crystals. These are two potential error sources of

this methodology: (1) the model is a partial observer, which has a limited number of

bins covering a limited size range; (2) the ill-conditioning of the model always brings

difficulty in estimating small crystals, as we saw the overestimation in Run II when

powder were added. The former source is specific to the empirical model, which can

be mediated by using more sieve trays. The latter one is a general issue for all kinds

of crystals, which requires a tailored algorithm.

4.5.3 Process monitoring and direct control

The crystallization process can be monitored based on the CSD estimates, instead

of total chord count of CLD and mean chord length. Without quantified knowledge

about the relationship between the CSD and the CLD, it may be ineffective to use

the total chord count and the mean chord length as the process indicators. Moreover,

this technique can be used in a direct control; the number of crystals, the mean size,

and other metrics of the CSD can be estimated to determine the cooling/heating rate

without a numerical model of crystallization.

The robustness of the model may be influenced by several factors. The fingerprint

model assumes the crystals have a fixed shape, but it neglects possibilities such as

polymorph transformation, agglomeration, and breakage. The fingerprint model also

assumes linearity. Although not observed in our study, at higher crystal concentra-

tions the linear assumption may not be justified. Furthermore, our model assumes

linearity between the CLD and the CSD as confirmed in Figure 4.8, which may not

hold at a higher crystal concentration. Nevertheless, as can be seen in Figure 4.14,

the proposed model estimated the CSD sufficiently accurately, which may indicate

that the above assumptions are valid in our case study.
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4.5.4 Parameter estimation and model-based control

With the FBRM and the ATR-FTIR, a full picture is drawn for a crystallization

process, including temperature, concentration, and CSD, which are sufficient for es-

timating crystallization kinetic parameters by the population balance or its reduced

model (method of moments), given that our estimates are consistent with sieving

analysis. Once the parameters are obtained, we can predict the development of the

CSD for a given cooling profile, and thus we can select the optimal profile to meet

the requirement of CSD of the final product [99, 148]. Moreover, a model predictive

controller can be programmed based on the parameters.

4.6 Conclusion

In this article, an empirical model of FBRM measurements was used to map CLD

to CSD. The model is intuitive and simple to build by using characteristic CLD

histograms of different sizes of crystals as the fingerprint for crystal size. The FBRM

model was then applied to batch cooling crystallization, and our results demonstrated

an ability to extract the CSD with the knowledge of the solution concentration.

It successfully detected the onset of primary nucleation, secondary nucleation, and

crystal growth. The framework developed here can provide the CSD information not

only for batch cooling crystallization, but to general solid-liquid processes, where the

fingerprint CLD histograms can be obtained. It is a very promising technique for

process monitoring, parameter estimation, and control of crystallization.
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CHAPTER V

PARAMETER ESTIMATION

5.1 Objective

In previous chapters, unseeded batch cooling crystallization processes are success-

fully monitor by the empirical FBRM model, with the help from ATR-FTIR and

OptiMax. In this chapter, the method is used to extract process measurements from

multiple crystallization runs. The data, combined with sieve data on final products,

are used for estimation of kinetic parameters in crystal growth and both primary and

secondary nucleation.

The work presented in this chapter is reproduced with permission from Indus-

trial & Engineering Chemistry Research, in press. Unpublished work copyright 2015

American Chemical Society.

5.2 Method

5.2.1 Population balance equation and crystallization kinetics

The batch cooling crystallization process can be described by a population balance

equation, in which the size of crystals is represented in one dimension and size-

independent growth is assumed,

∂n

∂t
+G

∂n

∂x
= 0 (5.1)

in which n is the number density [No./µm /kg of solvent], G is the growth rate

[µm/min], x is the one-dimensional size of a crystal [µm], and t is the time [min].

Boundary conditions, initial conditions and mass balance are

n(t, x = 0) = B/G (5.2)
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n(t = 0, x) = n0 (5.3)

c(t) = c0 − kvρµ3(t) (5.4)

where B is the nucleation rate [No./min/kg of solvent], n0 is the initial CSD, c0 is

the initial concentration of the solution, c(t) is the solute concentration, kv is the

shape factor, ρ is the density of crystals, and µ3 is the third moments of the CSD.

For unseeded experiments, n0 is zero at all sizes.

In this work, three mechanisms are considered for the crystallization kinetics:

primary nucleation, secondary nucleation, and crystal growth. CNT was used to

describe primary nucleation, in which the net value of volume excess free energy and

surface excess free energy is assumed to determine the nucleation rate. [97]. The

nucleation model is

B1 = kb1 exp

(
−16πν2

3k3
σ3

T 3(lnS)2

)
(5.5)

in which kb1 is a constant [No./min/kg of solvent], ν is the volume of one solute

molecule [m3], k is the Boltzmann constant [m2kg/(s2K)], σ is the crystal-solution

interfacial tension [J/m2], T is the temperature [K], and S is supersaturation ratio

(SSR) (c/cs). In this study, kb1 and σ were the parameters to be estimated, T and S

were measured during experiments, and ν is approximated by molecular weight and

density of the solute crystals.

There are some arguments that CNT may oversimplify the nucleation process,

since some dense liquid phase is observed prior to the occurrence of the crystalline

nuclei. The dense liquid phase consists of solute molecules appearing as some tiny

droplets or spherical particles, which later transform to crystalline structure [25, 59].

According to this theory, the primary nucleation then is divided into two steps. The

first step is the formation of the dense liquid phase and the second one is the trans-

formation of the dense liquid phase to crystals. The two-step nucleation was observed

in both inorganic [103] and organic [133] systems, but no such report have been pub-

lished for the system in this study. Moreover, it is difficult to model the two-step

81



phenomena, since little is known about the transient liquid phase. Therefore, CNT

is used to model primary nucleation in this study.

It also may be questioned if the primary nucleation is a homogeneous or hetero-

geneous process. It is very difficult to guarantee that foreign particles are completely

excluded, even if care is taken to provide a clean solution each time the experiment

is run. In this study, the mechanism is assumed to remain the same across all the

experiments since materials and experimental procedures are consistent. Under this

assumption, the surface tension estimated in Equation (5.5) is an effective value rep-

resenting the combination of homogeneous and heterogeneous nucleation.

For secondary nucleation, since the mechanism is complicated, an empirical form

is used.

B2 = kb2(S − 1)αmβ
s (5.6)

in which kb2 is the nucleation constant [No./min/kg of solvent], and ms is the mass

of crystals [g crystal/kg solvent]. The pre-existing crystals create nuclei by shear

flow and collisions applied on their surfaces. The crystal mass is assumed to be

proportional to the momentum of the crystals, and thus related to the frequency

and energy of collision. The effect of agitation is contained in kb2, which is assumed

constant in our experiments since stirring speed (mixing intensity) is fixed.

Growth rate is related to temperature and supersaturation.

G = kg exp

(
− Ea
RT

)
∆cγ (5.7)

in which kg is the growth constant [µm/min], Ea is the activation energy to explain

temperature dependence [J/mol], and ∆c = c − cs [g solute/g solvent] is the super-

saturation that drives crystal growth. While the SSR S = c/cs could alternatively

be used as the driving force, ∆c is chosen here in order to compare our results with

previous studies [140, 92].
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5.2.2 Numerical method

Solving the PBE with the kinetics models of Equation (5.5)–(5.7) requires an efficient

numerical scheme, especially in a parameter estimation that simulates the process

with many different sets of parameters. The CPU time and accuracy of a particu-

lar numerical scheme strongly rely on the parameters used in the simulation. For

example, a rough discretization of the spatial domain may be acceptable when nucle-

ation and growth occur at modest levels. On the other hand, if the parameters cause

high nucleation and growth rates, improper discretization could make the numerical

scheme unstable, and thus a fine discretization of the spatial domain is required. Fine

discretization generally increases the computational burden. An ideal numerical solu-

tion should maintain an acceptable accuracy even with a coarse spatial discretization.

In this work, we used the conservation element/solution element (CE/SE) scheme

to solve the PBE. Originally designed for aerodynamic problems, this scheme adopts

a staggered way of discretizing spatial domains, and the conservation law of mass is

enforced locally and globally[13]. The method was applied to solve partial differen-

tial equations in the chemical engineering field, such as simulated moving bed[76, 75]

and PBE[95]. In particular, Qamar et al.[112] compared CE/SE with finite volume

method (FVM) and the finite element method (FEM) for one-dimensional population

balance modelling, and concluded that CE/SE has “much better performance as com-

pared to the other schemes”. We used this scheme and made several modifications

to simulate our cooling experiment, which is coded in MATLAB. One comparison

shown in Figure 5.1 is the CSD of the final product in one particular simulation. The

reference solution labeled as “limit” is obtained by setting ∆x to be sufficiently small;

∆x = 1µm in FVM and CE/SE. When ∆x is increased to 10 µm, the solution from

CE/SE overlays on the reference, whereas the solution of FVM slightly shifts to the

right and flattens the peak around 120 µm. Both methods take nearly identical CPU

times (less than one second). More details about this scheme and the algorithm can
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be found in Appendix B.
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Figure 5.1: Comparison of the solution obtained from CE/SE and FVM

5.2.3 Parameter estimation

If the experimental data are processed and the PBE is solved numerically, kinetic

parameters can be estimated by minimizing the error between the measurements and

the model predictions. There are four indices needed to define the estimation problem:

the type of measurements (using subscripts or superscripts “S” for SSR, “sv” for

sieving results, and “F” for CSD estimates from FBRM), the number of experiments

(runs) Nr in each type, the number of sample points Nd in each experiment, and the

number of measured variables Nm in each sample. The objective function includes

errors from SSR, sieving, and the estimated CSD from FBRM.

Φ(θ) = wSeS(θ) + wsvesv(θ) + wF eF (θ) (5.8)

where

eS(θ) =

Nr,s∑
i=1

Nd,i∑
j=1

(Ŝij − Sij)
2

(5.9)

esv(θ) =

Nr,sv∑
i=1

Nm,sv∑
k=1

(n̂v,ik − nv,ik)2 (5.10)
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eF (θ) =

Nr,F∑
i=1

Nd,F∑
k=1

Nm,F∑
j=1

(n̂v,ijk − nv,ijk)2 (5.11)

In the equations above, θ = {kb1, σ, kb2, α, β, kg, Ea, γ} is the parameter set , eS is

the fitting error of SSR, esv is the fitting error to sieving analysis, eF for fitting error

to volume-weighted CSD estimates from FBRM, wS,wsv,wF are the weights for the

error terms, the nv is the volume density of the crystal population. Solutions obtained

from the CE/SE scheme are synchronized with experimental data by interpolation

in the temporal domain. Since the CSD measurements from sieving or in situ CSD

estimation only have nine bins, the simulated volume density of the CSD is averaged

within the nine size ranges. The sum of the squared errors Φ(θ) is minimized by

fminsearch algorithm in MATLAB R2009a, which uses a derivative–free Nelder-Mead

method [101].

The confidence region of the parameters is calculated according to Rawlings et

al. [119]. The confidence region around the estimated parameter θ̂ is estimated by

the following quadratic form.

(θ − θ̂)TV −1θ (θ − θ̂) ≤ χ2
Np,α (5.12)

in which Vθ is the convariance matrix of θ from different measured variables, Vθ =

V S
θ + V sv

θ + V F
θ . The sum of squared errors follows a chi-square distribution with

degree of freedom Np and α = 0.05 for 95% confidence, where Np is the number of

parameters. For each type of measured variables, the covariance matrix V q
θ is obtained

from the model sensitivity Bj
q and the variance of the measurements V q.

V q
θ =

∑
j

(Bj
q)
T (V q)−1Bj

q , q ∈ {S, sv, F} (5.13)

The variance of measurement V is approximated by the fitting error:

V q
ii =

1

Nd,q

Nd,q∑
i=1

e2i,q, q ∈ {S, sv, F} (5.14)
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where Nd is the number of sample points considered in the experiments. The matrix

Bj represents the sensitivity of the jth sample to parameter set θ, and Bj ∈ RNm×Np ,

is usually approximated by finite difference method.

Bj
k,q ≈

yjk,q(θ̂ + hkek)− yjk,q(θ̂)

hk
, q ∈ {S, sv, F} (5.15)

in which k = 1, 2, ..., Nm is the ith measured variable, j = 1, 2, ..., Nd is the jth

sample points, and hkek is the perturbation given to θ̂. In this study, Nm = 1 for

supersaturation, Nm = 9 for sieving and in situ CSD estimates, and hkek is 1%

variation of each estimated parameter. As a result, V S ∈ R1×1, V sv ∈ R9×9, and

V F ∈ R9×9.

5.3 Results

5.3.1 Experiments

Three experiments were carried out for parameter estimation, as shown in Table 5.1.

The apparatus and materials were as same as used in Chapter 5. The solution of 0.5

L was maintained at 70 ◦C for one hour, and then cooled to a designated plateau

temperature Tplat at 0.5 ◦C/min. This fast cooling rate was selected so that the

solution was kept clear before reaching Tplat. At some point on the temperature

plateau, the reading from the FBRM and the IR changed when nucleation occurred

and crystals appeared. The plateau was held for two hours so that the saturation of

the solution was depleted, as indicated by the stable and constant signal from the

FBRM and IR. Then the second cooling stage began to cool the solution to the final

temperature of 0 ◦C.

Table 5.1 lists the experimental conditions. Considering supersaturation as the

most important factor in kinetics, these experiments were designed to vary only Tplat

to control the SSR at the beginning of the temperature plateau Splat. Other factors

that can affect the process, such as cooling rates and total mass of solute, were not
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Table 5.1: Conditions of experiments for parameter estimation

Name
Initial concentration 1st cooling Tplat Splat 2nd cooling
[g solute/kg solvent] [◦C/min] [◦C] after 1st cooling [◦C/min]

Run 1

370 0.5

40.0 1.4

0.25Run 2 43.2 1.3
Run 3 46.6 1.2

varied between the runs.

Figure 5.2 summarizes the temperature profiles, the SSR, and the final CSDs of

the three experimental runs. In Figure 5.2(a), the temperature profiles of the three

runs are shown as a function of time, which are distinguished by Tplat. As we can see

in Figure 5.2(b), S increased as the solutions were cooled in the first cooling stage

(around 60 min). A small spike appeared around the end of the cooling stage, due to

slight overcooling in the temperature control. Then the level of SSR were maintained

until nucleation occurred. With smaller nucleation and growth rates at lower Splat, it

took longer time for the observation of nucleation. The desupersaturation was also

slower for a lower Splat. The second cooling stage started around 190 min, when S had

stabilized at one in all three runs. When the cooling began, S immediately increased

again. Cooling stopped when the final temperature was reached (around 350 min)

and S again returned to one.

The final CSDs were influenced by Splat, as indicated in Figure 5.2(c). It can
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Figure 5.2: (a) temperature profiles in Runs 1 – 3; (b) SSR in Runs 1 – 3; (c) CSD
of final product measured by sieving
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be seen that the peak locations of the CSDs decreased and the spread of the CSDs

became narrower with increase of Splat. Higher Splat led to faster nucleation and

growth rates, but nucleation was more sensitive to the change of Splat. Therefore, the

supersaturation was more consumed by nucleation when Splat was increased. Started

with less crystals created, the second cooling stage allowed each crystals growth to

a larger size. This is the reason of Run 3 having the largest mean size. Moreover,

the width of the distribution was related with the desuperaturation period at the

temperature plateau. Figure 5.2(b) suggests Run 3 had the longest period, so the

widest CSD was obtained in Run 3.

The final CLD histogram of the three runs were shown in Figure 5.3. The peak

location and the shoulder height between 200–400 µm decreased from Run 1 to Run 3.

This trend suggests that Run 3 had more small crystals and less large crystals than the

other runs, which apparently conflict with the sieving results shown in Figure 5.2(c).

This potential contradiction is analyzed with our CSD estimation technique discussed

below.

The CSD estimates of the final product determined from CLD histograms are
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Figure 5.3: CLD of final product in Runs 1–3

compared with sieving in Figure 5.4. The estimated CSDs are in general agreement

with the sieved CSDs of Runs 1 and 2, while significant errors can be observed in
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Run 3. We attribute this disagreement to the presence of fine particles (smaller than

the smallest sieve tray of 53 µm) and large particles (beyond the size of the largest

sieve tray of 500 µm). Neither of these size ranges was calibrated in our fingerprint

model but they influence the CLD and the CSD estimate. Run 3, in particular, ended

with 18% weight of final product greater than 500 µm, violating our assumption that

there is no crystals above 500 µm. It probably had the most number of fines as

well, because many short-length chords were observed for the final CLD of Run 3 in

Figure 5.3. The fines less than 53 µm could be easily altered during washing and

drying, and thus they would be difficult to quantify by sieving. However, FBRM may

still detect many short chords from the fines and change the CLD, which would be

out of the range considered by the fingerprints model. Therefore, only the in situ

CSD estimates from Runs 1 and 2 were used in parameter estimation, while Run 3

was excluded. We also note the disagreement in Figure 5.4(a) at the largest sizes.

While this comprises a significant volume, it is actually a relatively small number

of crystals. Parameter estimation was also performed excluding CSD estimates from

Run 1, and the estimated values of the parameters were similar.
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Figure 5.4: The CSD estimates of final product compared with sieving analysis: (a)
Run 1; (b) Run 2; (c) Run 3
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5.3.2 Parameter estimation

The training set used in parameter estimation contains S and volume density of

CSD estimates, from the following data set: nS ∈ {Run 1, Run 2, Run 3}, nsv ∈

{Run 1, Run 2, Run 3}, and nF ∈ {Run 1, Run 2}. Weighting of different error

sources are selected to be wS = 100, wsv = 2× 10−7, and wF = 5× 10−11.

Table 5.2: Estimated kinetic parameters

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

53.9 4.61 7.44×104 1.92 0.714 40.5 40.8 1.28

95% confidence interval obtained by 1% perturbation

15.8–183 4.25–4.91 (6.64–8.34)×104 ±0.08 ±0.021 39.2–41.9 ±0.1 ±0.01

In the parameter estimation, log kb1,σ3,log kb2, and ln kg were used in the minimization of the fitting
error and the evaluation of the 95% confidence intervals. Since the logarithm and cube are nonlinear
transformations, the estimated parameters may not center in their confidence intervals.

Parameters estimated from the experiments are shown in Table 5.2. The estimated

value of interfacial tension is 4.61 mJ/m2, while that estimated by equation from Mers-

mann [88] is 7.60 mJ/m2. Other studies on the same system estimated the growth

kinetic parameters as {10.0 (m/s)(m3/kmol)γ, 40.6 kJ/mol, 1.6} in Mitchell et al.[92]

and {21.0 (m/s)(m3/kmol)γ, 41.6 kJ/mol, 1.9} in Worlitschek and Mazzotti[140]. The

growth rate constant in this study is 5.30 (m/s)(m3/kmol)γ after unit conversion. The

activation energy is 40.8 kJ/mol, close to the reported values. The growth exponent

γ is usually between 1 to 2, and our estimate is 1.28.

The 95% confidence intervals of the parameters are shown in Table 5.2. Primary

nucleation constant kb1 varies within one order of magnitude at 95% confidence level,

which indicates that the fitting error is relatively insensitive to kb1. Around 10%

variation also exists for σ and kb2, while the confidence intervals for the rest of the

parameters are narrow.

The predictions of the model are shown in Figures 5.5–5.8. The supersaturation
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profiles agree with the experiments well, as shown in Figure 5.5. The optimization

program successfully found a single parameter set that can match the onset of nu-

cleation and the subsequent evolution of the SSR in all three runs. The increase of

supersaturation during the second cooling stage was also described successfully by

this model.

In terms of the final CSD, Figure 5.6 shows that not only each final CSD pre-
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Figure 5.5: Supersaturation-time profile in experiments and simulations: (a) Run 1;
(b) Run 2; (c) Run 3

diction is close to its corresponding sieving results, but the model also explains the

influence of Splat to final CSD, which is that higher Splat leads to smaller mean sizes

and narrower final CSD.

The CSD evolution estimated from the CLD histograms of Runs 1 and 2 and the
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Figure 5.6: Final CSD volume density in experiments and simulations: (a) Run 1;
(b) Run 2; (c) Run 3

model predictions are shown in Figures 5.7 and 5.8, respectively. The independent
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axes on these three-dimensional plots are crystal size and time, while the volume

density is plotted as the dependent variable on the vertical axis. Notice that t = 0

corresponds to the beginning of the temperature plateau, since no crystals are gener-

ated prior to this time. Both in situ CSD estimates and model predictions show two

major developments in the CSD volume density. The first rapid change of CSD was

around 50 min, corresponding to the initial nucleation and growth on the temperature

plateau. The CSD stabilized over the remainder of the plateau, remaining constant

until 200 min. Then the second stage started with the second cooling, indicating

further crystal growth. Significant secondary nucleation is not observed at the small

sizes during this period. The consistency between in situ CSD estimates and model

predictions suggests the model can accurately describe the changes during the batch

cooling process.

The influence of the uncertainty in the parameters is shown in Figure 5.9, by
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Figure 5.7: Evolution of CSD volume density in Run 1: (a) estimates from CLD; (b)
model predictions

simulating Run 2 with parameters randomly sampled from the confidence intervals
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Figure 5.8: Evolution of CSD volume density in Run 2: (a) estimates from CLD; (b)
model predictions

in Table 5.2. Assuming the parameters are distributed uniformly in the 95% con-

fidence intervals, 1000 parameter sets have been simulated. The results from 1000

simulations outline the variation caused by the uncertainty of the parameters, and the

boundaries of the variation are plotted in Figure 5.9. The predictions in Figure 5.9(a)

imply that the onset of nucleation occurs on the temperature plateau for any of the

parameter combinations from the confidence region, but the difference can be as large

as 13 minutes. The predicted CSD volume density functions in Figure 5.9(b) have a

spread of approximately 50 µm in their mean sizes.

An identical experiment to Run 2 was carried out to test the reproducibility of

our experiment. The onset of crystallization in the repetition run was observed to

be six minutes earlier than that in Run 2, as shown in Figure 5.10(a). The primary

nucleation event is expected to be stochastic, so some difference in nucleation time

is expected. However, one role of the temperature plateau can be to minimize the

impact of this variation for the final CSD. Regardless of the time of nucleation, the

crystallization is always driven by a constant Splat so that the CSD remains nearly
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unchanged. The sieving analysis in Figure 5.10(b) estimated almost the same final

CSD volume density function as the final product of Run 2.
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Figure 5.9: Results of 1000 simulations of Run 2. Only the boundaries of the simulated
results are shown. (a) SSR; (b) CSD of final product
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Figure 5.10: Run 2 and its repetition: (a) SSR profile; (b) sieving results

5.3.3 Importance of the FBRM model

The CSD estimated from CLD tracked the change of the CSD during the cooling

process, and thus, the CSD information facilitates the parameter estimation. Fig-

ure 5.11(a) and (b) show the CSDs obtained from various methods for the end points

of the temperature plateau and the cooling process. In the case of Run 1, the differ-

ence of the CSD estimated from the FBRM model is not exactly the same as the PBE
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Figure 5.11: In situ CSD estimates obtained from the FBRM model at the end of
plateau and at the end of the process: (a) Run 1, (b) Run 2. The CLD measured at
two corresponding points: (c) Run 1; (d) Run 2.

model prediction, and it also deviates from the sieving result. However, it reflects how

the CSD evolves during the second cooling, which helps the search of parameters. In

the case of Run 2, Figure 5.11(b) shows good agreements among the FBRM model

estimates, the PBE model predictions, and the sieving result. It can be seen that the

change of the CSD is well captured by the CSD estimates from the FBRM model.

The good fitting of the PBE model to CSD estimates at the end of the temperature

plateau also supports the accuracy of the FBRM model.

On the other hands, the change of the CLDs are unable to reflect the CSDs and

their change during the cooling processes, as shown in Figure 5.11. For Run 1, the
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level of CLD is not changed greatly, except the increase between 200–500 µm. This

increase only qualitatively implies the growth of crystals during the second cooling,

but it is not comparable to the evolution of CSD shown in Figure 5.11(a). Similarly,

CLD increment in Run 2 is about 30%, as shown in Figure 5.11(d), which is unable

to describe the growth of crystals shown in Figure 5.11(b). Without the in situ

CSD estimates in the parameter estimation, the minimization of fitting error turns

into a more challenging task. With less information about the process, the confidence

intervals become wider, although the parameter estimates just change slightly, as seen

in Table 5.3. To understand the sensitivity of the model predictions to the parameter

Table 5.3: Estimated kinetic parameters without using in situ CSD estimates

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

0.192 4.25 1.00×105 2.08 0.713 45.5 41.3 1.24

95% confidence interval obtained by 1% perturbation

10−9–107 3.59–4.76 (0.74–1.36)×105 ±0.21 ±0.056 ±1.7 ±0.2 ±0.03

values, the fitting errors were calculated using various combinations of kb1 and kb2.

Figure 5.12 shows the objective function Φ(θ) (Equation (5.8)) in the reduced pa-

rameter space of kb1 and kb2, while all the other parameters are fixed at their optimal

values given in Table 5.2. As we can see from Figure 5.12(a), the black L-shaped

region suggests the optimization problem is ill-conditioned, because there exist mul-

tiple near-optimal solutions for the parameters. The original problem varying eight

kinetic parameters could be even more challenging. However, when the in situ CSD

estimates are available, the L-shaped region transforms into an elongated valley as

shown in Figure 5.12(b), where the minimum for kb2 is easier to locate. The black

regions in both (a) and (b) imply that the error function is insensitive to the value of

kb1, and thus its confidence interval is wider than kb2 as seen in Table 5.2.

Corresponding to the case in Figure 5.12(a), Table 5.3 gives the values of the
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Figure 5.12: Error landscape as a function of kb1 and kb2: (a) without in situ CSD
estimates; (b) with in situ CSD estimates of Run 1 and 2; White squares indicate the
locations of the optimal solutions

parameter estimates and their confidence intervals. The values of the estimated pa-

rameters are similar but with wider confidence intervals, compared to Table 5.2.

Notice that the confidence interval of kb1 is relatively wide in both cases. This can

be explained by the vertical black regions in Figure 5.12(a) and (b), indicating that

the error function is insensitive to the value of kb1.

5.3.4 Model verification

Additional unseeded and seeded runs were implemented to test the capability and

limitation of our PBE model. The details of experiments are shown in Table 5.4. The

SSR profiles and final CSDs (number density) are compared in Figures 5.13 and 5.14.

First, we tested the model at a different second cooling rate. The experimental

condition in Run 4 was the same as in Run 2, except that the second cooling rate

was doubled. Therefore, it was expected that the supersaturation should increase

to a higher level in second cooling stage, compared to Run 2. As shown in Fig-

ure 5.13(a), the value of SSR at the end of the second cooling reached around 1.2,

compared with 1.1 in Run 2 (Figure 5.2(b)). Notice that there was a sudden drop

of the measured SSR at 315 min, possibly due to an accidental move of the optical
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Table 5.4: Experimental conditions for the validation experiments

Name
Seeds mass Initial concentration 1st cooling Tplat Splat 2nd cooling

[g] [g solute/kg solvent] [◦C/min] [◦C] [◦C/min]

Run 4 0 370 0.5 43.2 1.3 0.5
Run 5 0.03 370 0.5 48.0 1.16 0.25
Run 6 0 405 0.5 50.0 1.2 0.4
Run 7 0 370 0.5 43.2 1.3 0.1

Underlined values indicate the major difference between the validation experiments and the
experiments for parameter estimation.

fiber of ATR-FTIR. It happened after the second cooling stage and had not affect to

any previous SSR measurements. Our model correctly predicts the SSR profile, as

shown in Figure 5.13(a). The final CSD shown in Figure 5.14(a) is consistent with

sieving results for large size (greater than 200 µm). The peak of CSD is predicted

at 115 µm, whereas the sieving result suggests a flat-top. This difference could be

associated with the incapability of sieving in measuring the number density.

We also tested the model for a seeded crystallization process in Run 5. Because

crystals are initially present, secondary nucleation is expected to be more significant

than primary nucleation. Before 0.03 g of seedes between 75 to 106 µm were intro-

duced, the solution was cooled to the designated plateau temperature. The average

number density is roughly around 10/mum/mL. Figure 5.13(b) shows significant dis-

crepancies between the SSR measurements and predictions. One reason could be

that the initial CSD of seeds provided to the simulation was inaccurate. The actual

seeds could contain fines adhering to their surfaces, known as initial breeding [29].

The seeds might also acquire some surface features in seeds preparation [1], such as

washing, drying, and milling, which could affect the secondary nucleation and growth

rates. This unmodeled effect made the predicted SSR decrease more slowly on the

temperature plateau and increase to higher values in the secondary cooling stage,

compared to the experimental observation in Figure 5.13(b). In Figure 5.14(b) for

final CSD comparison, the predicted number density at 178 µm is lower than sieve
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Figure 5.13: SSR profiles of validation runs: (a) Run 4; (b) Run 5; (c) Run 6; (d)
Run 7
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analysis, which may be caused by the unconsidered factors of the seeds and their

effects on kinetics.

Some factors and kinetics that are neglected in the model can be important when
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Figure 5.14: Predicted final CSD in comparison with sieving results: (a) Run 4; (b)
Run 5; (c) Run 6; (d) Run 7

the experimental conditions are changed significantly, as demonstrated by Runs 6 and

7. Run 6 started with an initial concentration that is 10% higher than used in Runs

1–3. The solution was cooled to 50 ◦C to achieve Splat = 1.2. The SSR profiles agrees,

as shown in Figure 5.13, except there is some deviation in the second cooling stage.

The CSD comparison in Figure 5.14(c) shows that the prediction is on the similar

order of magnitude of the sieving results, but more small crystals (up to 200 µm) and

less large crystals (200 µm above) were obtained from the experiment, which may be

caused by some neglected kinetics in the model, such as growth rate dispersion, size-

dependent growth, or by the change of the interfacial tension at this concentration
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and temperature.

In Run 7, a much lower second cooling rate was used, which prolonged the second

cooling stage. Figure 5.13(d) shows the SSR profile, in which the second cooling stage

started at 180 min and finished at 600 min. The measured SSR increased at the be-

ginning of the second cooling plateau and started to drop in the middle of the stage.

However, the model predicted a monotonic increase of SSR. Figure 5.14(d) indicates

that more small crystals and less large crystals were obtained in the experiment,

compared to the model prediction. The mismatches in both SSR and CSD might be

caused by additional mechanisms. For example, attrition was apparently the reason

for more crystals below 200 µm. Attritions is the abrasion exerted to crystals that

lead to rounded vertices and edges of the crystals. The fragments stripped off the

mother crystals can act as newly-formed crystals. The SSRs during second cooling

stage of Run 7 are around 1.05, only 1/4 to 1/2 as in other runs (1.1–1.2), according

to both experimental and simulation results. Our speculation is that attrition became

more dominant to the process, when growth rate was low at low SSR. It created many

small crystals at the expense of large ones, which made the final CSD different from

the model prediction.

5.3.5 Analysis of crystallization kinetics

5.3.5.1 Nucleation

Given the good performance of the model within the experimental conditions of the

training set, the model can provide a mechanistic interpretation of the crystallization

process. Figure 5.15 compares the total number of nuclei and the number of nuclei

generated by primary nucleation. The difference between the two quantities is the

number of nuclei generated by secondary mechanism. Both coordinates are in loga-

rithmic scale to show the wide variations of the values. In the experiment, it is not

possible to separately measure the rates of primary and secondary nucleation, but
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the model provides this information.

As can be seen from Figure 5.15(a)–(c), more and more primary nuclei are gen-

erated during cooling, but there is no secondary nucleation. When there are enough

amount of crystals present in the solution, secondary nucleation starts and creates

a significant number of nuclei, which lead to the outburst of nucleation, as observed

on the temperature plateau. Then the total number of nuclei levels off until 200

min, when second cooling is started. During this cooling stage, the total number of

nuclei increases but the the number of primary nuclei remains constant, as seen in

Figure 5.15, indicating no primary nucleation and significant secondary nucleation.

The simulation results indicate that the role of primary nucleation, under the
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Figure 5.15: Predicted primary and secondary nucleation rates: (a) Run 1 (Splat =
1.4); (b) Run 2 (Splat = 1.3); (c) Run 3 (Splat = 1.2). The time and nucleation rates
are shown in logarithmic scales

given supersaturation ratios, is to generate a few nuclei. The primary nucleation

event triggers secondary nucleation, which creates almost the entire crystal popu-

lation. This phenomenon is analogous to an autocatalytic reaction, with dissolved

molecules as the reactant and crystalline solid as the product. Crystals catalyze

further production by the secondary nucleation mechanism, leading to exponential

growth in the number of crystals. As the crystals grow in size, the solute in solution

is consumed, and this causes both nucleation and growth to slow down.
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5.3.5.2 Growth

With low Splat, significant crystal growth occurs during second cooling, according to

the simulated CSDs shown in Figure 5.16. At the end of the temperature plateau,

the CSDs has the similar peak sizes at around 50 µm, but their heights are different,

as shown in Figure 5.16(a). The heights of the CSDs are proportional to Splat. In the

subsequent cooling stage, the CSDs lead to different growth and nucleation rates. As

a result, Run 1, with the most crystal mass and surface area, has the least crystal

growth and the peak of the CSD moves around 50 µm, as shown in Figure 5.16(b).

The growth rates are compared in Figure 5.16(c), using Equation (5.7). At the

beginning of the temperature plateau, growth rate is at maximum, which dropped

fast once crystallization starts. In the second cooling stage started around 170 min

(see the inset figure), Run 3 has the strongest crystal growth, so the peak shifts from

50 µm to 175 µm. Notice that the final CSD of Runs 1–3 are all bimodal, as shown

in Figure 5.16(b), while the significance of the small-sized mode vary with Splat. As

indicated by the simulated final CSD, Run 3 has a lot more crystals than Runs 1 and

2, which may caused the inaccurate CSD estimates in Run 3.
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Figure 5.16: (a) the CSD at the end of temperature plateau; (b) the CSD of end
product; (c) growth rates during experiments
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Figure 5.17: The effect of Tplat on the volume-weighted mean size

5.3.5.3 Final product from different Tplat

The mean size of the volume-weighted final CSD is shown to be decreasing with Tplat,

as shown in Figure 5.17. Nine two-stage unseeded crystallization runs are simulated

with different Tplat. The curve obtained from simulation indicates an increase of mean

size with Tplat, which is consistent with our observation from Runs 1–3. The mean

size of CSD from sieving is determined about 30 µm lower than the predicted curve,

but the trend is similar to the simulation results. These results imply a potential of

the two-stage cooling strategy to achieve a desirable mean size of the final product, by

selecting a proper plateau temperature for the initial crystallization in an unseeded

process.

5.4 Discussion

Our empirical FBRM model transforms CLD measurements into a partial observer

of the CSD, to estimate number of crystals only between 53–500 µm. These partial

in situ CSD measurements, when combined with other measurements and a proper

simulation method, can be used to provide in situ information and estimate kinetic

parameters. The limitation of the FBRM model is also identified: it gives inaccurate
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estimates when too many crystals out of the 53–500 µm range. This is the reason for

excluding FBRM data of Run 3, and the limitation should also call for attention in

future use of the model.

The mechanistic interpretation from the kinetic parameters suggests that the pri-

mary nucleation rate is much lower than the secondary nucleation rate. This state-

ment is may be in conflict with the consensus in the crystallization community that

primary nucleation is the dominant mechanism for generating crystals. However, a

similar observation was reported recently by Kadam et al. [53, 54], in which one or

very few large crystals appeared in an unseeded stirred volume, prior to the massive

nucleation event. It is also consistent with the chiral symmetry breaking observed

in the unseeded crystallization of sodium chlorate [61]. The secondary nucleation

parameters were estimated by Worlitschek and Mazzotti[140] in their seeded study of

paracetamol-ethanol crystallization, but the equation was in a different form. Using

their parameters and expressions, the average secondary nucleation rate is around

107 /min/(kg solvent), while the nucleation rate is 105–107 /min/(kg solvent) in our

work. The consistency supports the accuracy of our estimation.

Our results also provide a mechanistic interpretation of the induction time seen

in experiments. The simulation results in Figure 5.15 explain the delay between the

time of supersaturation and the observable crystallization. The secondary nucleation

requires a certain time to induce enough nuclei that can decrease the supersaturation.

In the induction period, the number of nuclei and their size developed slow until they

surpass a threshold that can decrease the supersaturation.

Using a temperature plateau to induce nucleation could be a candidate for internal

seeding strategies. Internal seeding is usually achieved by continuous cooling, with

linearly or certain cooling strategies, until nuclei are detected. The solution may be

cooled to an undesired supersaturation which results in too many fine crystals, so
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further operations are required to dissolve or remove the fines. If the two-step cool-

ing is implemented with a proper plateau temperature, CSD created by the initial

nucleation is controllable, and the consistency is greatly improved, as shown by Run

2 and its repetition in Figure 5.10.

5.5 Conclusion

The experimental and numerical approaches are presented for estimating crystalliza-

tion kinetics in unseeded processes, using in situ and ex situ process measurements

and population balance modeling. Unique approaches have been demonstrated in

our case study, including (i) the use of CSD obtained from FBRM; (ii) simultaneous

estimation of primary nucleation, secondary nucleation, and crystal growth by un-

seeded cooling processes; (iii) proper choice of PBE solver that can perform process

simulation and error minimization.

CSD and S from unseeded two-stage cooling experiments are used to decouple

primary nucleation, secondary nucleation, and growth. This cooling profile has its

advantages over the linear cooling profile. The crystallization process can be divided

into two stages. Initial crystallization on the temperature plateau involves all three

kinetics. Primary nucleation and crystal growth determine the induction time and

the desupersaturation curve. Secondary nucleation may participate as well, while

our results show its importance in the initial crystallization. The second cooling

stage, starting with the crystal population created on the temperature plateau, can

be viewed as a seeded run, which excludes primary nucleation. The reproducibility

of the CSD is enhanced by initiating nucleation at a controlled supersaturation, and

the influence of the random nature of primary nucleation is diminished. Predictivity

and the limitation of the model were shown by verification runs.

FBRM provides critical process information, which helps in resolving the kinetic

parameters. The FBRM model was an established empirical mapping between CLD
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and CSD from our earlier studies. It was applied to the first two experimental runs,

while the third one is not as good, since its CSD strongly violates our assumption

for the FBRM model. The in situ CSD information makes the optimal solution to

the parameter estimation problem easier to locate. It also narrows the confidence

intervals of the estimated values.

Interpretation of the kinetics suggests that crystal growth and nucleation are com-

peting mechanisms. More solute is consumed by crystal growth at low SSR, which

leads to a flatter CSD with greater mean size, compared with the case at high SSR.

The interpretation also shows that, in paracetamol crystallization at the investigated

SSR, primary nucleation generate far less crystals than secondary nucleation, even

during the initial crystallization event at temperature plateau.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The thesis presents an empirical FBRM model that estimates crystal population den-

sity from chord length distribution and its application to determine crystallization

kinetics parameters.

The use of a linear, data-driven model provides a simple but effective approach to

correlate CSDs with CLDs, compared to the complicated Monte Carlo simulation as-

sociated with first-principle models. The empirical model treats the size of the crystal

as the only factor that determines the CLD and neglects other factors. Paracetamol

crystals were sieved into different size fractions, and the characteristic CLDs (finger-

prints) from each size fraction were determined in the nonsolvent toluene. Additivity

and linearity of the empirical model were verified experimentally. The fingerprints

confirm some qualitative uses of the FBRM, such as the correlation between the mean

size of crystals and mean chord length. However, it also reveals that a large crystal

generates more chords than a small crystal, which indicates that the mapping between

CSDs and CLDs is ill-conditioned.

For the ill-conditioned model, two inversion techniques have been developed for

estimation of CSDs from CLDs, using regularized least squares minimization and

principle component regression, respectively. It has been found that both of the

methods are able to estimate CSD accurately when the CSD is unimodal, while there

are some inaccuracy for a bimodal CSD, due to the ill-conditioning.

The empirical model for a practical crystallization system was then established

with paracetamol crystals and its saturated ethanolic solution. The fingerprint CLDs
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suggested a similar trend as obtained from paracetamol-toluene system, and the reg-

ularized least squares methods was adopted to estimate the CSD. In addition to the

information from the FBRM, the infrared spectra of the solution from ATR-FTIR

were calibrated at different temperatures and concentrations, and a polynomial cal-

ibration model was constructed. The CSD estimated from FBRM was corrected by

the liquid information to ensure mass balance. In other words, the CLD provides the

shape of the CSD, and the mass balance of paracetamol determines the total mass

of the crystals. A framework has been established to extract both CSD and solute

concentration from the in situ CLD and IR measurements. Notice that the CSD

estimates are between 53–500 µm.

Two unseeded runs have been successfully examined by the framework. The CSD

estimates show the advantages of the empirical model over the use of the total chord

count and mean length from the CLD. The case study shows that the total chord

count used as an indicator for nucleation may be misleading, since chord count also

increases when the crystals become larger. It is also shown that the mean size of CSD

estimates are more responsive to process operations (for instance, cooling) than mean

chord length. The CSD estimates of the final product are verified with sieve analysis.

With the framework for monitoring CSD and concentration, crystallization kinet-

ics parameters (primary nucleation, secondary nucleation, and crystal growth) were

estimated based on three unseeded two-step cooling runs. The two-step cooling pro-

file is advantageous over the linear cooling profile: initial crystallization is fixed at a

predetermined supersaturation regardless of the length of the induction period. For

the initial nucleation on the temperature plateau, primary nucleation and crystal

growth determine the desupersaturation curve and the CSD; secondary nucleation

may participate as well, when there is a sufficient amount of crystals present. The

second cooling stage, starting with the crystal population created on the temperature

plateau, can be viewed as a seeded run without primary nucleation.
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With initial crystallization induced at different supersaturation, the influence of

supersaturation was distinctly reflected in the CSD and supersaturation measure-

ments. CSD estimates from FBRM, supersaturation, and sieving results were in-

cluded for the parameter estimation and they were fitted with the solution of the

PBE. The differences in experimental data were successfully fitted and explained

with our kinetic models and their parameters.

FBRM and the empirical model provide critical process information, which help

in resolving the kinetic parameters. The FBRM model was applied to two of three

experimental runs, while the third one is not as useful because of its bimodal CSD.

The in situ CSD information makes the optimal solution of the parameter estimation

problem easier to locate. It also narrows the confidence intervals of the estimated

values.

Interpretation of the kinetics suggests that crystal growth and nucleation are com-

peting mechanisms. More solute is consumed by crystal growth with low Splat, which

leads to a flatter CSD with greater mean size. The interpretation also shows that, in

paracetamol crystallization at the investigated conditions, primary nucleation gener-

ates far fewer crystals than secondary nucleation, even during the initial crystalliza-

tion event on the temperature plateau.

Meanwhile, some drawbacks of the FBRM model and the crystallization kinetics

are also identified. The first drawback is that the FBRM model largely relies on the

sieving. If crystals are in some shapes that are difficult for sieve analysis, such as

plates or needles, the efficiency of sieving may limit the applicability of the empirical

model.

Another drawback is that the FBRM model gives inaccurate estimates when the

CSD is bimodal in the size range of 53–500 µm or too many crystals are outside that

range. The experimental results have shown several unsuccessful cases and the reason

for the disagreement are explained.
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The third defect is the simplification of crystallization kinetics, which only in-

cludes primary nucleation, secondary nucleation, and crystal growth. The mathe-

matical expressions are descriptive to some extent, but they are still empirical or lack

of necessary detail. As a result, the kinetics in the model are able to describe the

observations in the training experiments. However, in a much broader experimental

range, it was found that these expressions were inadequate to predict the outcome of

the crystallization process.

In summary, the thesis has thoroughly discussed the quantification of FBRM data

for CSD estimates. The empirical model of FBRM has been shown to be effective for

both a nonsolvent system and a practical crystallization case. The CSD estimated

from FBRM has been found to provide rich information throughout the process and

can be of great help in estimation of kinetic parameters.

6.2 Recommendations

6.2.1 New approach of determining the empirical model

As stated above, when the crystals are in plate-like or needle-like shapes, sieving

is unable to separate the crystal efficiently, and therefore, re-dispersing the crystals

obtained from sieving is impractical for the determination of the fingerprints. One

alternative is using other sizing techniques to calibrate the FBRM and build the fin-

gerprint model.

Suppose CSD samples xi, i = 1, ..., n are available, and xi are determined by

off-line methods (e.g., laser diffraction). Meanwhile, the corresponding CLD bi are

also known from FBRM measurements. There exists a mapping between xi and bi.

The mapping can be implicitly used. For example, a new CLD bnew is measured

for unknown sample xnew. Assuming bnew is a linear combination of bi (suppose n

is sufficiently large), i.e. bnew =
∑

i kibi. Meanwhile, CSD should follow the exact

linear combination, which isxnew =
∑

i kixi. An alternative method is using some
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advanced methods to explicitly correlate xi and bi, such as regression methods or

neural network. Then xnew can be estimated from bnew with the explicit model.

Another advantage of the new approach is that it requires no experiments of

re-dispersing the crystals to saturated solutions. The data can be provided by crys-

tallization runs. These runs are performed with distinct operating conditions in order

to produce different CSDs. The final CSDs are measured with some off-line methods

and correlated to the CLDs. Once enough xi and bi are collected, CLDs can be

directly used to analyze the crystallization runs for further evaluation. This method

consumes less time and can broaden the size limit, instead of the 53–500 µm range

of sieving.

6.2.2 Primary and secondary nucleation

From the interpretation of the crystallization kinetics, it is found that primary nucle-

ation generates much fewer nuclei than secondary nucleation in unseeded processes,

which may disagrees with the consensus in the crystallization community. The hy-

pothesis is that only a few nuclei are generated from primary nucleation, and they

are used as templates for secondary nucleation to generate the rest of the crystals.

More experiments can be carried out to examine the hypothesis.

• Cool an unsaturated solution to a designated plateau temperature, measure the

induction time and the CSD after the initial crystallization. Secondary nucle-

ation should affect the induction time and the CSD, if it generates the majority

of the crystals. To prove this, different stirring speeds can be used in order

to change the secondary nucleation rate. However, growth rate also depends

on mixing. Therefore, two sequences that manipulating the stirring speed are

design in Figure 6.1. Sequence A switches the stirring speed from nominal value
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Figure 6.1: Illustration of unseeded cooling crystallization with varying stirring speeds

400 RPM to X RPM, when plateau temperature is achieved. As a control ex-

periment to compensate the effect of mixing to growth rate, the stirring speed

in Sequence B is set back to 400 RPM once the nucleation is observed. By com-

parison of the results at different stirring speeds, the importance of secondary

nucleation to induction time and the CSD can be evaluated, which confirm or

disapprove the hypothesis.

• Use a continuous process to determine secondary nucleation rate. In a contin-

uous crystallizer, the CSD at steady state is [118]

ln(n) = − L

Gτ
+ ln(n0) (6.1)

and

n0 = B2/G (6.2)

in which τ = V/Q is the residence time, n0 is the number density of crystals

at size 0. If n and τ are known for the continuous crystallizer, linear fitting of

lnn against L estimates G and n0. B2 can be calculated by Gn0. The values

of B2 and G can be compared with the kinetic models to verify the parameters

obtained in Chapter 5.
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6.2.3 Potential use of the two-step cooling strategy

Another interesting aspect revealed in this thesis is the two-step cooling strategy for

unseeded processes. This operation can be viewed as an internal seeding policy, in

which the seed population is internally created on the temperature plateau. As shown

in Chapter 5, the CSD was controlled by the supersaturation plateau, and the sec-

ondary nucleation was effectively suppressed at Splat = 1.4. Such results indicate the

potential of the two-step cooling policy in the optimization of the final CSD. Unlike

the traditional internal seeding policy, the control of Tplat avoids the excessive gener-

ation of nuclei, and thus, requires no dissolution steps.

The proposed two-step cooling strategy, which generates seed crystals internally,

may avoid many drawbacks in external seeding operations. External seeding requires

an optimal seed distribution to effectively suppress the secondary nucleation. The

optimal seeding needs proper treatments, such as milling or washing, to achieve cer-

tain surface roughness and eliminate fines. Moreover, the storage and the addition of

seeds increase the cost of operation as well.

The two-step cooling strategy was shown to be effective for crystallization of parac-

etamol in ethanol. The mean size of the crystals depends on the choice of plateau

temperature. The utility of this strategy should be further verified against other

strategies in more applications.
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APPENDIX A

NOMENCLATURE

Abbreviations
ATR-FTIR attenuated-total-reflectance-Fourier-transform infrared
API active pharmaceutical ingredient
CE/SE conservation element/solution element
CLD chord length distribution
CLH chord length histogram
CNT classical nucleation theory
CSD crystal size distribution
CSH crystal size histogram
DSC differential scanning calorimetry
FBRM focused beam reflectance measurement
HPLC high performance liquid chromatography
ODE ordinary differential equation
PBE population balance equation
PDE partial differential equation
PC principal component inversion
PVM Particle vision and measurement
REG regularized least square inversion
SSR supersaturation ratio
TGA thermal gravimetric analysis
XRD X-ray diffraction

Greek letters
Ω confidence region
Φ fitting error
α exponent of supersaturation in secondary nucleation
β exponent of mass in secondary nucleation
γ exponent in growth equation
ε threshold of concentration for observation of nucleation
η size-dependent growth factor
λ tuning parameter in CLD-CSD transformation
µi ith moment of crystal population
ν molecular volume
ρs density of crystals
θ parameter set
σ crystal-solution interfacial tension
ω weight of error term

English letters
A transformation matrix, n to q
B nucleation rate
B1 primary nucleation rate
B2 secondary nucleation rate
Bj sensitivity of simulation to parameters

115



D death rate of crystals
Ea activation energy of crystal growth
G growth rate
L crystal size
L̄1,0 number-averaged size of crystal
L̄4,3 volume-averaged size of crystal
N number of experiments, sample points, measurements
N1 number of nuclei generated by primary nucleation
N2 number of nuclei generated by secondary nucleation
R gas constant
S supersaturation, c/cs
T temperature
U transformation matrix, x to b
Ũ UTU
V covariance matrix of measurements
Vθ covariance matrix of parameters
b CLH vector
b̃ UTb
c principal component (PC)
c concentration
∆c c− cs
cs solubility
ek natural basis on kth dimension
e fitting error
h small perturbation for finite difference
k Boltzmann constant
kb1 coefficient of primary nucleation
kb2 coefficient of secondary nucleation
kg coefficient of crystal growth
kv shape factor
l geometric mean of a size range
ms mass of crystals
n CSD number density
nvol CSD volume density
n CSD number density vector
q CLD function (continuous)
qp Single crystal CLD
q CLD vector
rc critical radius of nuclei
s chord length
∆s bin width of CLH
t time
tind induction time
vi internal coordinate
x CSH vector
x size of crystals
∆x discretization of size domain in CE/SE scheme
y calculated volume density

Subscripts
0 initial condition
F CSD estimates from FBRM
S SSR
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d sample points
m measured variables
plat temperature plateau
r experimental runs
sv sieving
v volume density
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APPENDIX B

NUMERICAL SOLUTION OF POPULATION BALANCE

EQUATION

B.1 Introduction

To describe the population balance (PBE) , the most simple partial differential equa-

tion is

∂u

∂t
+
∂f(u)

∂x
= 0 (B.1)

Usually, the function form of flux f is in the following form:

f(u) = au− µ∂u/∂x (B.2)

In crystallization modeling, it can often be assumed that there is only one crystal

coordinate, which is the size (denoted as x) in the crystal size distribution u, and

f = Gu, where G is the growth rate. Two examples to numerically solve the problem

are finite difference method (FDM) and finite volume method (FVM), according to

the treatments of x direction:

1) If the x-derivative ∂u/∂x is approximate by the difference between two neigh-

boring points (ui+1−ui)/(xi+1−xi) (or other more accurate finite difference schemes

that involve more neighboring points), the PBE turns into an ODE system at grid

points ui(t). However, the issue of the FDM is its poor approximation of ∂u/∂x,

which introduces a great deal of numerical instability for points with very steep gra-

dients. For systems like PBE, since the CSD sometimes changes over several order

of magnitudes, the FDM has to use very fine partition of x domain to maintain its

accuracy. Too many grid points in x is a huge computational burden, and thus it is

often not suitable to use the FDM to solve PBE.
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2) If Equation (B.1) is integrated in a small size interval [xi, xi+1], we have

∂
∫ xi+1

xi
udx

∂t
+

∫ xi+1

xi

∂f

∂x
dx = 0 (B.3)

Define Ui =
∫ xi+1

xi
udx , which means Ui is the total number of crystals in the cell

[xi, xi+1]. At the boundaries of cell i, the flux-in Fi−1/2 = f(u(xi−1/2)) and the flux-out

is Fi = f(u(xi+1/2)). An ODE system is obtained,

dUi
dt

= Fi−1/2 − Fi+1/2, i = 1, 2, 3, ..., N − 1 (B.4)

The structure of the partition is shown in Figure B.1, where equal spacing of cell is

assumed. As we can see, the flux out of the left cell flows into the right one, so that

the net flux of the entire system is Fin−Fout. Here, Fin and Fout should be calculated

according to boundary conditions.

Figure B.1: Schematic of finite volume method

However, flux Fi+1/2 is not explicit from the FVM, because it depends on the

ui+1/2, instead of Ui or Ui+1. The average value in cell i is

ūi = Ui/∆x (B.5)

where ∆x = xi+1 − xi is the width of the cell. Different ways of approximating the

flux at cell boundary have been developed [69]. One approximation method is the

upwind scheme

Fi+1/2 = f(ūi +
1 + κ

4
(ūi+1 − ūi) +

1− κ
4

(ūi − ūi−1)), κ = [−1, 1] (B.6)
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This equation, assuming the flux flows towards positive-x direction, is a mixture of

the central method (κ = 1) and one-side upwind method (κ = −1) [112, 132]. Rewrite

Equation (B.6) in a universal upwind form

Fi+1/2 = f(ūi +
1

2
(
1 + κ

2
r +

1− κ
2

)(ūi − ūi−1)) (B.7)

r =
ūi+1 − ūi + ε

ūi − ūi−1 + ε
(B.8)

where ε is a very small quantity (less than 10−10) to avoid dividing-by-zero error.

The ratio r of two consecutive increments in ūi is the parameter that determines the

weight of (ūi − ūi−1). If there exists a shock wave or sharp changes in the solution,

the value of r could result in wiggles near the shock front. Therefore, this weight is

replaced by Φ(r) to limit the flux, and κ is set at 1/3 [62]:

Φ(r) = max(0,min(2r,min(1/3 + 2r/3, 2))) (B.9)

Then the weight is 1/3+2r/3 when 0.5 < r < 2.5, or 2r when r < 0.5, 2 when r > 2.5.

This high-resolution method with flux limiter can give less numerical diffusion and

suppress wiggles. More details can be found in Qamar et al. [112].

In this work, another method, which has been shown to be more accurate and

efficient, was used as the reference solution. The method is called conservation-

element/solution-element (CE/SE) scheme, invented by Chang [13] for aerodynamics.

This method provides a fresh view in the discretization of the space-time domain and

implementation of the PBE.

B.2 Methodology of CE/SE scheme

B.2.1 Conservation elements and solution elements

Suppose h = (f, u), Equation (B.1) becomes

∇ · h = 0 (B.10)
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Therefore, for any small area dA, the integration of Equation (B.10) is zero∫∫
A

∇ · h dA = 0 (B.11)

where dA = dxdt and ∇ = (∂/∂x, ∂/∂t). By the divergence theorem,∮
C

h · dC = 0 (B.12)

where C is a closed curve and dC is a line segment perpendicular to dr = (dx, dt).

Hence, dC = (−dt, dx), which means∮
C

(f)dt+ (−u)dx = 0 (B.13)

Because C can be any arbitrary closed curve in the domain of (x, t) and the integral is

zero, it means that there is a scalar function φ that has the derivative ∇φ = (−u, f).

If the time-space domain is discretized in the following staggered pattern as shown

in Figure B.2, then each unit in this domain is made of a ∆t/2×∆x/2 square. The

black dots, chosen in a staggered arrangement, are the points where the solution (u, f)

is approximated, which are called solution points. The diamond area enclosed by

dashed lines around point (j, n) is called solution element (j, n). Any arbitrary point

within the solution element (j, n) can be calculated by the first order approximation,

u(x, t) = u(xj, t
n) + ux(x− xj) + ut(t− tn) (B.14)

f(x, t) = f(xj, t
n) + fx(x− xj) + ft(t− tn) (B.15)

From Equation (B.1) we also have

ut = −fx (B.16)

Inside the solution element (j,n) centered at (xj, t
n), we have ∇φ = (−u, f). This φ

can be second-order approximated by u,ux, ut, f , fx and ft.

∂φ

∂x
= −u (B.17)
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Figure B.2: Scheme of conservation elements (red rectangle) and solution elements
(dashed diamond)

∂φ

∂t
= f (B.18)

∂2φ

∂t2
= ft (B.19)

∂2φ

∂x2
= −ux (B.20)

∂2φ

∂x∂t
= fx (B.21)

Then

φ = f(t−tn)−u(x−xj)+(
1

2
)ft(t−tn)2−(

1

2
)ux(x−xj)2+fx(x−xj)(t−tn)+constant

(B.22)

The other part of the method is the conservation elements, which enforce con-

servation law on neighboring solution elements. As shown in Figure B.2, solution

elements, (j − 1/2, n− 1/2), (j + 1/2, n− 1/2), and (j, n), are adjacent. The conser-

vation element is the red rectangle, which can be considered as three segments from

three solution elements, as shown in Figure B.3. The integral along the conservation

element is zero according to Equation (B.13), and, as the equation indicates, this

line integration can be separated into three parts: φ1 − φ2, φ3 − φ4, and φ5 − φ6. In

Equation (B.22), if we substitute φ with u,f , ft, and fx, the point at the next time

122



Figure B.3: Application of conservation law to neighboring solution elements

level can be written as

unj =
1

2

(
u
n−1/2
j−1/2 + u

n−1/2
j+1/2 + s

n−1/2
j−1/2 − s

n−1/2
j−1/2

)
(B.23)

where

snj =
∆x

4
(ux)

n
j +

∆t

∆x
fnj +

(∆t)2

4∆x
(ft)

n
j (B.24)

If (ux)
n
j , fnj , and (ft)

n
j can be explicitly determined by unj , iteration can be started

from the very first row and progress to the end of the time domain by marching this

scheme on the temporal domain. The stability condition is given as the Courant-

Friedrichs-Lewy (CFL) number ν2 < 1, where ν = a∆t/∆x.

Assuming unj is known, f is a function of u, so fnj can be calculated. From

Equations (B.23), (B.24), ft = fuut, ut = −fx, and ft = −fufx, ux remains the only

unknown variable and should be evaluated with all known information.

B.2.2 Approximation of ux

As described in the last section, marching from the time level n − 1/2 to n gives

unj , but ux must be approximated properly. This remains a critical problem for the

stability and accuracy of CE/SE scheme. Taking Figure B.4 as an example, u and ux

at (j − 1/2, n− 1/2) and (j + 1/2, n− 1/2) are assumed to be known, and thus ut at

these points are also known by the relationship ut = −fx = −fuux.

One intuitive method is the central-difference approximation,

(ucx)
n
j = ((u′)nj+1/2 − (u′)nj−1/2)/∆x (B.25)
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Figure B.4: Illustration for calculating ux

in which (u′)nj±1/2 = u
n−1/2
j±1/2 + (ut)

n−1/2
j±1/2∆t/2, and c indicates the central difference.

The values at the two ends of the SE (j, n) are estimated by SEs at the previous time

level, without using any information about (j, n). However, if there is a discontinuity

within the SE (j, n), the central-difference approximation would smooth it, which

results in a great deal of numerical dissipation.

One correction term that can be made is

(dux)
n
j =

1

2
[(ux)

n−1/2
j+1/2 − (ux)

n−1/2
j−1/2 ]− (u

n−1/2
j+1/2 − u

n−1/2
j−1/2 )/∆x (B.26)

, which estimates the difference between the central difference and the known value

ux at time level n− 1/2.

Another method is using a weighted average of finite-difference from each side in

solution element (j, n). On the right side, (ux+)nj = ((u′)nj+1/2 − unj )/(∆x/2) and the

left side is (ux−)nj = (unj − (u′)nj−1/2)/(∆x/2). The weight averaging function is

Wo(x−, x+;α) =
|x+|αx− + |x−|αx+
|x+|α + |x−|α

(B.27)

To avoid dividing by zero, in practice a small positive number such as 10−60 is added

to the denominator.

Modify the central-difference approximation of ux with the two correction terms,

(ux)
n
j = (ucx)

n
j + (2ε− 1)(dux)

n
j + β(Wo((ux−)nj , (ux+)nj , ;α)− (ucx)

n
j ) (B.28)

There are three parameters, ε, α, and β, in Equation (B.28). It is shown that with

certain parameter combination, the scheme is able to suppress wiggles as well as to

124



reduce numerical dissipation. For example, ε = 0.5, α = 1, β = 1 results in decent

CE/SE solutions if the absolute value of ν is not too small. If ν → 0, the parameters

should be adapted to the local CFL number.

Another scheme, insensitive to CFL number and independent of additional pa-

rameters, was developed [14]. As shown in Figure B.4, two points P+ and P− are

approximated by the information of (j + 1/2, n− 1/2) and (j− 1/2, n− 1/2), respec-

tively.

u′(P+) = u
n−1/2
j+1/2 +

∆t

2
(ut)

n−1/2
j+1/2 −

(1− |ν|)∆x
4

(ux)
n−1/2
j+1/2 (B.29)

u′(P−) = u
n−1/2
j−1/2 +

∆t

2
(ut)

n−1/2
j−1/2 +

(1− |ν|)∆x
4

(ux)
n−1/2
j−1/2 (B.30)

Thus, ux can be estimated from both sides.

(û+x+)nj =
∆x

4

(
u′(P+)− unj

(1 + |ν|)∆x/4

)
(B.31)

(û+x−)nj =
∆x

4

(
unj − u′(P−)

(1 + |ν|)∆x/4

)
(B.32)

Here, the (û+x±)nj is normalized by ∆x/4. To proceed, let

(s±)nj =
|(û+x±)nj |

min(|(û+x+)nj |, |(û+x−)nj |)
(B.33)

This (s±)nj are used to estimate (ux)
n
j ,

(ux)
n
j =

4

∆x

[1 + f(|ν|)(s−)nj ](û+x+)nj + [1 + f(|ν|)(s+)nj ](û+x−)nj
2 + f(|ν|)[(s−)nj + (s+)nj ]

(B.34)

where,

f(|ν|) = 0.5/|ν| (B.35)

B.3 Simulation of crystallization

The population balance takes the notation and form,

∂n

∂t
+G

∂n

∂L
= 0 (B.36)
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where n is the number density of crystal population, L ∈ [0Lmax] is the spatial di-

mension, G the is growth rate. Growth rate is assumed to be independent of L. Two

factors are considered when simulating the PBE for crystallization: (i) how to asso-

ciate the CE/SE scheme with the boundary conditions; (ii) how to descritize spatial

and time domains so that the CFL number ν = G∆t/∆x is maintained less than one.

The boundary conditions for crystallization are

n(t, L = 0) = B/G (B.37)

∂n

∂L
(t, L = Lmax) = 0 (B.38)

The CE/SE scheme shown in previous section is designed for an infinite spatial do-

main, not specified for any boundary conditions. However, the idea in CE/SE can

still be applied.

Take the illustration of Figure B.5 as an example, the spatial domain is par-

titioned into eight units of ∆x/2. To simplify the notation, the vertical lines are

named xi, i = 1...9 and horizontal rows are tj, j = 1, 2, 3. Two types of rows differ by

the numbers of their solution points. Odd-indexed rows have odd number of solution

points, two of which are on the boundary. Even-indexed rows have even number of

solution points, which entirely stay inside of spatial domain. Suppose n and nL in

Row 1 are known, it is simple to obtain n and nL in Row 2 by applying CE/SE

scheme.

When marching from Row 2 to Row 3, there are five n and nL in Row 3 but only

four n and nL in Row 2, which leaves two degrees of freedom. According to CE/SE

scheme, n(xi, t3),∀i = 3, 5, 7, can be computed by marching forward from Row 2.

Boundary conditions Equation (B.37) suggests n(x1, t3) = B(t3)/G(t3) and Equa-

tion (B.38) suggests nL(x9, t3) = 0. Two half conservation elements at the boundary

are outlined by the red squares in Figure B.5, to which similar conservation method

is applied as in CE/SE scheme.
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Figure B.5: March scheme of CE/SE method

Using the potential function shown in Equation (B.22), line integration along

those two half conservation elements leads to the following equations,

nL(x1, t3) =

4

∆x
[n(x1, t3)(ν(t3)− 1) + n(x2, t2)(ν

2(t2)− 1)] + nL(x2, t2)

1− ν2(t3)
(B.39)

n(x9, t3) =
(1 + ν(t2))n(x8, t2) +

(1− ν2(t2))∆x
4

nL(x8, t2)

1 + ν(t3)
(B.40)

It can be seen in Equations (B.37) and (B.38) that, nL(x1, t3) and n(x9, t3) require

the information on the same time level (ν(t3)), which makes the problem an implicit

method. The CFL number is determined by G, which depends on the supersaturation

and the mass of crystals at time t3. However, the crystals near 0 µm may only take

negligible mass. If Lmax is sufficiently large, number density of crystals at Lmax is

nearly zero. Therefore, ν can be well approximated, even if the mass at two boundary

points are ignored. When marching from an even-indexed row to next odd-indexed

row, it is reasonable to calculate the interior points and find out B, G, and ν first, and

then apply boundary conditions (Equations B.39 and B.40) to obtain full solutions

on the odd-indexed row.

Another aspect is to maintain the stability condition ν =
G∆t

∆x
< 1. In the

practice of modeling crystallization, ∆x is fixed throughout the simulation, and the

growth rate G varies at difference stages of the process. When the supersaturation

is high, G is large so that a ∆t should be relatively small. When the solution is
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only slightly supersaturated, such as at the end of the cooling process, G is small.

Large ∆t can be selected to reduce number of marching in the temporal direction.

Therefore, at each time step, a new ∆t is calculated to meet the CFL condition.

Using Figure B.5 as an example again. Suppose that the program marches to time

level t1 and the solution points at t1 are known. G can be calculated from the mass

balance and kinetic equations. A threshold νth is set less than 1 and ∆t is calculated

by

∆t = νth∆x/G (B.41)

The new ∆t is calculated when marching is performed twice. As developed in the

algorithm, the known initial condition starts at Row 0 with even number of solution

points. This type of rows are called “even rows”, since they are indexed with even

numbers and have an even number of solution points, similar to t2 level in Figure B.5.

Even rows are defined not to include boundary points. A very small ∆t is determined

by CFL condition and time is marched forward by ∆t/2 in order to solve for Row 1,

with the help of boundary conditions. Row 1 has an odd number of solution points,

one point more than Row 0. This type of rows are called “odd rows”, in comparison

with“even rows”. With the solution on Row 1, same ∆t/2 is used when solving for

Row 2. Up to now the marching has been performed twice and a new ∆t is used for

solving for Row 3. The flow chart is shown in Figure B.6.
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Figure B.6: Flow chart of the CE/SE algorithm
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APPENDIX C

ADDITIONAL RESULTS OF PARAMETER ESTIMATION

C.1 Different combinations of training set for parameter
estimation

According to the selection of FBRM results, three combinations of data can be pro-

vided to parameter estimation, as shown in Table C.1.

Table C.1: Combinations of training set

Runs
Combination 1 Combination 2 Combination 3

SSR Sieving In situ CSD SSR Sieving In situ CSD SSR Sieving In situ CSD
1 X X X X X X X
2 X X X X X X X X
3 X X X X X X

The differences between the combinations are the selections of in situ CSD estimates.

Different parameters values were estimated from the combinations.

As we can see from Table C.2 to C.4, the estimated values are close except

Table C.2: Estimated kinetic parameters from Combination 1

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

53.9 4.61 7.44×104 1.92 0.71 40.5 40.8 1.28

95% confidence interval obtained by 1% perturbation

15.8–183 4.25–4.91 (6.64–8.34)×104 ±0.08 ±0.02 ±1.4 ±0.13 ±0.01

Table C.3: Estimated kinetic parameters from Combination 2

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

0.175 4.06 1.04×105 2.15 0.730 43.1 41.0 1.24

95% confidence interval obtained by 1% perturbation

0.03–0.91 3.64–4.41 (0.92–1.18)×105 ±0.11 ±0.02 ±1.6 ±0.2 ±0.02
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Table C.4: Estimated kinetic parameters from Combination 3

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

0.192 4.25 1.00×105 2.08 0.713 45.5 41.3 1.24

95% confidence interval obtained by 1% perturbation

10−9–107 3.59–4.76 (0.74–1.36)×105 ±0.21 ±0.05 ±1.7 ±0.2 ±0.03

the coefficient of primary nucleation. Another observation is that the widths of the

confidence intervals are reduced if more in situ CSD estimates are used.

The optimization is a high-dimension nonlinear problem, dependent on eight pa-

rameters. To show the relation of between parameters, certain pairs of parameters

were selected, varied, and plotted as variables versus objective value, including kb1

and kb2, kb2 and kg, kg and γ, α and β. The objective functions using Combination 2

and Combination 3 are compared. When the values in the parameter pair are being

changed, other parameters are constant as estimated in Table C.6 to C.4.

As shown in Table C.5, Combinations 4 and 5 have no sieving data. These com-

binations both lead to wrong parameters in Table C.7 and C.8.

Table C.5: Another combinations of training set

Runs
Combination 4 Combination 5

SSR Sieving In situ CSD SSR Sieving In situ CSD
1 X X X
2 X X X
3 X X

Figure C.1 shows the advantage of using in situ CSD estimates and explains

Table C.6: Estimated kinetic parameters from Combination 1

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

53.9 4.61 7.44×104 1.92 0.71 40.5 40.8 1.28

95% confidence interval obtained by 1% perturbation

15.8–183 4.25–4.91 (6.64–8.34)×104 ±0.08 ±0.02 ±1.4 ±0.13 ±0.01

why the confidence interval of kb1 is wider than other parameters. In (a), two trenches
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Table C.7: Estimated kinetic parameters from Combination 4

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

3.74×106 51.3 1.12×104 0.700 0.627 37.8 41.5 1.22

Table C.8: Estimated kinetic parameters from Combination 5

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

3.36 6.70 1.81×104 1.16 1.16 28.0 39.3 1.45

are shown so that it is very easy to obtain a local optimum when no in situ CSD

estimates are unused. The trench at log kb1 = 7 disappears in (b) due to the inclu-

sion of in situ CSD estimates. However, the trench in (b) still covers log kb1 = 0 7,

indicating the objective is insensitive to kb1.
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Figure C.1: The objective values against kb1 and kb2: (a) using Combination 3; (b)
using Combination 2

For the other pairs, there is no essential differences between using in situ CSD

estimates and not using them.
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Figure C.2: The objective values against kg and kb2: (a) using Combination 3; (b)
using Combination 2
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Figure C.3: The objective values against kg and γ: (a) using Combination 3; (b)
using Combination 2

C.2 Alternative kinetic models

In this section, multiple kinetic form are tried in order to show
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Figure C.4: The objective values against α and β: (a) using Combination 3; (b) using
Combination 2

C.2.1 Another primary nucleation model

This estimation of interficial tension is generalized from experimental data of inorganic

salt dissolved in water [88].

σ = 0.414kT (ρsNA/M)(ln
cS

cL
) (C.1)

where cS and cL are the solute densities in solid and liquid phases. The unit of cS is

kg solute/m3 solid, which is the density of paracetamol crystal, and the unit of cL is

kg solute/m3 of solution. According to the unit of concentration used in this study,

solute concentration is reported in g solute/kg solvent. Assuming solution density is

equal to the density of ethanol,
cS

cL
= 1000(ρS/ρEtOH)/c = 1578/c, where c is solute

concentration in g solute/kg solvent as used in our model.

When c = 370 g solute/kg solvent at 44 ◦C, Equation C.1 estimates σ = 7.6

mJ/m2, which is close to 4.06 mJ/m2 in this study.

If this equation is plugged into Equation 5.5, the primary nucleation rate turns

into

B1 = kb1 exp

(
−1.19k′

(ln 1578/c)3

(lnS)2

)
(C.2)
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in which k,T ,ν are all cancelled out, and k′ is used to correct the error from the

interficial tension approximation. As we can see, Equation C.2 suggests increase of

concentration lead to higher primary nucleation rate.

C.2.2 Growth rate used in secondary nucleation

Secondary nucleation is induced by forces applied on the crystals as described in

the mechanism. The number of nuclei created by the force may also rely on the

feature of surface. If supersaturation is high, the crystal surface might be rough due

to fast crystal growth and more nuclei are possible to detach from mother crystals.

Therefore, the secondary nucleation rate could be rewritten as

B2 = kb2G
αmβ

s (C.3)

With Combination 1, the parameters estimated for the new secondary model are

Table C.9: Estimated kinetic parameters using Equation C.3 (Combination 1)

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

61.5 4.40 15.42 1.98 0.830 48.0 40.6 1.30

As we can see, these parameter is close to Table 5.2, except for kb2, since the differ-

ence between S − 1 and growth rate G. The fittings are acceptable.

C.2.3 Set α = β = 1

Additional adjustment is constraining α and β both at 1, which is usually used as

nominal exponent in secondary nucleation. Therefore, secondary nucleation model is

B2 = kb2Gms (C.4)

The estimated parameters are shown in Table C.10. Although the SSR profiles are

fitted well as shown in Figure C.6 (a) to (c), the calculated final CSDs of the three
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Figure C.5: Fitting with the secondary nucleation that has growth rate G (a) SSR of
Run 1; (b) SSR of Run 1; (c) SSR of Run 1; (d) Final CSD

runs are completely overlap. Therefore, the fitting indicates that constraints of the

exponent make the model unable to describe the CSD. It also implies that it is risky to

estimate kinetic parameters only relying on concentration measurements, since there

were multiple parameter combinations that can fit.

Table C.10: Estimated kinetic parameters using Equation C.4 (Combination 1)

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

7.89 2.85 118 1.00 1.00 67.1 40.9 1.35

However, the fitting to final CSDs has serious error.
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Figure C.6: Fitting with the secondary nucleation that has growth rate G and con-
straints for α = β = 1 (a) SSR of Run 1; (b) SSR of Run 1; (c) SSR of Run 1; (d)
Final CSD

C.2.4 Secondary nucleation neglected

Some empirical models were used for nucleation and growth in unseeded nucleation.

The exponential equations are the most simple forms.

B1 = kb1(S − 1)α (C.5)

G = kg exp(− Ea
RT

)(S − 1)γ (C.6)

We found that it is very difficult to fitting the SSR profiles with these two kinetic

equations. As we can see from Figure C.7 which shows the best fit that we obtained,

the model is unable to explain the induction time with the kinetic model. Nucleation
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always occurred earlier than experimental results, and the predicted final CSDs have

steep fronts on their right sides.
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Figure C.7: Fitting with the secondary nucleation that has growth rate G and con-
straints for α = β = 1 (a) SSR of Run 1; (b) SSR of Run 1; (c) SSR of Run 1; (d)
Final CSD. Note that three fitting results completely overlap in (d).

Table C.11: Estimated kinetic parameters using Equation C.5 and C.6 (Combination
1)

kb1 σ kb2 α β kg Ea γ
No./s/kg solvent mJ/m2 No./s/kg solvent (m/s)(g/g)γ kJ/mol

3.66 ×107 – – 4.84 – 7.55 39.6 1.36
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Figure C.8: Linear relationship between mean size and standard deviation

C.3 Linear relationship between mean size and standard
variation

In addition to the study of the effect of Tplat on mean size, the relation between

mean size µ4/ mu3 and the standard deviation is plotted in Figure C.8. As shown in

Chapter 6, the mean size of the final product can be adjusted by using different Tplat.

Figure C.8 shows a linear correlation between mean size and standard deviation,

which indicates that a large mean size and a small standard deviation cannot be

achieved at the same time.
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