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SUMMARY

This thesis presents investigations into the design and synthesis of nanoma-

terials in supercritical carbon dioxide (sc-CO2) as well as novel experimental design

methodologies. First, the process-structure-property relationships are studied for the

deposition of materials from organometallic precursors in sc-CO2. The materials

that were investigated in these studies were: (1) the semiconductor material cop-

per zinc tin sulfide (Cu2ZnSnS4, or CZTS), which has application in solar energy

capture; (2) zinc sulfide nanoparticles deposited onto carbon nanotubes, which have

application in optoelectronics; and (3) silver nanoparticles deposited on silicon and

glass wafer surfaces, which find application as biosensors via surface enhanced Raman

spectroscopy. Next, two novel experimental design methodologies were implemented.

The first is termed layers of experiment with adaptive combined design (LoE/ACD),

which efficiently optimizes a process that is expensive and time consuming to study

by zooming in on the process optimum through successive layers. The mean silver

nanoparticle size was optimized as a function of temperature in the sc-CO2 system

using the LoE/ACD approach. The second experimental design methodology is called

initial experimental design (IED). The IED methodology was developed to choose the

first round of experiments for a system that is expensive to study (in terms of time

and money), poorly understood, and possesses a related, non-identical system that is

well-studied. The IED approach was used to optimize the mean iridium nanoparticle

size as a function of temperature given expert opinion, prior data, and an engineering

model for silver nanoparticles synthesized in sc-CO2.
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CHAPTER I

INTRODUCTION

1.1 Nanotechnology Background

1.1.1 Brief history of nanotechnology and its applications

Nanoscience is the study of structures that have one physical dimension at the

nanoscale (i.e., between 1–100 nm), while nanotechnology is the application of nano-

science to solve challenges in the real world [20, 36, 247, 307]. The first known appli-

cation of nanotechnology was in stained glass windows used in churches in medieval

Europe [81, 84]. Glass artisans mixed gold chloride into molten glass, unknowingly

reducing the gold complexes to form small gold nanoparticles [74, 309]. By virtue of

their small size, the gold nanoparticles exhibited a surface plasmon resonance effect

to imbue the glass with a ruby red color [83, 151, 209]. In 1857, Michael Faraday first

reported that colloidal gold exhibited significantly different properties compared to

bulk gold [88, 213]. He attributed this observation to differences in the physical size of

the particles, although he did not elucidate the mechanism; nonetheless, his observa-

tion was the first step toward understanding the differences in behavior of matter at

the nanoscale. The prescient physicist Richard P. Feynman is credited with advancing

the cause of nanotechnology in a 1959 lecture entitled, “There’s Plenty of Room at the

Bottom,” by asking the question: “What would happen if we could arrange the atoms

one by one the way we want them?” [93, 141]. Nonetheless, not until 1974 was the

term “nanotechnology” coined, and this field has developed rapidly with the inven-

tion of various instruments such as the scanning tunneling microscope, transmission

electron microscope, and atomic force microscope, which are able to investigate and

manipulate atoms to control nanoscale phenomena [24, 34, 80, 185, 280, 284, 285].
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As of 2012, the United States has invested 3.7 billion dollars in nanotechnology

research through the National Nanotechnology Initiative, highlighting the potential

impact of this field in several areas of science and engineering [240]. For instance, in

medicine, nanoparticles of gold, silver, and other metals have been leveraged for use

in photodynamic therapy [19, 202]. Figure 1 shows a TEM image of gold nanocages

used for cancer therapy [50]. This application of nanotechnology may allow physicians

to selectively target tumors and avoid the pitfalls of traditional chemotherapy and

radiotherapy [37, 300]. In energy-related research, nanotechnology has found multiple

applications [154, 162, 203]. Nanowires of silicon and germanium have been grown on

semiconductor surfaces to develop high efficiency next generation solar cell devices

[117, 126]. Nanowires are nanostructures that have an aspect ratio (nanowire length

to diameter) of 100 or more [196]. These nanowires take advantage of quantum con-

finement effects in order to manipulate the optical properties of the nanostructures

while also increasing the absorption of light through multiple reflections and scatter-

ing/confinement within the nanowire array [218, 222]. Similarly, quantum dots have

been studied because of quantum confinement effects that can be used to manipulate

the band gap energies of light absorbing nanoparticles such as CdS or CdSe [160, 184].

Chemical and environmental sensors have also benefited from nanotechnology [143].

Nanoparticles have been leveraged to develop highly sensitive detection techniques

such as surface enhanced Raman spectroscopy [188, 327]. It is clear that there are

many possible types of nanostructures that have applications in science, engineer-

ing, medicine, and other fields. Consequently, it is critical that an understanding of

the relationship between various methods used to fabricate these nanostructures and

their resulting properties be established in order to effectively design nanomaterials

to allow nanotechnology to realize its full potential.
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Figure 1: TEM image of gold nanocages used in cancer therapy research. Reprinted
from Nanomedicine: Nanotechnology, Biology, and Medicine, Vol. 8, Chen et al., Gold
nanocages as contrast agents for two-photon luminescence endomicroscopy imaging,
1267-1270, Copyright 2012, with permission from Elsevier

1.1.2 Techniques for fabricating nanostructures

A myriad of methods exist for fabricating nanostructures, and these generally fall

into two categories: top-down approaches and bottom-up approaches [174, 189, 212].

In the top-down approach, a bulk sample is manipulated to remove material, leaving

behind the nanoscale structure [217, 258, 299]. For example, ion beam sputtering is

used in the field of microelectronics to generate micro- and nanoscale patterns that are

vital for high performance electronic devices [100, 163]. The highly energetic ion beam

transfers energy to a material, physically ejecting atoms to yield nanosized features

in the surface [97, 101, 157]. Similar to ion beam sputtering, laser ablation with

visible or ultraviolet light can be used to selectively etch organic polymers as well as

microelectronic materials [85, 271]. In this method, light impinges upon the material

and transfers energy to atoms on the surface, which are then ejected [140, 263].

Finally, plasmas can be used to etch away unwanted material from materials such as

copper or silicon to create nanochannels for use in electronic devices [71, 166]. For

example, plasmas can be used to selectively etch copper by forming volatile copper

compounds, which are removed from the surface to leave behind the desired nanoscale

structures [55, 155, 314].

On the other hand, bottom-up approaches focus on fabricating nanostructures
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from atomic or molecular precursors and thereby “build up” the nanostructure [40,

47]. For instance, in chemical vapor deposition (CVD), precursors are transported

onto a surface and react in a nucleation and growth process [123, 288]. A thin film is

then gradually fabricated by this bottom up approach, with atoms being successively

added to the growing thin film surface [200, 224]. Atomic layer deposition (ALD) is

similar to CVD in that both approaches use chemical precursors [159, 237]. However,

in ALD, a film or nanostructure is fabricated with atomic layer precision by cycling the

precursor deposition, reaction, and purge steps [54, 237]. ALD approaches yield much

greater control over the film deposition process, but it is also very slow, depositing one

layer of atoms per cycle. In CVD methods, the thin film fabrication process proceeds

more rapidly than ALD but affords less control over the film formation process.

In colloidal synthesis, precursors react in solution to form nanoparticles such as

gold, silver, or copper [110, 112, 158]. The precursors react to form critically-sized

nuclei of the metal nanoparticles, and continue to grow until the reaction is terminated

by quenching [176, 246, 312]. The reaction mechanism usually proceeds by reducing

the cationic metal species in the precursor to the zero-valent metal state; reducing

agents such as sodium borohydride or hydrazine are commonly used for this purpose

[176, 246, 312]. The resulting colloidal nanoparticles are then collected and separated

to recover the metallic nanoparticles [14, 107]. In vapor-liquid-solid (VLS) growth

techniques, another example of a bottom-up approach, it is possible to fabricate

anisotropic structures such as nanowires [223, 230]. Nanowire crystal growth from a

vapor precursor on a solid is usually very slow; however, in VLS synthesis methods, a

catalyst nanoparticle (e.g., gold) is used to accelerate the rate of reaction [116, 301].

A classical example of this process is silicon nanowire growth [103]. In this technique,

a vapor precursor is brought into contact with a gold nanosized droplet above the

eutectic point; a reaction occurs, depositing silicon from the precursor beneath the

gold nanoparticle, and the nanowire increases in length axially [113, 287].
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Within the many synthesis techniques that have been developed for nanotechnol-

ogy, a subset of these methods attempts to apply the techniques of green chemistry

[130]. Green chemistry is the practice of chemistry and chemical engineering in such

a way as to minimize the effects of a chemical process on the environment and society

[8]. For instance, if a product were synthesized using an environmentally unfriendly or

hazardous chemical, such as an organic solvent, the principles of green chemistry sug-

gest replacing this chemical with an alternative that is more environmentally friendly

[256]. One such example of a green application of nanotechnology is the synthesis

of Au, Ag, and Au-Ag alloy nanoparticles of size < 10 nm. Traditional syntheses of

these metallic nanoparticles rely on harsh reducing agents (sodium borohydride or

lithium borohydride) and non-sustainable stabilizing agents (polyvinyl pyrrolidone)

[49, 59, 132, 158, 241]. In contrast, a green approach to fabricating these nanoma-

terials implemented glucose as a reducing agent and starch as the stabilizing agent

[195, 233].

Another method that has been explored as a green alternative to current meth-

ods for nanomaterials synthesis is supercritical carbon dioxide (sc-CO2) processing

[303]. In this technique, the sc-CO2 is used as the reaction medium and replaces the

organic solvent [208]. Supercritical CO2 synthesis is a greener choice compared to

organic solvents because it provides a use for captured and recycled carbon dioxide,

is nontoxic, nonflammable, and is readily available for use.

1.1.3 Supercritical carbon dioxide for nanostructure synthesis

Supercritical CO2 is a medium which has attracted significant attention for the syn-

thesis of nanostructures. Supercritical CO2 is carbon dioxide that has been elevated

above its critical pressure (72.9 atm) and critical temperature (31.1 ◦C); the phase

diagram for carbon dioxide is shown in Figure 2 [261]. Before finding use in nanopar-

ticle synthesis at the laboratory scale, sc-CO2 was used frequently for extraction. For
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Figure 2: Phase diagram of carbon dioxide

example, caffeine is removed from coffee beans using sc-CO2 [181, 221]. Similarly,

sc-CO2 has been applied in the extraction of chemicals used in the pharmaceutical

industry [183, 269]. Supercritical-CO2 can also be used for the extraction of heavy

metals from liquids using chelating agents that can be dissolved in sc-CO2 [260, 296].

Carbon dioxide in the supercritical state has several attributes that make it ideal

for use as a solvent to solubilize precursors and synthesize nanoparticles. First, it has

the characteristics of both a liquid and a gas [261]. Like a liquid, sc-CO2 can dissolve

precursor compounds and thus be used as a solvent from which nanoparticles can be

formulated [261]. Like a gas, sc-CO2 has high diffusivity and low viscosity, allow-

ing the sc-CO2 to penetrate into high aspect ratio structures and therefore transport

precursor molecules into these constrained spaces where they can form nanoparticles

or nanostructures [261]. These properties are summarized in Table 1 [25]. Further-

more, the characteristics of sc-CO2 can be tuned by modulating fluid temperature and

pressure, yielding a more liquid-like or gas-like medium depending upon the specific

conditions [303].

Supercritical CO2 has been implemented in many ways for the synthesis of nanopar-

ticles and other nanostructures. In the reverse microemulsion method, water soluble

precursors (such as chlorides or nitrates) are dissolved in water droplets which are
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Table 1: Comparison of properties of liquid phase, supercritical phase, and gas phase
fluid. From Science, Vol. 294, Blackburn et al., Deposition of conformal copper and
nickel films from supercritical carbon dioxide, 141-145. Reprinted with permission
from AAAS

Property Liquid phase Supercritical phase Gas phase

Density (g/cm3) 1 0.1 10−3

Viscosity (Pa·s) 10−3 10−4 − 10−5 10−5

Diffusivity (cm2/s) 10−5 10−3 10−1

Surface tension (dynes/cm) 20− 0 0 0
Precursor conc. (M) 10−3 10−5 10−8

suspended throughout the sc-CO2 phase, forming the microemulsion [206, 207]. This

method has been used to synthesize nanoparticles of copper, silver, and zinc sul-

fide which are not supported on any substrate [206, 207]. This methodology has

the advantage of control over nanoparticle size; however, environmentally unfriendly

surfactants must be used to establish the reverse microemulsion [206, 207].

Nanoparticles of platinum have been directly deposited onto carbon nanotubes

(CNTs) from organometallic platinum precursors for use in fuel cell applications [10].

The advantageous transport properties of sc-CO2 facilitate the decoration of the CNT

surfaces with Pt nanoparticles, since the CNT network possesses high aspect ratio and

high tortuosity in the structure. The precursor was reduced via hydrogen to facilitate

nanoparticle deposition; nanoparticles were decorated on the surface of the CNTs

with sizes in the range of 5 – 10 nm. The hypothesized mechanism for this reaction

is one where carboxyl functional groups on the functionalized CNTs act as reactive

nucleation sites for deposition of Pt from the organometallic precursor [10, 167, 171].

Thin films have also been synthesized using sc-CO2. For example, copper and

nickel thin films have been deposited onto silicon substrates for applications in mi-

croelectronics [39, 208]. These efforts have also leveraged the advantageous trans-

port properties of sc-CO2 to deposit the thin films into nanosized trenches where
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liquid solvents would not be as successful due to limited diffusivity and surface ten-

sion [25]. The mechanism of Cu film deposition in sc-CO2 has been explored by

Zong and Watkins [335]. A hypothesized Langmuir-Hinshelwood heterogeneous re-

action mechanism was proposed and fit for the deposition of the Cu thin film from

a bis(2,2,7-trimethyloctane-3,5-dionato)copper(II) precursor. The effective activation

energy was estimated to be 51.9 kJ/mol, and the thin film deposition proceeded at a

rate of 5 nm/min.

Nanowires have also been synthesized using sc-CO2. In one method, anodic alu-

minum oxide (AAO) membranes were used as templates for nanowire fabrication

[41, 58, 298]. These templates possess a high aspect ratio: they are generally 50–200

microns thick (corresponding to the resulting nanowire length), and have pore diame-

ters of 5–100 nm (corresponding to the resulting nanowire diameter). Upon reaction,

the pores in the AAO templates are filled with deposited metal. The AAO is then

carefully etched away using NaOH to reveal the nanowires inside the AAO pores. In

a similar methodology, carbon nanotubes were used instead of AAO as the template

for nanowire growth [324]. Again, the advantageous transport properties of sc-CO2

allow it to efficiently move precursor compounds into the high aspect ratio pores of

the carbon nanotubes.

1.2 Background on experimental design

1.2.1 Brief history of experimental design

Process systems engineering is an approach that combines experimental data with

models or simulations to efficiently design, optimize, and/or control a system of in-

terest [109]. The field of process systems engineering has been developed to address

challenges in many areas of chemical engineering such as separations and process

optimization [108, 178, 194]. Some areas within process systems engineering overlap
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significantly with approaches used in statistics and industrial engineering. For ex-

ample, the approach known as design of experiments (DoE, or experimental design)

is a powerful tool for studying chemical systems in engineering that is also used in

process systems engineering, statistics, and industrial engineering [9, 226]. Experi-

mental design was first formalized by the work of Ronald A. Fisher; this work applied

statistical methods to the different methods of growing and rotating crops in agricul-

tural application [95]. Dr. Fisher’s seminal work, The Design of Experiments, laid

the foundation for DoE approaches and was a major contribution to statistics in that

it outlined the major ingredients of experimental design: replication, randomization,

blocking, factorial experiments, and the analysis of variance (ANOVA) [95].

Replication is a vital part of experimental research. Experimental results and

measurements can be influenced significantly by uncertainty and variation in the

system of interest [295]. Replication of experimental results is necessary to ensure

that an experimental result is due to a significant effect of the independent variable

on the system and not due to uncontrollable variation [295]. Randomization is a

term applied to assigning the treatments of an experiment randomly across groups to

be studied [79]. The classical example of randomization relates to drug trials in the

clinical setting: treatments (either the experimental drug or a placebo) are randomly

assigned to patients [7]. The practice of randomization is used to reduce the influence

of unknown, uncontrollable variables that cannot or were not controlled in the initial

experimental design [30, 295]. Similar to randomization, the technique of blocking is

used to reduce variation in an experimental design [30]. However, blocking achieves

this goal by identifying sources of variation that occur systematically in similar groups

in a trial and reduces this source of variation [30].

Factorial experiments can take advantage of each of these three techniques for

reducing variability. However, factorial experiments possess an additional advantage:

a factorial design is able to study the effect of more than one independent variable at
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a time [29]. Factorial experimental designs were developed to increase the efficiency

of a study, decrease the number of experiments necessary when studying the effects

of multiple independent variables, and test for interaction effects among variables.

However, such studies do not provide insight into any fundamental phenomena oc-

curring in the system. For example, it would be possible to study the effect of both

temperature and reaction time on yield in a chemical process at the same time, in-

stead of simply studying the effect of each effect in a one-factor-at-a-time design [57].

Through an ANOVA analysis, the effects due to each individual variable (main effects)

and those due to interplay between variables (interaction effects) are simultaneously

tested to determine which have statistically significant influence on the system and

which are due to random chance [190, 295].

Moreover, experimental design studies can be performed with alternative objec-

tives. For example, if a model is postulated for a system, experiments must be con-

ducted to fit the model and estimate the model’s parameters. Optimal designs have

been developed to specifically address this issue [52]. Alphabet optimal designs (e.g.,

A-optimal or D-optimal) are optimal with respect to some type of statistical criterion

related to the model structure [32, 215]. For example, a D-optimal design seeks to

minimize the variance on the parameter estimates [191]. A non-optimal design would

result in an experimental design that requires additional experiments compared to

the optimal design, leading to inefficiency in data collection. Additionally, the non-

optimal design may not minimize the variance on the parameter estimates compared

to the D-optimal design.

If the goal is to optimize the response of a system (instead of optimizing a statis-

tical criterion), an alternative strategy must be used. A technique termed response

surface methodology (RSM) was developed by Box and Wilson in 1951 to optimize

system response [33]. The RSM methodology uses a steepest ascent/descent method

to find the process optimum, and the response function is usually modeled as a
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quadratic polynomial [33, 193, 313]. This approach is useful if the objective func-

tion is convex; however, if the objective function is non-convex, it is possible that

local optima may be mistakenly identified that are not global optima [125, 197].

Moreover, an infeasible number of experiments may be necessary if the initial design

region is selected poorly (i.e., far away from the process optimum), and the size of

the ascent/descent step must be selected using the best judgment of the investigator

[68, 86, 199].

Traditional statistical designs usually attempt to measure the effect of indepen-

dent variables on the mean response of a system. However, for many applications,

the mean response is not the only important response; indeed, variation from the

mean can also be an important issue to address in experimental design [273]. This is

often termed robustness. Genichi Taguchi developed statistical methods, collectively

known as “Taguchi methods”, that address this issue [275, 276]. His most important

contribution to experimental design and statistics was the introduction of a “loss

function” that can quantify the loss of a product’s value as increased variation from

the mean occurs during a production process [272, 277]. This variation is considered

from many sources, such as the environment, the loss in function and failure of man-

ufacturing components, and uncontrollable variation during a manufacturing process;

these are considered noise factors [274]. The Taguchi methods increase the robustness

of a manufacturing process, ultimately improving its profit-making ability.

1.2.2 Applications of experimental design in nanotechnology research

The tools developed for experimental design have garnered limited attention and use

in nanotechnology research. Factorial designs have been of significant interest. For

example, an orthogonal experimental design was implemented to study the effect

of different process conditions on electrospinning of polymer nanofibers [61]. Elec-

trospinning is a technique where an electric charge or field is used to controllably
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fabricate nanoscale fibers from a polymer solution [73]. Materials manufactured by

the electrospinning technique find use in many fields, such as medicine, catalysis, and

textiles [67, 69, 251]. There are many process conditions that can affect the character-

istics of the nanofibers, and many characteristics of the nanofibers that are important

for their use [61]. In this particular factorial design study, the authors used an orthog-

onal experimental design and regression analysis to determine the effect of solution

concentration and polymer molecular weight on nanofiber diameter and percent yield

[61]. A significant interaction effect was also observed between these independent

variables [61]. This factorial design was successful in quantifying the effect of each

process condition on the nanofiber characteristics in a more efficient manner than a

one-factor-at-a-time design [61].

A design of experiments approach has also been implemented in the VLS growth

of ZnO nanowires [253]. Zinc oxide nanowires have application in solar cells as anti-

reflective coatings to decrease light losses due to reflection. In this study, an exper-

imental design was conducted for six factors: time, temperature, thickness of gold

layer, mass of ZnO, argon flow rate, and thickness of the gold layer on the substrate

[253]. Since there were so many variables to be tested, a fractional factorial design

was implemented [253]. Fractional factorial designs have the advantage of decreasing

the number of experiments necessary to conduct at the potential cost of missing inter-

action effects between variables [30]. This fractional factorial design was conducted

on these six independent variables to determine which had a significant effect on the

diameter of the ZnO nanowires [253]. It was determined that there were main effects

from the gold layer thickness, the temperature, and the reaction time, by conducting

a total of only 25 experiments [253].

12



1.3 Challenges in the synthesis and optimization of nano-
materials in sc-CO2

While sc-CO2 processing has been explored as a method for nanostructure synthe-

sis, there are significant challenges that hinder the implementation of sc-CO2 in a

commercial or industrial setting.

First, the costs associated with such systems are appreciable: there are signifi-

cant capital costs (high pressure pumps, stainless steel reactors and tubing), energy

costs (due to pressurization and heating), and material costs (precursor synthesis and

separation) associated with this system. Moreover, characterization of nanomaterial

samples from this system can be costly and time-consuming.

Second, the relationship of the process variables available for manipulation during

sc-CO2 synthesis to the resulting nanostructure is not well understood. In addition,

the influence of nanostructure on performance of a material is also not well character-

ized for this system, and in situ observation of the system is difficult due to the high

pressures and temperatures involved. These relationships are collectively known as

process-structure-property (PSP) relationships, and they have not been extensively

investigated for this system.

As a result of these two challenges, it is difficult to rigorously study and optimize

the sc-CO2 system using traditional experimental design approaches. Such DoE ap-

proaches usually implement a model with many experiments over the entirety of a

design region, which is not feasible given the difficulties described above. Moreover,

building a mechanistic or empirical model for the sc-CO2 system is difficult since

fundamental understanding of the PSP relationships is lacking.

These challenges and issues are addressed in this thesis by (1) implementing fun-

damental studies of the PSP relationships for several sc-CO2 nanomaterial synthesis

systems in order to increase understanding of the underlying chemical and physical

processes and (2) developing and implementing novel DoE approaches on the sc-CO2
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system to more efficiently plan experiments for and optimize this system.

1.4 Summary of thesis objectives and contributions

This thesis addresses the challenges of sc-CO2 nanomaterial synthesis in two ways.

First, the process-structure-property relationships of nanomaterials synthesized in

sc-CO2 were quantified for several nanomaterials: silver nanoparticles, Cu2ZnSnS4

(CZTS) particles and thin films, and zinc sulfide nanoparticles. The surface chemistry

and temperature of the various systems were evaluated for their effects on particle size,

density, and morphology. The effects of these observed nanostructures established

nanomaterial properties such as band gap energy and spectroscopic response.

Second, two novel experimental design methodologies were developed and im-

plemented to study the sc-CO2 system. The first experimental design methodology

implements a novel Layers of Experiment (LoE) with Adaptive Combined Design

(ACD) method to rapidly optimize the deposition of silver nanoparticles in sc-CO2.

The second experimental design methodology leverages expert knowledge and exper-

imental data to efficiently design a first layer of experiments for a new, unstudied

system, which is a common circumstance in nanotechnology research.

In Chapter 2 of this thesis, copper zinc tin sulfide (Cu2ZnSnS4, or CZTS) parti-

cles were synthesized in a continuous flow sc-CO2 process [45]. CZTS particles are

used as a p-type semiconductor in solar cell devices. The sc-CO2 processing method

employed represents a significantly greener method for CZTS synthesis compared to

the state of the art. The CZTS particles synthesized in the sc-CO2 method possessed

the requisite chemical composition, crystal structure, and optical properties that are

deemed important in previous studies of this compound.

In Chapter 3 of this thesis, the influence of the substrate surface chemistry on

CZTS nucleation and growth is investigated. The presence of an oxide layer on

the substrate promoted the formation of a CZTS thin film, and the influences of
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temperature, time, and precursor concentration were studied to investigate how to

best control the growth of CZTS thin films and micro/nanoparticles in sc-CO2.

In Chapter 4 of this thesis, zinc sulfide nanoparticles were deposited on carbon

nanotubes in a one-step batch sc-CO2 process [46]. Zinc sulfide nanoparticles de-

posited on carbon nanotubes possess photoluminescent properties. The sc-CO2 pro-

cess employed is a potentially greener method for zinc sulfide nanoparticle synthesis

compared to the state of the art. Zinc sulfide particles synthesized by this method

possessed the requisite chemical composition, crystal structure, and optical properties

reported in other studies of zinc sulfide nanoparticles deposited on carbon nanotubes.

In Chapter 5 of this thesis, a study of the PSP relationships during the deposition

of silver nanoparticles onto silicon wafer surfaces is described [44]. Silver nanoparticles

were deposited from an organometallic precursor onto four types of surfaces: oxygen-

plasma treated silicon, oxygen-plasma treated glass, HCl-treated silicon, and HCl-

treated glass. A significant effect of surface pretreatment on silver nanoparticle size,

density, and morphology was observed, and an Arrhenius model was used to describe

the growth of silver nanoparticles as a function of temperature. The varying sizes,

densities, and structures of the silver nanoparticle films had a significant effect on the

surface enhanced Raman spectroscopy (SERS) of the samples.

In Chapter 6 of this thesis, a Layers of Experiment (LoE) with Adaptive Combined

Design (ACD) methodology was implemented to efficiently optimize the deposition

of silver nanoparticles on a plasma-cleaned silicon wafer substrate [43]. Rapidly opti-

mizing the sc-CO2 process is difficult because it is time-consuming to run experiments

and characterize films and nanoparticles, expensive in terms of chemicals and energy

costs, and has not been extensively explored through mechanistic or empirical model-

ing studies. The LoE/ACD approach overcomes these challenges to rapidly optimize

the sc-CO2 process by “zooming in” on the process optimum via the LoE approach

while using the ACD approach to select the experimental design in each layer. Data
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and insight gained from the study in Chapter 5 of this thesis was used to inform the

potential design region of this study, and the process optimum was determined by

conducting only twelve experiments using the LoE/ACD approach.

In Chapter 7 of this thesis, an additional case study for the synthesis of silver

nanoparticles in sc-CO2 is presented [42]. In this case, the optimum for the synthesis of

silver nanoparticles is completely outside the initially selected design region. This case

study demonstrates how the LoE/ACD methodology can redirect to find the process

optimum. The process optimum was found by conducting only eight experiments.

In Chapter 8 of this thesis, a novel design of experiments methodology is imple-

mented to choose the design points in the initial experimental design. For a new

system to be studied in nanotechnology research, it is often unclear how to design

the first set of experiments because the system is costly to study in terms of time

and money and there is no data previously gathered for the new system. However,

there is often a similar system, an “older” process that can be used to help design

a first layer of experiments; moreover, opinions of experts in a field can be used as

well to help with the initial experimental design. We implement an initial experimen-

tal design (IED) methodology to choose design points for the deposition of iridium

nanoparticles in sc-CO2 based on data from and the Arrhenius model developed in

Chapter 5 of this thesis; expert opinions gathered via survey were also used in an

attempt to facilitate efficient and effective design of this unknown system.

In Chapter 9, the main contributions of this thesis are summarized and future

directions for research in these areas are discussed.

Overall, this thesis addresses the PSP relationships for synthesizing nanomate-

rials in sc-CO2 while also developing new experimental design methods to apply to

nanomaterials synthesis methods that are time-consuming, expensive, and not well

studied. These contributions will increase the potential for the sc-CO2 synthesis of

nanomaterials as well as make it more cost-effective for optimization in future studies.
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The Venn diagram in Figure 3 illustrates how each chapter falls into either or both

of these areas of investigation.
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Figure 3: Overall organization of this thesis
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CHAPTER II

SYNTHESIS OF Cu2ZnSnS4 PARTICLES IN

SUPERCRITICAL CARBON DIOXIDE

2.1 Introduction

Direct band gap thin-film solar cells have attracted attention over the last twenty

years as a potential alternative to indirect band gap silicon-based solar cells [254].

In particular, copper indium gallium selenide (CuInxGa1−xSe2; CIGS) thin-film solar

cells have achieved solar conversion efficiencies nearing 20% [228]. However, these

thin films require the use of expensive, scarce, and toxic compounds, which may

inhibit the wide-scale implementation of CIGS devices [145]. A related chalcogenide

material, copper zinc tin sulfide (Cu2ZnSnS4; CZTS), has been explored recently

because it is composed of relatively less expensive, more abundant, and less toxic

materials compared to CIGS.

The highest photoconversion efficiency reported using the CZTS material is 10.1%,

although this device was based on CZT(S,Se), which possesses selenium in addition

to CZTS and therefore is less “green” than CZTS alone [17]. Sputtering, electrodepo-

sition, and coevaporation of metals followed by sulfurization and annealing are three

widely used techniques to fabricate CZTS [250, 252, 279]. Metal dithiocarbamate

precursors have been used in liquid and chemical vapor deposition (CVD) processes

to form CZTS nanocrystals and thin films directly, without sulfurization [146, 229].

However, none of these techniques are well-suited for depositing CZTS particles or

thin films onto structures that possess high aspect ratios or high tortuosity due to sol-

ubility and/or transport limitations. Nonetheless, it may still be desirable to decorate

high-aspect-ratio/tortuousity nanostructures with CZTS particles or thin films. For
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example, CZTS particles could be anchored onto silicon nanowires or carbon nan-

otubes to improve photoelectrochemical cell performance [245]. Thus, a technique

that can efficiently cover high-aspect-ratio/tortuousity nanostructures with CZTS

particles or films would be advantageous.

Much work has been performed detailing the deposition of metal thin films and

nanoparticles into high-aspect-ratio/tortuous structures by using supercritical carbon

dioxide because sc-CO2 possesses liquid-like solubility and gas-like diffusivity [167,

208]. Furthermore, sc-CO2 processing is a green, sustainable technique, employing

recycled CO2 as a solvent for precursors. In this chapter of the thesis, a sc-CO2

continuous-flow reactor (CFR) is employed to deposit CZTS micro- and nanoparticles

onto a silicon wafer from metal dithiocarbamate precursors. This work demonstrates

that the sustainable sc-CO2 CFR process is a viable technique for fabricating CZTS

particles, establishing the potential for future studies to deposit CZTS in high-aspect-

ratio/tortuous nanostructures. Moreover, no postprocessing was required to form the

kesterite CZTS phase, although annealing at high temperature and selenization may

still be necessary to yield an efficient solar device [17].

2.2 Experimental Methods

2.2.1 Materials

Toluene (99.99%), methanol (99.99%), acetone (99.99%), isopropyl alcohol (99.99%),

copper bis(dimethyldithiocarbamate) (Cu(dmdc)2), zinc bis(diethyldithiocarbamate)

(Zn(dedc)2), sodium diethyldithiocarbamate, tin tetrachloride, chloroform (99.99%),

reagent alcohol, and CDCl3 were purchased from Sigma-Aldrich and used as received.

Carbon dioxide gas (99.99%) was purchased from Airgas, GA. Silicon wafers ((100),

p-type, 10-20 Ω·cm) were purchased from University Wafer and were diced into pieces

1 cm × 5 cm for use as a substrate. Tin tetra(diethyldithiocarbamate) (Sn(dedc)4)

was synthesized as described by Khare et al. Briefly, a 200 mL solution of 0.375
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Figure 4: NMR spectrum for Sn(dedc)4

M sodium diethyldithiocarbamate was prepared in reagent alcohol. This was added

dropwise to 2.5 g of tin tetrachloride dissolved in 50 mL of reagent alcohol under

constant stirring. An orange precipitate formed that was collected and thoroughly

filtered and washed with ddH2O, and further dissolved in chloroform and filtered

again to remove impurities. A Schlenk line was used to thoroughly dessicate the syn-

thesized product. Ten milligrams of Sn(dedc)4 powder was dissolved in CDCl3; the

nuclear magnetic resonance (NMR) spectrum that confirms the compounds structure

is shown below (Figure 4). 30 mg of Sn(dedc)4 powder was also analyzed by thermo-

gravimetric analysis (TGA), confirming the correct decomposition temperature (175

◦C) for Sn(dedc)4 (Figure 5).

2.2.2 Reactor Design

A schematic of the supercritical CO2 continuous flow reactor system is shown in

Figure 6.
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Figure 5: TGA analysis for Sn(dedc)4

Figure 6: Schematic of supercritical carbon dioxide continuous flow reactor system
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2.2.3 Deposition Process

A stoichiometric ratio of copper bis(dimethyldithiocarbamate) (Cu(dmdc)2, Aldrich),

zinc bis(diethyldithiocarbamate) (Zn(dedc)2, Aldrich), and tin tetra(diethyldithiocar-

bamate) (Sn(dedc)4, synthesized in-house) were dissolved in 150 mL toluene (99.99%,

Aldrich) in a stoichiometric ratio of 2:1:1 for Cu(dmdc)2 / Zn(dedc)2 / Sn(dedc)4.

This corresponds to masses in the ratios 400 mg : 238 mg : 468 mg for Cu(dmdc)2

/ Zn(dedc)2 / Sn(dedc)4. Next, a Teledyne ISCO 500HP pump was filled with the

toluene/precursor mixture and pressurized to 124 bar. Similarly, CO2 was charged

into a Teledyne ISCO 1000D pump and pressurized to 124 bar. Once the steady-

state temperature (300 ◦C) was reached, pure CO2 was flowed through the system

at a rate of 2 mL min−1 for 30 min. Next, flow of the toluene/precursor mixture

was started at a rate of 1 mL min−1. The reaction was run for 2 h, followed by

reactor depressurization, cooling, and disassembly to remove the sample from the

chamber. Toluene was necessary to achieve sufficient precursor solubility to enable

CZTS deposition. However, the toluene could be separated and collected from the

carbon dioxide/toluene mix stream by cooling, allowing the toluene to be reused.

Furthermore, toluene is a greener and safer choice for a solvent than other methods

that have been reported in the literature, such as octadecene and oleylamine [146].

2.2.4 Characterization

Scanning electron microscopy images were recorded on a Zeiss Ultra60 SEM at a

working distance of 8 mm and accelerating voltage of 10 kV. EDX was conducted on

the same Zeiss SEM at an accelerating voltage of 15 kV. The EDX spectrum collected

is shown in Figure 7.

X-ray diffraction was conducted with a CuKα source at a scan rate of 2◦/minute.

Raman spectroscopy was carried out on a Nicolet Almega confocal Raman microscope

with a 488 nm incident laser and a resolution of 1 cm−1. UV/Vis spectroscopy was
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Figure 7: EDX spectrum of CZTS particles on silicon wafer substrate

carried out on an Agilent 8453 UV/Vis spectrophotometer with a resolution of 1 nm.

The linear fit of the Tauc plot was carried out on the data in the region from 1.7–2.0

eV.

2.3 Results and Discussion

Scanning electron microscopy (SEM) images confirmed the presence of micro- and

nanoparticles on the silicon wafer (Figure 8). The particles completely cover the

silicon surface and appeared to aggregate, thereby forming a multilayer. At high

magnification, particles exhibited a faceted morphology as illustrated in Figure 8c; a

cross sectional view is shown in Figure 8d. The particles did not adhere well to the

silicon substrate, as they could be removed easily by scratching the surface with a

tweezer tip.

Chemical mapping by energy dispersive X-ray spectroscopy (EDX) confirmed the

general colocalization and homogeneity of copper, zinc, tin, and sulfur to the observed

particles as well as the presence of silicon (from the silicon wafer) in areas where

particle density was lower (Figure 9). However, there are patches in the image where
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Figure 8: Scanning electron microscope images of CZTS particles formed on a silicon
wafer via the sc-CO2 CFR process. Magnification increases from (a) 2,000×, (b)
5,000×, and (c) 50,000×. White boxes indicate regions viewed at higher magnification
in (b) and (c). (d) Cross section image of CZTS on silicon

Figure 9: Chemical mapping of CZTS particles on a silicon substrate by energy
dispersive X-ray spectroscopy. Scale bar: 15 µm
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Table 2: Atomic ratios of Cu2ZnSnS4 particles as measured by energy dispersive X-ray
spectroscopy

Elements Ideal Experimental

Cu/Zn 2 2.07
Cu/Sn 2 1.99
Cu/S 0.5 0.542
Zn/Sn 1 0.961
Zn/S 0.25 0.262
Sn/S 0.25 0.273

not all four elements appear. For example, there are regions where Cu, Sn, and S are

present, but Zn is absent. This has been reported before, as Zn incorporation is often

difficult in CZTS [255].

Quantitative results from EDX illustrated that the stoichiometric ratios between

elements were close to the ideal values reported for CZTS (Table 2), although it

is possible that the individual particle composition is not necessarily stoichiometric

while the overall composition is stoichiometric [114, 146]. Khare etal. observed an

excess of sulfur incorporation when using metal dithiocarbamate precursors to form

CZTS nanocrystals in octadecene; however, a slight sulfur deficiency was observed

here [146]. Yang et al. reported a similar marginal sulfur deficiency when depositing

polycrystalline CdS thin films in a continuous-flow sc-CO2 system due to the higher

vapor pressure of S compared to the metal in the supercritical system [321]. The

sulfur deficiency observed here is consistent with this explanation.

X-ray diffraction (XRD) analysis established that the sample was crystalline, with

diffraction peaks occurring at 28.7◦, 33.3◦, 47.6◦, and 56.6◦ (Figure 10). The ob-

served diffraction pattern has been reported for crystal structures corresponding to

both CZTS, Cu3SnS4, Cu2SnS3, and ZnS phases [51]. Thus, further confirmation was

necessary to determine whether the sample was CZTS or an unwanted phase. Since

the crystal lattices of these compounds have different elemental compositions, their
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Figure 10: X-ray diffraction pattern for CZTS particles fabricated on silicon via the
sc-CO2 CFR process

phonon normal modes will differ; this difference can be detected using Raman spec-

troscopy [51]. The most intense Raman peak for the sample was observed at 337 cm−1

in Figure 11, corresponding to CZTS and indicating that CZTS is the majority phase

in the sample [51]. However, the spectra may contain additional peaks of weaker

intensity that were not observed, corresponding to ZnS (278 cm−1),[15] Cu3SnS4 (318

cm−1), and Cu2SnS3 (336 cm−1) [91].

The band gap for the deposited sample was estimated by using the Tauc equation:

(αhν)n = B(hν − Eg) (1)

where α is the absorption coefficient, h is Planck’s constant, ν is the frequency of

light, B is a constant of proportionality, Eg is the band gap energy, and n = 2 for

a direct band gap semiconductor such as CZTS [131]. After collecting a UV/Vis

spectrum for a dispersion of the CZTS particles dissolved in toluene (Figure 12), the

Tauc equation was plotted (inset, Figure 12). Extrapolation of the linear region of the

Tauc plot to the abscissa yielded an estimate of the band gap energy, here calculated
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Figure 11: Raman spectrum for CZTS particles deposited on silicon by the sc-CO2

CFR process. The peak at 337 cm−1 corresponds to CZTS
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Figure 12: UV/Vis spectrum of CZTS particles. The inset shows the corresponding
Tauc plot, and the band gap is estimated where the dashed line intersects the abscissa
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to be Eg ≈ 1.49 eV (dashed line in inset), which is in agreement with previous reports

for direct band gap energies of CZTS thin films and nanoparticles [146].

2.4 Conclusion

This chapter illustrates the feasibility of synthesizing CZTS particles in a sc-CO2

process. The deposited particles possessed the characteristic chemical composition,

crystal structure, and optical properties that have been previously reported for CZTS.

In the next chapter, the influence of substrate chemistry, reaction time, precursor

concentration, and temperature on the deposition of CZTS thin films and particles

is described. Each of these variables had a specific effect on the morphology of the

fabricated thin films and particles.
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CHAPTER III

EFFECT OF SUBSTRATE ON Cu2ZnSnS4

MORPHOLOGY IN SUPERCRITICAL CARBON

DIOXIDE

3.1 Introduction

Chapter 2 discussed the reasons for synthesizing CZTS in sc-CO2 and demonstrated

the proof-of-concept for using this processing technique to fabricate CZTS. The CZTS

particles formed possessed the previously observed composition and crystal structure

characteristic of CZTS. In terms of the particle morphology, large agglomerations of

CZTS nanoparticles were observed in that work; no film growth was observed. How-

ever, it may be desirable to deposit a CZTS film instead of micro- and nanoparticles.

It is not clear which processing conditions would control the selective deposition of a

CZTS film versus particle formation.

In this chapter, a series of studies were carried out in a batch sc-CO2 system

to determine the effects of substrate, reaction time, precursor concentration, and

temperature on the morphology of the synthesized CZTS materials, with the goal of

depositing a CZTS thin film. Several substrates were chosen for this study: a gold thin

film deposited on Si, a germanium substrate, a molybdenum thin film deposited on

Si, and a thermally grown SiO2 layer. It was found that the silicon dioxide promoted

CZTS film formation, while the Au, Ge, and Mo substrates did not facilitate CZTS

film formation, although an oxidized Mo substrate (forming MoOx) did promote film

formation. The processing conditions of reaction time, temperature, and precursor

concentration were used to further elucidate the deposition mechanism of CZTS in

sc-CO2.
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3.2 Experimental Methods

3.2.1 Substrate choice and preparation

Germanium wafers with (100) orientation were kindly donated by Professor Michael

A. Filler. Gold substrates were kindly prepared by Mr. Tae-Seop Choi by electron

beam evaporation, first depositing a 20 nm titanium adhesion layer on a (100) p-type

silicon wafer, followed by a 100 ± 20 nm Au layer on the Ti adhesion layer. Thin films

of Mo sputter deposited on (100) p-type Si were purchased from LGA Thin Films;

the Mo films were of thickness 100 ± 20 nm. Thermally grown SiO2 was grown on

p-type (100) Si to a thickness of 300 ± 50 nm. The Mo thin films were oxidized in a

stream of 50 sccm oxygen at 300 ◦C to form a MoOx layer.

These substrates were chosen because Ge and Au naturally resist oxide formation,

while the thermally grown SiO2 oxide is thick and stable [12, 82, 238]. The Mo

substrate is the most commonly used substrate for CZTS deposition as it serves as a

suitable back contact for device fabrication [5, 248, 297]. Thus, the four substrates

selected represent very different surface chemistries in the CZTS deposition process,

and it was hypothesized that these surface chemistries would have significant effects

on the nucleation and growth processes that lead to potential thin film growth.

All surfaces were cleaned sequentially with methanol, acetone, isopropyl alcohol,

and water, and dried under a gentle N2 stream, before being loaded into the stainless

steel batch reactor. The surfaces were then cleaned in situ with hydrogen before

initiating the CZTS deposition reaction to remove any residual organic species on the

surface.

3.2.2 CZTS deposition in sc-CO2 and characterization

Stoichiometric ratios of the dithiocarbamate precursors described in Chapter 2 were

loaded into the stainless steel batch reactor along with the chosen substrate and 5

mL of toluene as cosolvent. The reactor was pressurized with 400 psi of H2 for an in
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situ cleaning step that lasted 10 minutes. The reactor was then heated to the desired

temperature and pressurized to 2000 psi with CO2 and allowed to run for a specified

period of time. Samples were characterized using the same SEM, Raman scattering,

and XRD techniques detailed in Chapter 2. X-ray photoelectron spectroscopy (XPS)

scans were recorded on a Thermo Kα XPS system with an Al Kα (1486.6 eV) radiation

source.

Four conditions were studied for each substrate:

• The base case (300 ◦C, a ratio of Cu(dmdc)2 : Zn(dedc)2 : Sn(dedc)4 of 80 mg:

47.6 mg : 93.8 mg, and one hour reaction time)

• The short time case (same as base case but 1 minute reaction time)

• The low concentration case (same as base case but 5% concentration of precursor

of base case)

• The high temperature case (same as base case but run at 400 ◦C)

3.3 Results and Discussion

SEM images for deposition of CZTS on oxygen plasma cleaned Si wafer substrates

at the base conditions in the batch sc-CO2 system show that large, agglomerated

particles are deposited on the Si wafer surface, as demonstrated in Figure 13a. More-

over, Figure 13b illustrates that no thin film is formed beneath these particles. These

results are similar to the CZTS particle morphology found in the continuous flow

system observed in Chapter 2.
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Figure 13: (a) Top-down and (b) cross section view of CZTS particles deposited on

oxygen plasma-cleaned Si surface

SEM images for CZTS samples fabricated on Au, Ge, Mo, and SiO2 surfaces are

shown in Figure 14; cross section images for these samples are shown in Figure 15.

The cross section images shown in Figure 15 show that CZTS does not form a thin

film on Ge or Au substrates; a non-continuous, polycrystalline film with a thickness

of about 100 nm is formed on Mo; and a continuous CZTS thin film with a thickness

of about 300 nm does form on the SiO2 substrate.

Figure 14: Top-down view of CZTS samples fabricated on Au, Ge, Mo, and SiO2

substrates
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Figure 15: Cross section view of CZTS samples fabricated on Au, Ge, Mo, and SiO2

substrates

Top-down and cross section SEM images of CZTS samples deposited at 1 minute

reaction time are shown in Figures 16 and 17. For the samples deposited at short

reaction time (1 minute), large, microscale particles form on the surface of the sub-

strates, although the density of the particles is lower in this case compared to the

base case. Figure 17 shows that continuous, uniform thin films again do not form on

the Ge, Au, and Mo substrates, but there is CZTS thin film formation on the SiO2

substrate.

Figure 16: Top-down view of CZTS samples fabricated on Au, Ge, Mo, and SiO2

substrates at 1 minute reaction time
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Figure 17: Cross section view of CZTS samples fabricated on Au, Ge, Mo, and SiO2

substrates at 1 minute reaction time

Top-down and cross section SEM images for CZTS deposition in sc-CO2 at the

low concentration condition are shown in Figures 18 and 19. Films were not observed

to form on any of the surfaces at this low concentration condition, and the particle

density for particles deposited on the surface was significantly lower than the base

case as well.

Figure 18: Top-down view of CZTS samples fabricated on Au, Ge, Mo, and SiO2

substrates at low concentration
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Figure 19: Cross section view of CZTS samples fabricated on Au, Ge, Mo, and SiO2

substrates at low concentration

Top-down and cross section SEM images for CZTS samples deposited at 400 ◦C

are shown in Figures 20 and 21. Film formation is again poor on the Ge, Au, and

Mo substrates; moreover, the thin film formed on the SiO2 substrate also appears to

be less uniform than that in the base case at 300 ◦C.

Results from XRD and Raman scattering analysis are provided in Appendix A for

all samples at all conditions. These results indicate that the samples formed were in

fact CZTS.

Figure 20: Top-down view of CZTS samples fabricated on Au, Ge, Mo, and SiO2

substrates at 400 ◦C
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Figure 21: Cross section view of CZTS samples fabricated on Au, Ge, Mo, and SiO2

substrates at 400 ◦C

Results from this series of experiments illustrate several points about the deposi-

tion mechanism for both CZTS thin film and particle formation. First, from results

in the base case described above where a continuous thin film is only formed on the

SiO2 substrate, it appears that the presence of a well-formed, stable oxide layer pro-

motes the formation of the CZTS thin film. Moreover, since the particles formed on

all four substrates are similar in size and density, the formation of CZTS particles is

insensitive to the surface chemistry and likely occurs in the fluid phase.

Next, data from the 1 minute reaction time condition provide insight into the

relative reaction rates of the surface reaction and the fluid phase reaction. At the short

reaction time, the thin film still forms on the SiO2 surface but there is a decreased

density of particles compared to the base case. This result implies that the surface

reaction initially proceeds more rapidly than the homogeneous (fluid phase) reaction,

forming the thin film on the SiO2 surface, while the CZTS particles form at a slower

rate in the fluid phase. Then, these particles that form in the fluid phase deposit

on top of the thin film and inhibit the film growth as the reaction proceeds. This

inhibition can proceed by two possible mechanisms: the formed CZTS particles may

block precursor transport to the thin film, and/or the precursors may react with
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the CZTS particles before reaching the developing thin film (this is illustrated in

Figure 22). Last, time can potentially be used to selectively form CZTS thin films

(at short reaction time) and CZTS particles (at long reaction time).

Figure 22: Proposed mechanism for CZTS thin film and particle formation in sc-CO2

Results from the low concentration and high temperature conditions also yielded

useful information for designing and fabricating CZTS particles and films. At the

low concentration condition, the concentration of precursor compounds is too low to

promote substantial growth of either a CZTS film or high density CZTS particles

(such as those observed in the base case). These data illustrate that concentration

can be used to limit both CZTS particle and film formation. At the high temperature

condition (400 ◦C), the thin film formation on SiO2 was significantly limited compared

to the base case while the overall particle density and size was unchanged. It is

possible that at the higher temperature, more precursor is consumed in the fluid

phase (at a higher reaction rate) and leave less available for the surface reaction to

form the thin film. Thus, to selectively form thin films, the reaction should be run at

the lowest possible temperature that yields thin film formation.

To test the hypothesis that an oxide layer promotes thin film formation, the Mo
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substrate was oxidized at 300 ◦C in oxygen atmosphere to form an oxide layer on

the Mo surface. It was hypothesized that the presence of the oxide layer on the Mo

substrate would improve nucleation and growth of CZTS on the surface, leading to

an improved, more continuous film forming on the molybdenum oxide compared to

the base case. XPS data shown in Figure 23 indicate that the oxidation at high

temperature in O2 atmosphere oxidized the Mo0 on the surface to MoOx [11, 35].

SEM images in Figure 24 show that the MoOx layer is on top of the Mo layer and

about 15 nm in thickness.
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Figure 23: XPS spectra for oxidized and non-oxidized Mo substrate
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Figure 24: Cross section image of molybdenum oxide layer on Mo substrate

Results from CZTS deposition on the MoOx surface show that a continuous CZTS

film has formed (Figure 25), in contrast to the semi-continuous, polycrystalline thin

film that was formed on the unoxidized Mo substrate in the base case conditions

(Figure 15). This result further supports the hypothesis that an oxide layer is vital in

promoting CZTS film growth in this sc-CO2 system. Results from attenuated total

reflectance Fourier transform infrared spectroscopy (ATR-FTIR) in the region 3000

– 4000 cm−1 show an increase in the prevalence of hydroxyl groups on the surface of

MoOx compared to the Mo substrate (Figure 26) [290]. The hydroxyl groups on the

surface are responsible for promoting the adsorption of precursors and/or nucleation

of CZTS on the surface in order to form the CZTS thin film, as has been observed in

similar sc-CO2 and CVD systems [179, 323].
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Figure 25: Cross section image of CZTS deposited on MoOx
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Figure 26: ATR-FTIR spectra of Mo and MoOx substrates used for CZTS deposition

in sc-CO2

3.4 Conclusion

This chapter describes how the substrate can influence the deposition and growth of

CZTS in a sc-CO2 process. The presence of an oxide layer was found to promote the

growth of CZTS thin films on the surface, while the growth of the large, agglomer-

ated particles was insensitive to the substrate identity. Reaction time and precursor

concentration were also shown to be useful process inputs for selectively controlling

41



the deposition of either CZTS particles or thin films.

In Chapter 4, ZnS nanoparticles are deposited on carbon nanotubes from the zinc

diethyldithiocarbamate precursor. This is again a greener synthesis method than the

state of the art, and this work on ZnS NP deposition continues the theme of studying

the process-structure-property relationships for materials fabricated in supercritical

carbon dioxide. The role of surface chemistry on particle nucleation and growth is

again observed for depositing ZnS on carbon nanotubes in sc-CO2.
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CHAPTER IV

DEPOSITION OF ZnS NANOPARTICLES ON CARBON

NANOTUBES

4.1 Introduction

In the previous chapter, CZTS particles and films were deposited in supercritical

carbon dioxide, and the influence of the substrate chemistry on particle and film for-

mation was investigated. In this chapter, zinc sulfide (ZnS) nanoparticles (NPs) were

deposited in the sc-CO2 process as a greener method compared to state of the art

techniques used as well as to probe the process-structure-property relationships for

this system. Zinc sulfide nanoparticles are useful in many applications due to their

optical and electronic properties [156, 262, 292, 334]. ZnS NPs can exhibit phospho-

rescence and fluorescence depending on their nanostructure and on the presence of

metal dopants such as copper and manganese [23, 177]. Carbon nanotubes (CNTs)

decorated with ZnS NPs have recently been explored as a novel class of nanocom-

posites for light emitting diodes, solar cells, photocatalysts, and electroluminescent

devices, and several methods have been developed to decorate CNTs with ZnS NPs

[90, 147, 257, 304, 329]. The most common techniques are wet-chemical synthesis

routes [111]. While these processes are effective in depositing ZnS NPs on CNTs,

they also use environmentally unfriendly liquid solvents such as ethylene glycol (a

neurotoxin) and sulfur sources such as thioacetamide (a known carcinogen) or hydro-

gen sulfide (a highly flammable poison) [70, 220, 235, 318, 325, 331].

A less common but more sustainable medium for ZnS NP synthesis is supercrit-

ical carbon dioxide (sc-CO2), which can replace ethylene glycol as a solvent [92].
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Previous reports have described the formation of ZnS NPs using water-in-CO2 mi-

croemulsions as “nanoreactors”, where the ZnS synthesis reaction takes place inside

the water core, resulting in NPs with diameters in the range 1–10 nm [207]. How-

ever, these efforts do not take full advantage of the transport properties of sc-CO2

since the ZnS NPs cannot be deposited into high aspect ratio/high tortuosity struc-

tures such as CNTs using microemulsions [207]. Furthermore, these techniques use

highly specialized, environmentally unfriendly fluorinated surfactants, such as sodium

bis(2,2,3,3,4,4,5,5-octafluoro-1-pentyl)-2-sulfosuccinate, to achieve the water-in-CO2

microemulsion, as well as toxic sulfur sources such as thioacetamide [207]. Using a

different approach, Xie et al. deposited ZnS NPs on polymer microspheres from a zinc

(II) acetate dihydrate (Zn(Ac)2·2H2O) precursor, but needed to use thioacetamide

as the sulfur source and ethanol as a co-solvent to enhance precursor solubility [315].

Given these previous reports, it is desirable to develop a simpler sc-CO2 method for

ZnS nanocomposite synthesis that avoids the use of environmentally unfriendly sur-

factants and sulfur sources while allowing deposition of ZnS NPs into high aspect

ratio/tortuosity nanostructures such as CNTs. Moreover, to date there has been no

significant investigation of the possible deposition mechanisms of ZnS NPs on sub-

strates in the sc-CO2 system. For example, it is unknown whether the ZnS NPs

are synthesized in a homogeneous reaction mechanism in the fluid phase followed by

attachment to the substrate or, alternatively, whether the ZnS NPs are synthesized

directly on the substrate by a heterogeneous reaction mechanism.

In this chapter, the synthesis of three nanostructures in supercritical carbon diox-

ide is demonstrated from a single source organometallic precursor, zinc(II) bis(diethyl

dithiocarbamate) (Zn(dedc)2), via thermal reduction. The three samples fabricated

were: ZnS-carbon nanotube nanocomposites (ZnS-CNT); manganese doped ZnS-

CNT (Mn:ZnS-CNT); and free ZnS NPs (f-ZnS), which were synthesized in the ab-

sence of any substrate. The choice of a single-source precursor eliminated the need
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for toxic sulfur sources used in the liquid and sc-CO2 processes described above, and

Zn(dedc)2 (which thermally decomposes to form ZnS) is significantly less hazardous

than these sulfur sources [122, 133]. It should be noted that while this is viewed as

a potential improvement over the state of the art in terms of chemicals used in the

ZnS NP synthesis, the building block molecules for Zn(dedc)2, specifically the dithio-

carbamate organic ligands, are likely toxic, although more study of this issue may be

necessary [231].

The sc-CO2 process is greener than liquid processing routes because it replaces

environmentally unfriendly solvents with carbon dioxide, providing a use for captured

and recycled CO2. The method described here also avoids the need for fluorinated sur-

factants necessary to form a water-in-CO2 microemulsion, and the transport advan-

tages of the sc-CO2 technique over previously reported techniques were demonstrated

in the deposition of ZnS NPs throughout the CNT matrix. Last, by contrasting the

ZnS-CNT and f-ZnS NP samples, it is proposed that a heterogeneous mechanism

governs deposition of ZnS NPs onto the CNT substrates.

The synthesized ZnS-CNT formed smaller nanoparticles (16.9 ± 1.9 nm) that

comprise larger nanostructures (209 ± 24 nm) on the CNTs, while f-ZnS NPs had a

mean size of 178 ± 15 nm. The ZnS-CNT nanocomposites were successfully doped

with manganese to modify the optical properties of the nanocomposite by inducing

emission in the orange region of the spectrum. This doping further demonstrates

the applicability of the sc-CO2 process. Ultraviolet/visible absorption spectroscopy

and photoluminescence spectroscopy confirmed the characteristic and desired optical

band gap and fluorescence properties of the ZnS-CNT, Mn:ZnS-CNT, and f-ZnS NP

products synthesized in the sc-CO2 process.
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4.2 Experimental Methods

4.2.1 Materials

Multi-walled, carboxyl-group functionalized carbon nanotubes were purchased from

Nano-Lab and used as received; these were selected since it has been speculated

that -COOH functionalized CNTs promote nanoparticle nucleation in previous re-

ports [18, 129]. Zinc(II) bis(diethyldithiocarbamate) (Zn(dedc)2, 97%), manganese

(III) tris(acetyl acetonate) (Mn(acac)3, technical grade), and methanol (99.99%) were

purchased from Sigma-Aldrich. Carbon dioxide (99.99%) was purchased from AirGas.

4.2.2 ZnS nanoparticle deposition and doping in sc-CO2

50 mg of CNT and 100 mg of Zn(dedc)2 were loaded into a 30 mL stainless steel hot

wall reactor. The reactor was pressurized to 103 bar and heated to 275 ◦C. This tem-

perature was selected because Zn(dedc)2 decomposes to ZnS at 240 ◦C [146]. Under

the experimental conditions, it is unknown what the solubility of the Zn precursor

compound is. However, at similar pressures (about 100 bar) and lower temperatures

(60◦C), previous reports have shown that the solubility of this precursor is on the

order of 10−4–10−6 mol/L [294]. Thus, at the higher temperature used here, it is

likely that the solubility is decreased below these values since solubility in sc-CO2

decreases with increasing temperature [261, 294].

After two hours, the reaction was terminated by cooling the reactor to room

temperature, the system depressurized, and the reactor disassembled to collect and

characterize the ZnS-CNT product. The ZnS-CNT nanocomposites were doped with

Mn in the same sc-CO2 system by loading 100 mg of the ZnS-CNT nanocomposite

with 10 mg of the Mn(acac)3 precursor; the reactor was subsequently pressurized to

103 bar, and heated to 180 ◦C (above the decomposition temperature of 160 ◦C). The

same method was also used to form f-ZnS NPs except no substrate was added.
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The other decomposition products of this reaction are carbon disulfide, diethy-

lamine, ethylisothiocyanate, and ethene [133]. While these are not benign byproducts

(and are more toxic than the precursor compound), they are volatile as well as sol-

uble in carbon dioxide and are vented off with the carbon dioxide at the end of the

process; thus, humans were not exposed to these chemicals [72, 232]. Furthermore, in

an industrial setting, these could be separated from the carbon dioxide and disposed

of in an environmentally benign manner.

4.2.3 Characterization

Scanning electron microscopy (SEM) was conducted using a Zeiss Ultra60 SEM op-

erated at 5 kV accelerating voltage and 3 mm working distance. Free ZnS NPs were

dispersed in methanol, drop cast onto a silicon wafer, and allowed to dry overnight

before SEM investigation. Energy dispersive X-ray spectroscopy (EDX) was con-

ducted on the same Zeiss SEM operated at 5 kV accelerating voltage. Transmission

electron microscopy (TEM) was conducted using a JEOL 100CX TEM operated at

100 kV accelerating voltage. X-ray diffraction (XRD) was conducted using a PAN-

alytical diffractometer with a CuKα source at a scan rate of 2 degrees per minute.

Ultraviolet-visible (UV-vis) spectroscopy was conducted using an Agilent 8453 spec-

trophotometer with a resolution of 1 nm. Photoluminescence spectroscopy (PL) was

conducted using a 320 nm light excitation source in a Fluorolog spectrophotome-

ter with a Hamamatsu photomultiplier tube detector. The background spectrum of

methanol was subtracted from UV-vis and PL spectra.

4.3 Results and Discussion

SEM images of ZnS NPs deposited on CNTs are shown in Figure 27a–b. The larger

particles appeared to be composed of smaller particles. The average size of the larger

particles was determined to be 209 ± 24 nm and the average size of the smaller

particles was determined to be 16.9 ± 1.9 nm after measuring 150 nanoparticles of
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Figure 27: (a)-(b) SEM images of ZnS nanoparticles deposited on carbon nanotubes
(c)-(d) SEM image of f-ZnS nanoparticles synthesized in the absence of any substrate

Figure 28: TEM image of ZnS NPs immobilized on CNTs
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Figure 29: Histograms of (a) 16.9 ± 1.9 nm mean size and (b) 209 ± 24 nm mean
size ZnS nanoparticles on CNTs and (c) histogram of 178 ± 15 nm mean size f-ZnS
NPs synthesized in the absence of any substrate

Table 3: Atomic composition of ZnS nanocomposites synthesized in sc-CO2 as mea-
sured by EDX

Element ZnS-CNT Mn:ZnS-CNT f-ZnS

Zn 15.1 14.2 14.9
S 13.9 14 15.3

Mn 0 2.36 0
C 69.3 67.9 4.32
O 1.7 1.54 2.18
Si 0 0 63.3
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Figure 30: XRD spectrum of ZnS-CNT nanocomposite, illustrating the characteristic
peaks for the wurtzite structure of ZnS

each type. Free ZnS NPs synthesized from the Zn(dedc)2 precursor in the absence

of any substrate are shown in Figure 27c–d. The average size of the particles was

178 ± 15 nm. Results from TEM illustrate that the CNTs were decorated with ZnS

NPs (Figure 28). The histograms for each sample calculated from SEM images are

shown in Figure 29. The atomic composition of each sample, measured quantitatively

by EDX, is shown in Table 3. The EDX spectra corresponding to the ZnS-CNT

confirmed the presence of carbon (attributed to the CNTs), oxygen (attributed to

carboxyl groups of the CNTs), zinc, and sulfur in the samples. After doping with

Mn(acac)3 in sc-CO2, manganese was also detected in addition to carbon, oxygen,

zinc, and sulfur. Last, the ZnS NPs not attached to a substrate were drop cast on

a silicon wafer before EDX analysis, accounting for the high percentage of Si, in

addition to some carbon and oxygen contamination that may be present from the

organic ligands from Zn(dedc)2.

Figure 30 shows the XRD diffraction pattern for the ZnS-CNT nanocomposite.

The characteristic diffraction peaks of wurtzite ZnS occurred at 27.2◦, 29.0◦, 30.8◦,
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Table 4: Band gap and peak maxima data from Tauc plot and PL spectroscopy

Sample ETauc
g (eV) EPL

g (eV) λmax from PL (nm)

ZnS-CNT 3.71 2.82 440
Mn:ZnS-CNT 3.69 2.79, 2.07 445, 602

ZnS 3.75 3.56 348

48.1◦, 57.1◦, and 60.7◦ [331]. The Scherrer equation estimates crystal size when the

crystals are below 100 nm in size:

τ =
0.9λ

βcosθ
(2)

where τ is the particle size, λ is the wavelength of X-ray radiation used, β is the full-

width at half maximum (FWHM) of the diffraction peak used in the calculation, and

θ is the diffraction angle of the chosen peak [333]. Using the Scherrer equation with

the diffraction peaks that occur at 29.0◦ and 48.1◦ (as in previous reports), the crystal

sizes were estimated to be 14.4 nm and 14.1 nm, respectively [75]. These values are

similar to the mean size of the small nanoparticles (16.9 ± 1.9 nm) measured in SEM

images.

Figure 31 shows the UV-vis spectrum of each sample dispersed in methanol. The

peak maximum at 292 nm and band edges present from 300–340 nm correspond to

ZnS nanoparticles [329]. The Tauc equation can be used to estimate the optical band

gap in a semiconductor material from its UV-vis absorption spectrum:

(αhν)n = B(E − ETauc
g ) (3)

where α is the absorption coefficient, h is Planck’s constant, ν is the frequency of

radiation, n = 2 for a direct band gap semiconductor (such as ZnS), B is a constant

of proportionality, E is the energy of the electromagnetic radiation (equal to hν), and

ETauc
g is the band gap energy measured by the Tauc plot [182]. A plot of (αhν)2 versus

E allows extrapolation of the linear region to the abscissa, which gives an estimate

of the band gap for a semiconductor material. Figure 32 shows the Tauc plots for
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Figure 31: UV-vis absorption spectra of ZnS-CNT and Mn:ZnS-CNT nanocomposites

the absorption band edges observed in the UV-vis spectra, and the extrapolated

values for the band gaps for each sample are shown in Table 4. Figure 33 shows

the photoluminescence spectra of samples after synthesis in the sc-CO2 system. The

peak maxima in PL spectroscopy (λmax) are given in Table 4. Values of the band gap

energy measured by PL, EPL
g , were calculated using the Planck-Einstein equation:

EPL
g =

1240eV · nm

λmax
(4)

and are also shown in Table 4 [12].

4.3.1 Nanoparticle size and morphology

Carbon nanotubes were successfully coated with ZnS NPs using the sc-CO2 depo-

sition method as illustrated by SEM images in Figure 27a and 1b. The ZnS-CNT

possessed a structure in which smaller, discrete NPs were tightly packed to form

larger NP structures, while the f-ZnS NPs synthesized in the absence of a substrate

did not possess this hierarchical NP structure (Figure 27). These results lead to the

hypothesis that in the absence of a substrate the f-ZnS NPs followed a traditional
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Figure 32: Tauc plots corresponding to UV-vis spectra of (a) ZnS, (b) Mn:ZnS-CNT,
and (c) f-ZnS in Figure 31
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Figure 33: Photoluminescence spectra of ZnS-CNT and Mn:ZnS-CNT nanocompos-
ites
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homogeneous nucleation and growth mechanism in the fluid sc-CO2 phase, similar

to homogeneous nucleation and growth that has been previously reported for ZnS

NP synthesis in aqueous solution [201, 330]. However, when ZnS NPs formed in the

presence of the CNT, the activation energy for nucleation on the CNT surface was

lower than the activation energy for homogeneous nucleation, heterogeneous nucle-

ation occurred on the CNTs, which dominated over homogeneous nucleation in the

sc-CO2 phase. Thus, the initial nucleation mechanism is homogeneous in the absence

of CNTs and heterogeneous in the presence of CNTs. After ZnS NPs have nucleated

in either scenario (homogeneous or heterogeneous), the activation energy for nucle-

ation and growth is even lower, possibly due to an autocatalytic mechanism where

ZnS NPs facilitate the reaction of Zn(dedc)2, resulting in continued nucleation and

growth by the favored mechanism. Moreover, the NPs did not deposit evenly along

the entire length of the CNTs but rather clustered together in somewhat irregular

shapes, in contrast to previous reports where spherical metal NPs (such as Pt) were

deposited evenly along CNTs using sc-CO2 [18, 129]. Such observations suggest that

after ZnS NP had formed on the CNT walls, the Zn(dedc)2 precursor favored hetero-

geneous adsorption and reaction on already formed ZnS NP sites over reaction on the

CNT walls, further supporting the hypothesis of a heterogeneous reaction mechanism

for ZnS NPs deposited on CNTs.

Previous attempts to decorate ZnS NPs on CNTs have focused on synthesizing

much smaller NPs (1–10 nm in diameter) for specific applications [207, 329]. For

example, 1–10 nm NPs are more desirable for photocatalysis (by increasing the sur-

face area/volume ratio and decreasing costs) or tuning the band gap of ZnS through

quantum confinement effects [23, 127, 165]. Thus, depending on the application, a

potential drawback of the method established here is the relatively large size ZnS NPs

deposited on the CNTs, and future studies of this system will focus on controlling ZnS
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NP size and homogeneity on the CNT surface by modifying the CNT surface chem-

istry and reaction conditions. Nonetheless, the size distributions and nanoparticle

structures observed were sufficient to yield fluorescent ZnS-CNT and Mn:ZnS-CNT

nanocomposites with desirable optical properties (see next section).

The Mn:ZnS-CNT sample showed the same morphology and size distribution as

the ZnS-CNT sample; this was expected since the doped Mn:ZnS-CNT sample was

formed from a portion of the ZnS-CNT, and the Mn composition was small (2.36

atomic %). Also, the crystal structure of the Mn:ZnS-CNT and f-ZnS samples were

the same as that of the ZnS-CNT sample. The percent yield of the ZnS-CNT depo-

sition reaction was 64.6%, the percent yield from the Mn doping on ZnS-CNT was

55.4%, and the percent yield of the f-ZnS synthesis reaction was 60.2%. These poor

yields are accounted for by precursor reaction with the reactor side walls (since it is

a hot wall reactor) as well as dissolved precursor that had not yet decomposed when

CO2 was vented.

4.3.2 Optical properties

The optical band gap of each sample was studied using UV-vis absorption spec-

troscopy. The observed optical band gaps measured by UV-vis and a Tauc plot

(ETauc
g ) of 3.71 eV, 3.69 eV, and 3.75 eV (Table 4) were in agreement with reported

values for the band gap of ZnS, which is 3.70 eV [164]. The band gaps for the ZnS-

CNT and Mn:ZnS-CNT samples were nearly identical to the band gap for the f-ZnS

and ZnS because Mn doping and adherence to the CNT substrate does not affect

the energy levels of the valence band (VB) or conduction band (CB) of ZnS, which

determine the size of the optical band gap [244]. It should also be noted that none of

the ZnS NPs were small enough to exhibit quantum confinement effects, which have

been shown to significantly increase the band gap energy for ZnS NPs smaller than 5

nm [320].
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Figure 34: Energy level diagrams for the ZnS-CNT and Mn:ZnS-CNT nanocompos-
ites synthesized in sc-CO2 (1) Photon absorption and exciton generation (2) Hole
promotion to a hole trap state (3) Nonradiative decay into electron trap state (4)
Blue light emission as an electron recombines with a hole (5) Nonradiative decay to
a Mn d -state (6) Nonradiative decay to a Mn d -state (7) Hole promotion into a Mn
d -state (8) Orange light emission as an electron recombines with a hole

Results from photoluminescence spectroscopy demonstrated the fluorescent emis-

sion of each sample synthesized in sc-CO2 upon illumination with 320 nm UV light.

However, data from PL spectroscopy yielded EPL
g values significantly smaller than

those measured by ETauc
g . Furthermore, the EPL

g values for each sample differed. The

differences in band gap energies between samples and between characterization tech-

niques can be explained by considering the mechanisms of electron excitation and

photon emission in ZnS, which have been detailed extensively elsewhere [75, 244].

For completeness, the energy level diagram in Figure 34 outlines these mechanisms,

provides a framework for understanding the results, and is briefly summarized here.

Radiation is absorbed to generate an electron-hole pair (exciton) in the VB and CB

(Step 1 in Figure 34). This absorption process is observed in UV-vis spectroscopy and

leads to the ETauc
g values reported in Table 3; moreover, this excitation event is not

influenced by the presence of CNTs, Mn, or any other defects in the nanocomposite

or NPs. In a band gap emission event, electrons should decay from the conduction

band to the valence band, emitting 335 nm (3.7 eV) photons. However, no band gap
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emission is observed here, likely due to the presence of defects that introduce usually

forbidden energy levels into the band gap that can trap electrons and holes. These

energy levels are known as electron or hole trap states and do not exist in defect-free

ZnS. For example, electrons from CNTs (from orbitals of the CNTs or O− species

of carboxyl groups on the CNT walls) can be donated to photogenerated holes in the

VB, resulting in hole promotion to hole trap states at higher energy levels than the

valence band (Step 2 in Figure 34).

Concurrently, defects in the ZnS crystal lattice increase the likelihood of nonra-

diative decay processes (i.e., phonon excitation) compared to defect-free ZnS. Such

defects include surface effects (i.e., dangling bonds) or physical deformations in the

ZnS crystal structure induced by the CNTs. Nonradiative decay events allow elec-

trons to fall from the conduction band to shallow electron traps states (Step 3 in

Figure 34). The relaxed electron in a shallow trap state then decays into a hole trap

state; this recombination releases a photon with EPL
g = 2.82 eV (Step 4 in Figure 34),

which is significantly lower than ETauc
g = 3.71 eV for the ZnS-CNT sample. The 440

nm (EPL
g = 2.82 eV) peak observed here is also significantly broader than would be

attributed to a single electronic transition. This broadening may be due to different

defects (such as the number of substitutions or interstitial sites) occurring in different

ZnS NPs on the CNTs. These impurity differences may give rise to slightly different

energy levels for the electron and hole trap states in the band gap, ultimately leading

to transitions that occur at marginally different energies (and hence wavelengths),

contributing to the broadness of the peak.

PL spectroscopy of the Mn:ZnS-CNT sample exhibited an orange emission peak

at 602 nm (EPL
g = 2.07 eV) in addition to the blue emission peak at 445 nm (EPL

g

= 2.79 eV). These peaks are in agreement with previous reports for Mn:ZnS-CNT

nanocomposites where the d orbitals of Mn introduce usually forbidden energy levels

in the ZnS band gap. The mechanism for emission of the broadband blue light is
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attributed to the same mechanism described for the ZnS-CNT sample in steps 1–4

in Figure 34. The emission peak at 602 nm (EPL
g = 2.07 eV) is attributed to the

presence of Mn doping impurities present on the surface of the ZnS nanoparticles,

which introduce empty d orbitals of the Mn atoms into the spacing between the

valence and conduction bands of ZnS. These unoccupied d -states can accept electrons

from shallow trap states (Step 5 in Figure 34) or from the conduction band (Step 6 in

Figure 34) via nonradiative decay while the electron occupied d orbitals can donate

electrons to the VB, resulting in promoted holes at higher energy levels with reference

to the VB (Step 7 in Figure 34). Emission of orange 602 nm (EPL
g = 2.07 eV) light

occurs when an electron falls from a shallow trap state to a trapped hole state (Step

8 in Figure 34). The broadness of the peak is attributed to the same mechanism

described for the ZnS-CNT nanocomposite. The intensity of the 602 nm (EPL
g = 2.07

eV) peak is significantly higher than that of the 445 nm (EPL
g = 2.79 eV) peak in the

Mn:ZnS-CNT sample, indicating that decay events resulting in orange light emission

occur more frequently than those resulting in blue light emission, an observation that

has been previously reported [244].

The f-ZnS NPs not formed on a substrate displayed an emission peak at 348 nm

(EPL
g = 3.56 eV). Defect-free ZnS NPs would have shown an optical band gap emission

peak at 335 nm (3.7 eV) as discussed above. Thus, it is likely there is some sample

contamination present (for example, carbon or oxygen arising from the organic ligands

of Zn(dedc)2 as was detected in EDX) that introduced forbidden energy levels into

the band gap of the f-ZnS NPs. However, compared to the ZnS-CNT and Mn:ZnS-

CNT spectra, the EPL
g for the f-ZnS NPs are closest to the optical band gap energy

for defect free ZnS NPs, indicating that the f-ZnS NPs have relatively fewer defects

than ZnS-CNTs or Mn:ZnS-CNTs, as expected. Furthermore, comparing EPL
g for

the three samples, it is clear that the CNT substrate and Mn doping significantly

red-shifted the λmax of the nanocomposites through the introduction of additional
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defects into the ZnS compared to the f-ZnS NPs.

4.4 Conclusion

In this chapter, zinc sulfide nanoparticles were deposited on carbon nanotubes using

a one-step batch supercritical carbon dioxide process with the single source precursor

zinc(II) bis(diethyldithiocarbamate). Comparing the deposition of ZnS NPs on CNTs

versus ZnS NP synthesis in the absence of any substrate supports the hypothesis that

ZnS NP decoration on CNTs proceeds by a heterogeneous reaction mechanism. The

ZnS-CNT nanocomposite was then doped using manganese(III) tris(acetylacetonate)

in sc-CO2. This represents a greener, more environmentally friendly process for dec-

orating CNTs with ZnS NPs and doping ZnS compared to current methods and also

leverages the advantages of sc-CO2 for nanoparticle deposition. The ZnS nanopar-

ticles possessed two characteristic sizes: smaller particles (16.9 ± 1.9 nm) that ag-

glomerated to form larger particles (209 ± 24 nm), while ZnS NPs synthesized in the

absence of any substrate had a mean size of 178 ± 15 nm. The differences between the

ZnS-CNT and f-ZnS NPs suggested a difference in the reaction mechanism (hetero-

geneous versus homogeneous) between the two samples. Red shifting and broadening

of the fluorescent peaks of the nanocomposites were attributed to defects in the ZnS

crystal structure, resulting in usually forbidden energy levels being introduced into

the band gap. Future efforts will be dedicated to decreasing the ZnS NP size and

increasing ZnS NP homogeneity on the CNT surface.

The work developed in this chapter extends the motif of the important relationship

between surface chemistry and the nucleation and growth phenomena first observed

in Chapter 3. The carboxyl groups present on the CNT surface played a similar

role in promoting ZnS particle nucleation and growth that hydroxyl groups did in

promoting these processes for CZTS deposition.
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In the next chapter, silver nanoparticles are deposited on silicon and glass sub-

strates, and the influence of surface pretreatment, surface chemistry, and temperature

on silver nanoparticle size and density are investigated. The silver nanoparticles were

applied in surface enhanced Raman spectroscopy. These studies continue the theme

of understanding the process-structure-property relationships for nanomaterials fab-

ricated in supercritical carbon dioxide.
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CHAPTER V

CONTROLLING DEPOSITION OF SILVER

NANOPARTICLES IN SUPERCRITICAL CARBON

DIOXIDE

5.1 Introduction

In the previous chapter, ZnS nanoparticles were deposited on carbon nanotubes for

photoluminescent application. In this present chapter, silver nanoparticles are de-

posited on silicon and glass surfaces using sc-CO2 for application in surface enhanced

Raman spectroscopy (SERS).

Several methods have been explored to fabricate surface enhanced Raman spec-

troscopy active surfaces for trace concentration analyte detection. Nanosphere lithog-

raphy (NSL) can fabricate large arrays of nanostructures that can be used in SERS

[134]. In this technique, a monolayer of polystyrene nanospheres is spin-coated on

top of the surface, usually silicon or glass. A metal thin film is then deposited by

vapor deposition in the regions between spheres and annealed at 300 ◦C – 500 ◦C; the

spheres are then removed by dissolution in a solvent. While the reproducibility of this

technique is excellent, it requires high vacuum conditions as well as high temperature

annealing and uses environmentally unfriendly chemicals such as polystyrene, which

cannot be recycled and require hundreds of years to biodegrade.

Two other methods used to make SERS active surfaces are glancing angle deposi-

tion (GLAD) and electron beam lithography (EBL). In GLAD, metal nanostructures

are deposited on a substrate by sputtering from a source positioned at about 85 de-

grees from the substrate normal [170]. This technique can effectively create multiple
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types of nanostructures, such as arrays of nanorods that could detect the model ana-

lyte Rhodamine 6G (R6G) at a concentration of 10−12 M [332]. However, it is difficult

to achieve reproducibility and uniformity in this system. In EBL, small nanostruc-

tures can be patterned with precision and repeatability by the highly focused electron

beam [142]. However, the EBL process requires a large capital investment, high vac-

uum conditions, does not scale easily to larger substrates, and has low throughput.

One relatively unexplored method for making SERS active surfaces is the use of

supercritical carbon dioxide (sc-CO2) for the direct deposition of nanoparticles from

an organometallic precursor on a substrate. Supercritical carbon dioxide possesses

several advantages over other methods such as NSL, GLAD, and EBL. The synthesis

of nanoparticles on surfaces via sc-CO2 can be performed in a single reactor, is rapid

(2 h or less), and can be used with a wide variety of substrates. Furthermore, sc-

CO2 possesses high diffusivity, low viscosity, and no surface tension, enabling rapid

transport of the organometallic precursor to the substrate surface [261]. Last, the

sc-CO2 technique offers a method to recycle captured carbon dioxide and does not

generate CO2 in the nanoparticle deposition process, making it more environmentally

friendly than the techniques described above because it provides a use for captured

CO2.

Supercritical CO2 has been used previously to deposit noble metal nanoparticles

and metal thin films on several substrates for applications in catalysis, fuel cells,

and microelectronics; however, SERS applications have not been extensively pursued

[39, 168, 180, 242, 323]. The only previous report that invoked sc-CO2 to fabri-

cate SERS active surfaces impregnated the organometallic precursor silver(I) hex-

afluoroacetylacetonate cyclooctadiene (Ag(hfac)(COD)) into a polycarbonate matrix

[118]. This step was followed by reduction in hydrogen atmosphere to synthesize sil-

ver nanoparticles (AgNPs) inside the matrix. Hasell et al. reported a sensitivity of 2

mM for the surface detection of R6G on the surface of the polycarbonate matrix. A

62



nanoparticle size of 2–10nm was reported, but no attempt was made to use process

conditions to control the particle size; however, the penetration depth of AgNPs into

the matrix could be extended by increasing the duration of the impregnation step of

their process.

Since the size, density, and shape of AgNPs ultimately influence the SERS ef-

ficiency of a surface, it is important to understand how process conditions in the

sc-CO2 deposition process, such as temperature or surface chemistry, affect the nu-

cleation, growth, and diffusion processes that might be occurring in this reaction

system [142, 264, 278]. Previous work has addressed these mechanistic considerations

for homogeneous nanoparticle synthesis in the fluid phase for supercritical water and

CO2 systems [1, 206, 211]. However, there remains a paucity of knowledge regard-

ing how experimental parameters affect processes occurring in the sc-CO2 system for

heterogeneous nanoparticle deposition on substrates. Thus, investigation is necessary

to establish and understand the mechanisms that govern nanoparticle deposition on

surfaces in the sc-CO2 system. By understanding these fundamental processes, it will

be possible to manipulate experimental parameters to rationally design and control

nanoparticle properties in order to optimize the performance of a desired product.

The contributions of the present work address these issues. First, heterogeneous

AgNP deposition on oxygen plasma treated silicon, oxygen plasma treated glass,

and HCl treated silicon surfaces was demonstrated to be temperature controlled,

suggesting that the process is limited by kinetics rather than transport of precursor to

the substrate in the sc-CO2 system. Second, temperature and surface chemistry were

shown to have significant effects on mean AgNP size, density, and surface coverage

in the sc-CO2 deposition system, providing two experimental parameters that can

be used to rationally manipulate AgNP properties for SERS applications. Last, the

SERS substrates fabricated by the sc-CO2 method in this work exhibit three orders of

magnitude improved sensitivity compared to previous reports using sc-CO2 for SERS
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surface fabrication in that a target analyte was detected at 1 µM concentration in the

present study. The sc-CO2 system used here represents a potentially greener method

for fabricating SERS active surfaces compared to the current state of the art.

5.2 Experimental Methods

5.2.1 Materials

Carbon dioxide gas (99.99%) and hydrogen gas (99.99%) were purchased from Air-

gas. The organometallic precursor silver hexafluoroacetylacetonate cyclooctadiene

(Ag(hfac)(COD)), methanol, acetone, isopropyl alcohol, solid Rhodamine 6G (R6G),

and concentrated hydrochloric acid (HCl, 12 M) were purchased from Sigma Aldrich

and used as received. Test silicon wafers (p-type, 10–20 Ω·cm, (100)) were purchased

from University Wafer. Soda lime glass slides were purchased from Fisher Scientific.

5.2.2 Surface pretreatment

The substrates were cut into 2 cm x 3 cm pieces and rinsed with methanol, acetone,

and isopropyl alcohol sequentially, then dried under a gentle stream of N2. Test silicon

wafer and glass substrates were pretreated by two methods. In the first method,

substrates were subjected to 10 minutes of cleaning in an oxygen plasma in a Harrick

PDC-32G Plasma Cleaner, and these surfaces are hereafter referred to as “plasma

treated.” In the second method, surfaces were subjected to a 30 minute wash in a

12 M solution of HCl. Substrates were then washed thoroughly with deionized water

and dried under a gentle N2 stream, and are hereafter referred to as “HCl treated”

surfaces. Plasma and acid treatments were chosen because they are simple, frequently

used, and their effects on surface chemistry are well characterized [236].

5.2.3 Nanoparticle deposition

In order to deposit AgNPs on the substrates under study, 50 ± 0.1 mg of the Ag(hfac)

(COD) precursor was loaded into a 30 mL hot wall stainless steel reactor along with
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the desired substrate. The reactor was initially pressurized by 400 ± 10psi of hydro-

gen, then brought to 1500 ± 10psi pressure by introduction of carbon dioxide by a

Teledyne ISCO 500HP pump; the reactor configuration has been previously described

[161]. During pressurization, the reactor was simultaneously heated to 60 ◦C, 120 ◦C,

or 180 ◦C (± 5 ◦C) by a hot plate. These temperatures were chosen based on pre-

vious reports that demonstrate AgNP synthesis in the range from 60 ◦C to 180 ◦C

[53, 135, 322]. Temperature and pressure were monitored by a thermocouple inserted

into the center of the reactor and a pressure transducer, respectively. The reaction

was allowed to run for two hours, followed by depressurization over a 10 minute period

and removal of the products.

5.2.4 Characterization

Scanning electron microscope (SEM) images were recorded using a Zeiss Ultra60 SEM

operated at 5 kV accelerating voltage and 3 mm working distance. Image analysis of

SEM images was carried out using the Image Analysis toolbox in MATLAB in order to

eliminate experimenter bias. Using the regionprops function, it is possible to measure

the area of each AgNP; assuming a spherical particle, the diameter of the AgNP

can be determined. Nanoparticle density was calculated by dividing the number of

particles observed by the total area sampled; interparticle distance was established by

determining the particle density, taking the reciprocal of this value, and calculating

the square root. The area covered by AgNPs was estimated by dividing the area of all

of the AgNPs by the total area sampled. Transmission electron microscopy (TEM)

images were recorded using a JEOL 100CX-2 TEM operated at 100kV accelerating

voltage in both imaging and diffraction modes.

SERS spectra were collected using a Nicolet Almega Raman microscope with

a laser wavelength of 785 nm and power of 2 mW launched by a 50× objective

lens. The spot size was about 1 µm, the resolution of the detector was 4 cm−1,
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Figure 35: SEM images of AgNPs deposited on plasma treated silicon at (a) 60 ◦C,
(b) 120 ◦C, and (c) 180 ◦C and plasma treated glass at (d) 60 ◦C, (e) 120 ◦C, and (f)
180 ◦C

and for each sample a single scan was conducted with an acquisition time of 10 s.

Before collecting SERS spectra, AgNP coated substrates were submerged in a 1 µM

solution of R6G for 30 minutes and dried with a gentle N2 stream; SERS spectra were

recorded immediately afterward. X-ray diffraction (XRD) patterns were recorded

using a PANalytical X’Pert PRO diffractometer with a scan rate of 2 degrees per

minute in the range 30–50◦. Energy dispersive X-ray (EDX) analysis was carried

out on the same Zeiss Ultra60 SEM with an accelerating voltage of 20 kV and a

working distance of 8 mm. X-ray photoelectron spectroscopy (XPS) survey scans

were recorded on a Thermo Kα XPS system with an Al Kα source (1486.6 eV)

radiation.

5.3 Results and Discussion

5.3.1 Scanning electron microscopy

Representative SEM images for AgNPs deposited on plasma treated silicon and glass

surfaces are shown in Figure 35, and histograms plotting fraction versus nanoparticle

diameter are given in Figure 36. Statistics calculated for each condition studied are

presented in Table 5; replicates are separated by commas in the table.
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Figure 36: Histograms for AgNPs deposited on plasma treated (a) silicon and (b)
glass surfaces in the temperature range 60 ◦C–180 ◦C

Table 5: Descriptive statistics for AgNPs deposited on plasma treated silicon and
glass in the temperature range 60 ◦C–180 ◦C. Replicates are separated by commas;
standard deviations are included for mean nanoparticle size

Substrate Silicon Glass

Temperature 60 ◦C 120 ◦C 180 ◦C 60 ◦C 120 ◦C 180 ◦C
Mean nanoparticle size (nm) 18.3 ± 6.7, 17.8 ± 7.4 47.5 ± 26.6, 44 ± 23.8 - 69.9 ± 14.6 64.6 ± 20.4 21.6 ± 5.98
Particle density (Particles/nm2) 8.26×10−5, 3.50×10−5 2.0310−4, 1.6510−4 - 2.31×10−5 8.02×10−5 6.94×10−4

Mean interparticle distance (nm) 110, 169 70.2, 77.7 - 208 112 38
Fractional surface coverage of AgNPs 0.037, 0.035 0.39, 0.40 0.58 0.093 0.33 0.274
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Figure 37: SEM images of AgNPs deposited on HCl treated silicon at (a) 60 ◦C, (b)
120 ◦C, and (c) 180 ◦C and HCl treated glass at (d) 60 ◦C, (e) 120 ◦C, and (f) 180
◦C

Table 6: Descriptive statistics for AgNPs deposited on HCl treated silicon and glass
at different reaction temperatures. Replicates are separated by commas; standard
deviations are included for mean nanoparticle size

Substrate Silicon Glass

Temperature 60 ◦C 120 ◦C 180 ◦C 60 ◦C 120 ◦C 180 ◦C
Mean nanoparticle size (nm) 196 ± 56.2,207 ± 50.2 104.5 ± 48.5, 99.3 ± 44.8 27.7 ± 20.2, 32.8±26.5 24.6 ± 16.0 39.4 ± 32.9 22.8 ± 7.07
Particle density (Particles/nm2) 1.01×10−6, 8.73×10−7 2.16×10−5, 3.63×10−5 1.11×10−4, 7.97×10−5 3.79×10−4 8.31×10−5 6.61×10−4

Mean interparticle distance (nm) 996, 1070 215, 166 94.9, 112 51.3 110 38.9
Fractional surface coverage of AgNPs 0.071, 0.068 0.33, 0.37 0.40, 0.42 0.26 0.17 0.3

The mean size for nanoparticles deposited on plasma treated silicon at 120 ◦C

is about 45 nm, roughly double that of nanoparticles synthesized at 60 ◦C on the

same surface. At 180 ◦C it appears that particles have begun to coalesce, precluding

statistical analysis of nanoparticle size at this condition. At 60 ◦C, plasma treated

glass supports a distribution of larger, faceted particles. Since the particles are not

spherical, an equivalent particle diameter is calculated by assuming that the particles

are spherical. The nonconductive nature of glass caused surface charging artifacts,

leading to the lower quality image for AgNPs on glass compared to silicon. At 120 ◦C

the particle density of larger AgNPs has increased. At 180 ◦C the AgNP distribution

appears unimodal and the particles are densely packed; however, they do not appear

to coalesce, as is the case for AgNP on plasma treated silicon.
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Figure 38: Histograms for AgNPs deposited on HCl treated (a) silicon and (b) glass
surfaces in the temperature range 60 ◦C–180 ◦C

SEM images for AgNPs deposited on HCl treated silicon and glass surfaces are

shown in Figure 37, histograms plotting fraction versus nanoparticle diameter are

given in Figure 38, and statistics for each condition studied are presented in Table 6.

For AgNPs deposited on HCl treated silicon at 60 ◦C, AgNPs have a mean size of

about 200 nm, an interparticle distance of about 1 micron, and appear faceted in

morphology. For AgNPs deposited on HCl treated silicon at 120 ◦C, the AgNPs

are denser, smaller, and have less obvious faceting than those deposited at 60 ◦C.

At 180 ◦C, the faceted morphology of the particles is virtually eliminated and only

small, round AgNPs are observed. For HCl cleaned glass substrates, a higher density

of particles was observed at 60 ◦C compared to HCl treated silicon at this temperature.

At 120 ◦C, the AgNPs appear slightly larger than particles fabricated at 60 ◦C on

HCl treated glass. Last, at 180 ◦C, small, dense AgNPs are fabricated on HCl treated

glass, nearly identical to those deposited on plasma treated glass at 180 ◦C.

EDX analysis confirmed that the nanoparticles synthesized on all substrate/surface

treatment combinations are in fact silver (Figure 39).
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Figure 39: EDX spectra of AgNPs deposited on silicon and glass substrates

5.3.2 Analysis of kinetics

Previous reports have studied the reaction mechanisms for metal nanoparticle syn-

thesis in the homogeneous, or fluid, phase of a supercritical CO2 system, where it is

possible to monitor nanoparticle formation online and/or collect nanoparticles after

the reaction to determine conversion [1, 206, 211]. However, these are not viable

methods to study the reaction mechanisms in the system presented in the current

work because AgNPs are deposited heterogeneously on a surface, making in situ

monitoring or ex situ particle recovery particularly difficult. A similar challenge was

addressed by Zong and Watkins, who studied the temperature and reactant concen-

tration dependence of copper thin film deposition on substrates in sc-CO2 [335]. In

that study, the film thickness was assumed to indirectly measure reaction rate because

a faster reaction rate would deposit a thicker film for a fixed period of time. Under

this assumption, the authors were able to gain significant insight into the underlying

mechanism of the process they studied, which is a primary goal of the current work

[335].
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Table 7: R2 values and activation energy values for (a) plasma-treated silicon, (b)
plasma-treated glass, (c) HCl-treated silicon, and (d) HCl-treated glass; 95% confi-
dence intervals are included for activation energy values on the model prediction of
the mean

Substrate (a) (b) (c) (d)

R2 Ea (kJ/mol) R2 Ea (kJ/mol) R2 Ea (kJ/mol) R2 Ea (kJ/mol)
Calculated from ln(AgNP density) 0.75 19.7 5.6 0.92 32.8 4.9 0.96 49.0 5.0 0.018 3.81 14.0
Calculated from ln(Mean AgNP size) 0.95 15.2 1.7 0.72 -11.8 3.4 0.93 -19.4 2.5 0.0025 -0.282 2.8

In the present study, the reaction mechanism is divided into two steps that occur

in the system: first, a nucleation process where AgNP nuclei form on the surface,

and second, a growth process where the existing AgNP increase in size. Applying

an assumption analogous to that proposed by Zong and Watkins, AgNP density

was assumed to increase with nucleation rate and mean AgNP size was assumed

to increase with growth rate [335]. In other words, a faster nucleation rate would

yield more particles on the surface (i.e., a higher particle density) for the fixed two

hour reaction time, and a faster growth rate would yield larger particles for the fixed

two hour reaction time. Under these assumptions, it is possible to fit Arrhenius

plots using particle density and AgNP size. It is noted that although the nucleation

process precedes growth for any particular AgNP deposited on the surface, these two

processes can occur simultaneously on different sites of the surface throughout the

deposition process. This observation can account for some of the larger standard

deviation values reported, which add ambiguity to the Arrhenius plots fitted using

mean nanoparticle size. However, this issue does not introduce any uncertainty into

the Arrhenius plots fitted using nanoparticle density since the particles are simply

counted and normalized by the area sampled.

The Arrhenius plots for AgNPs deposited on the four substrate/treatment combi-

nations are shown in Figure 40; two additional data points, at 90 ◦C and 150 ◦C, are

included in Figure 40a for plasma treated silicon, since AgNP size and density could

not be calculated for the 180 ◦C condition. The R2 values and activation energies for

these Arrhenius plots are given in Table 7.
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Figure 40: Arrhenius plots for AgNPs deposited on (a) plasma treated silicon, (b)
plasma treated glass, (c) HCl treated silicon, and (d) HCl treated glass. Dotted lines
indicate the 95% confidence interval on the model prediction of the mean
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Table 8: Surface atomic percent composition of plasma and HCl treated silicon and
glass substrates as measured by XPS before AgNP deposition

Element Plasma-treated silicon Plasma-treated glass HCl-treated silicon HCl-treated glass

Si 59.40 33.71 59.69 30.90
C 2.70 1.59 10.15 14.51
O 37.90 59.61 27.71 52.52
Cl 0.00 0.00 2.45 0.81
Na 0.00 2.40 0.00 0.33
Mg 0.00 0.93 0.00 0.19
Ca 0.00 1.75 0.00 0.74

The combinations of AgNP sizes and densities that can be achieved in the sc-CO2

system described in this work are shown in Figure 41.

5.3.3 X-ray photoelectron spectroscopy

XPS analysis was conducted after plasma or HCl treatment of silicon or glass to assess

the differences in the resulting surface chemistry before AgNP deposition. Surface

atomic percentages measured by XPS are presented in Table 8. Oxygen plasma

cleaning of the glass or silicon substrate is used to grow a thin silicon dioxide layer and

remove carbonaceous contamination [149]. Here, XPS analysis showed that plasma

treated silicon possessed only silicon, oxygen, and carbon on the surface. The oxygen

was due to hydroxyl groups on the surface as well as adventitious water; the carbon

was due to adventitious carbon contamination on the surface. For plasma treated

glass, the ratio of silicon to oxygen was roughly 1:2, likely due to the presence of silicon

dioxide in the glass in addition to water and hydroxyl groups on the surface. Also,

the glass components sodium, magnesium, and calcium were detected, along with

adventitious carbon. HCl treatment is usually used to remove metallic contamination

from a surface, but it does not remove carbonaceous contamination from or oxidize

a surface [214]. Here, XPS analysis revealed that HCl treatment did not reduce

carbonaceous contamination and did not increase the oxygen content of the silicon

and glass surfaces in comparison to the plasma treated substrates. HCl treatment

also left behind a small amount of chlorine contamination on the silicon and glass
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Figure 42: TEM image of AgNPs deposited on HCl treated silicon 60 ◦C, removed
and placed on lacy carbon TEM grid. Inset shows the SAED pattern indicating fcc
crystal structure

surfaces.

5.3.4 Transmission electron microscopy and selected area electron diffrac-
tion

In order to investigate the crystal structure of AgNPs deposited on silicon through

selected area electron diffraction (SAED), AgNPs deposited on HCl treated silicon

at 60 ◦C were mechanically removed by carefully scraping a lacy carbon TEM grid

(Ted Pella) along the surface of the silicon wafer [268]. The inset SAED pattern in

Figure 42 confirms the polycrystalline fcc structure of the AgNPs deposited on silicon

at this condition.

5.3.5 X-ray diffraction

XRD analysis was conducted to demonstrate the crystal structure of AgNPs deposited

on glass; XRD diffractograms are not shown for AgNPs deposited on silicon because

the signal intensity due to diffraction from the silicon substrate was so high that peaks

from diffraction due to AgNPs were obscured. Since XRD patterns were recorded for

glass samples, mechanical removal of the nanoparticles for TEM/SAED investigation

was not pursued. The XRD diffractograms shown in Figure 43 confirm the fcc struc-

ture of the AgNPs deposited on plasma and HCl treated glass. The (111) crystal face

is dominant over the (200) face; higher order peaks were not observed when XRD
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Figure 43: XRD diffractogram of AgNPs deposited on (a) plasma treated and (b)
HCl treated glass. Spectra were offset slightly to ease interpretation

spectra were collected above 50 ◦. Spectra were offset slightly to ease interpretation.

5.3.6 Surface enhanced Raman spectroscopy

SERS activity was studied for AgNPs deposited on each substrate/surface treatment

condition. Figure 44 shows a Raman spectrum for R6G on AgNPs deposited at 120 ◦C

on plasma treated silicon. Spectra of control samples without AgNPs confirm the need

for AgNPs to enable the SERS effect, and control samples without R6G confirm that

the detected signal is not due to either AgNPs or ligands attached to the surface from

the Ag(hfac)(COD) precursor. The Raman active vibrational modes for R6G that

were observed have been previously assigned as v(C-C-C) ring bending mode at 614

cm−1; v(C-H) out-of-plane bending mode at 774 cm−1; v(C-H) in-plane bending mode

at 1183 cm−1; and v(C-C) stretching modes at 1363 cm−1, 1509 cm−1, 1572 cm−1, and

1650 cm−1 [124]. These peaks appear in all subsequent SERS spectra. The plateau

peak in the range 975 cm−1–925 cm−1 is assigned to silicon [282]. Figure 45 shows

the SERS spectra for R6G on AgNPs deposited at the three reaction temperatures
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Figure 45: SERS spectra of 1×10−6 R6G on AgNPs deposited on (a) plasma treated
silicon, (b) plasma treated glass, (c) HCl treated silicon, and (d) HCl treated glass
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Table 9: SERS enhancement factors for AgNPs coated surfaces synthesized at 60 ◦C,
120 ◦C, and 180 ◦C. Replicates are separated by commas in the table

Plasma-treated silicon Plasma-treated glass HCl-treated silicon HCl-treated glass

60 ◦C 1×101, 1×101 3×105 9×105, 9×105 1×106

120 ◦C 2×105, 2×105 6×105 8×104, 8×104 6×105

180 ◦C 4×104 1×105 2×104, 4×104 2×105

for each substrate/surface treatment combination studied.

The SERS enhancement factor (EF) can be estimated in order to compare the

signal enhancement between each sample. The SERS EF can be calculated as:

EFSERS(ων) =
(ISERS(ων))/(NSERS)

(INRS(ων))/(NNRS)
(5)

where EFSERS(ων) is the SERS enhancement factor as a function of the scattering fre-

quency ων ; ISERS(ων) is the SERS enhanced Raman intensity normalized by NSERS,

the number of analyte molecules bound to the surface; INRS(ων) is the normal Raman

scattering intensity normalized by NNRS, the number of analyte molecules bound to

the surface; and ων is the Raman scattering frequency [308]. The EF was calculated

using the ων = 1650 cm−1 peak for all samples since this peak was clearly discernible

for each spectrum. To measure INRS(ων), uncoated glass and silicon surfaces were

immersed in 0.1 M R6G for 30 minutes and then analyzed by the Raman microscope

as done for all other samples. Values for NSERS and NNRS were assumed to depend

only on the molarity of the R6G solution used and not on the adsorption efficiency

of R6G on the silicon and glass surfaces, a conservative assumption that presumes

a high degree of surface coverage of R6G [152]. Thus, NSERS was estimated to be

6.02×1017 molecules R6G and NNRS was estimated to be 6.02×1022 molecules R6G.

EF values for each sample are given in Table 9.
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5.3.7 Heterogeneous AgNP deposition on substrates in sc-CO2

It was hypothesized that increasing temperature would increase both the size and

nanoparticle density for every substrate/surface treatment combination studied; how-

ever, results indicate this occurred only for plasma treated silicon. Analysis of SEM

images showed that for plasma treated silicon substrates, the mean AgNP size, den-

sity, and surface coverage increased as temperature increased (Table 5). Moreover,

the Arrhenius plots shown in Figure 40a indicate that both nanoparticle size and

nanoparticle density increased with temperature. Since a traditional kinetic mecha-

nism comprised of elementary molecular steps was not postulated here, the absolute

values of the activation energies corresponding to the Arrhenius plots were not useful

for comparisons to other reaction systems or between substrate/treatment conditions

in this system. Nonetheless, the Arrhenius dependence demonstrated here indicates

that the nucleation and growth processes were both thermally activated for AgNPs

deposited on plasma treated silicon. Furthermore, this dependence on temperature

suggested that the overall deposition process on plasma treated silicon was reaction

limited and not limited by transport of the Ag(hfac)(COD) precursor to the surface.

This was not surprising since organometallic precursors are highly soluble in sc-CO2

compared to other systems where precursor transport is often the rate-limiting pro-

cess, such as chemical vapor deposition [13, 303]. In addition, the low temperature

range used in the present work also favors a reaction limited regime over a transport

limited regime [96]. Overall, these results imply that temperature can be used to tune

AgNP size and density on plasma treated silicon. However, the AgNP size and den-

sity on plasma treated silicon cannot be tuned independently: increasing temperature

increased both particle size and particle density.

For AgNPs deposited on plasma treated glass and HCl treated silicon, Arrhe-

nius plots indicated that mean AgNP size decreased with temperature while particle

density increased with temperature (Figures 40b and 40c). These results indicated

78



that the growth process for AgNPs deposited on these surfaces was not thermally

activated while the nucleation process was thermally activated. These data contrast

with those observed for plasma treated silicon, where mean AgNP size and parti-

cle density both increased with temperature. Furthermore, for plasma treated glass

and HCl treated silicon substrates, mean AgNP size decreased as particle density

increased (Figure 41), again in contrast to results from AgNPs deposited on plasma

treated silicon.

XPS data clearly indicated that the plasma treated silicon and glass substrates and

the HCl treated silicon substrate have significantly different compositions of species on

the surface (Table 8). Consequently, although nucleation density increased with tem-

perature for the three substrate/surface treatment combinations discussed thus far, it

is hypothesized that chemical species on the surface are responsible for differences in

the nucleation and/or growth of AgNPs on plasma treated glass and HCl treated sili-

con compared to plasma treated silicon. For example, glass possesses several cationic

species (Na+, Ca2+, and Mg2+) that may have repelled the positively charged silver

center in the Ag(hfac)(COD) precursor as it attempted to adsorb and/or diffuse on

the surface, limiting particle nucleation and/or growth. For HCl treated silicon, the

HCl treatment did not oxidize the surface or remove carbonaceous contamination

from the silicon surface compared to the plasma cleaned silicon surface (Table 8).

Thus, the lack of hydroxyl groups on the surface or the presence of carbon-containing

surface contamination may have decreased the adsorption and/or surface mobility of

the Ag(hfac)(COD) precursor in a manner similar to that posited for cationic species

in plasma treated glass.

Regardless of the nucleation and growth mechanism, it is apparent that surface

chemistry had a significant effect on mean AgNP size and nucleation density. Fur-

thermore, at low AgNP densities, large AgNPs were able to form on the plasma

treated glass and HCl treated silicon surfaces, while at high AgNP densities, only
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small AgNPs were able to form. From this observation, it is hypothesized that the

nuclei on these two surfaces undergo competition for precursor: as the nucleation

density increased, competition for the Ag(hfac)(COD) precursor increased, yielding

smaller AgNPs. Conversely, as nucleation density decreased, more Ag(hfac)(COD)

precursor was available per nucleus for growth, yielding larger AgNPs. In addition

to competition, particles may experience a crowding effect on the surface: at higher

particle densities, there may not be enough space for particles to continue growth,

while at lower particle densities, growth may be possible. This explanation can also

account for the positive slope and negative activation energies reported for the Ar-

rhenius plots shown in Figure 40 and Table 7, respectively: as temperature increased,

particle density increased due to a faster nucleation rate, leading to more competition

for precursor on these surfaces and consequently smaller AgNPs.

Nonetheless, it is noted that the surface chemistry of the plasma treated silicon

surface did not induce this competition effect for AgNP deposition: as AgNP density

increased on the plasma treated silicon surface, larger particles were deposited, in

contrast to the results obtained for plasma treated glass and HCl treated silicon

surfaces. Compared to these two surfaces, plasma treated silicon did not possess

significant levels of cationic or carbon-containing species on the surface. Thus, these

contrasting results support the hypothesis that surface chemistry has a mediating role

for AgNP growth as well as the role in controlling AgNP nucleation that was described

above. For example, it is possible that the surface chemistry of plasma treated silicon

allowed AgNP nucleation and growth to be thermally controlled, in contrast to results

for plasma treated glass and HCl treated silicon, where surface species likely affected

adsorption and/or diffusion of the precursor as it migrated toward nascent particles.

Last, for AgNPs deposited on HCl treated glass, there does not appear to be any

correlation between temperature and either the mean AgNP size or particle density in

the Arrhenius plots shown (Figure 44d). This result implies that the nucleation and
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growth processes were not thermally activated for this substrate/surface treatment

combination and that some other process may have controlled particle deposition

here, in contrast to the results obtained for plasma treated silicon and glass and HCl

treated silicon. However, mean AgNP size did increase as particle density decreased

(Figure 41), again implying that the surface chemistry may have caused competition

for precursor on this surface even though neither nucleation nor growth was thermally

activated.

The range of AgNP sizes and densities that can be achieved in the sc-CO2 system

described in this work is shown in Figure 41. It is clear that mean AgNP size can be

tuned over an order of magnitude (20–200 nm) and particle density can be tuned over

three orders of magnitude (10−6–10−3 AgNP/nm2) simply by changing the tempera-

ture and substrate used in the deposition route, while the mechanistic considerations

described above account for the behavior observed in Figure 41. Moreover, under-

standing the mechanisms that govern the heterogeneous deposition of AgNPs in the

sc-CO2 system can ultimately lend insight into how to choose process conditions for

the end use application, which in this work is SERS.

The deposition of AgNPs on the glass substrates can be contrasted to the depo-

sition of CZTS on the SiO2 substrates described in Chapter 2. Since both substrates

are predominantly made of SiO2, one would expect that the morphologies of the de-

posited materials (CZTS and Ag) would be similar. However, such behavior is not

observed here, as CZTS forms a continuous thin film on the surface of SiO2 while

discrete AgNPs deposit on the glass substrate. One potential explanation is that the

Ag(hfac)(COD) precursor does not nucleate as well on SiO2 as well as the dithio-

carbamate precursors used for CZTS deposition. Alternatively, it is possible that

the temperature used in AgNP deposition (60 ◦C – 180 ◦C) is not high enough to

encourage film formation, whereas at 300 ◦C it was possible to form a CZTS film. At

the 180 ◦C condition it is possible that the AgNP are transitioning to a film. Last,
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the precursor concentration of Ag(hfac)(COD) may have been to low to enable film

formation.

5.3.8 SERS application of AgNP coated substrates fabricated in sc-CO2

SERS active surfaces were successfully fabricated on both silicon and glass substrates

under both plasma and HCl treatment conditions; R6G was detected at a concentra-

tion of 1 µM. Recent work by Stamplecoskie et al. showed that the SERS EF for R6G

on AgNPs depended linearly on the size of the nanoparticles in the range from 10–70

nm while the SERS EF varied over the range 1×105 to 3×105. Thus, although there

was an observed correlation between AgNP size and SERS EF, manipulating AgNP

size alone in this previous work did not afford a method for significantly tuning SERS

activity by orders of magnitude. Nonetheless, the SERS EF observed in the current

study were clearly within the range observed in the previous work. Furthermore, the

sensitivity of the SERS surfaces studied here (1 µM) was a three orders of magnitude

improvement over previous reports using sc-CO2 to fabricate SERS active surfaces

[118].

AgNP properties had a clear effect on SERS EF for two of the substrate/treatment

combinations studied in the current work. First, for AgNPs deposited on plasma

treated silicon surfaces, the SERS EF exhibited a maximum at 120 ◦C but significantly

lower values at 60 ◦C and 180 ◦C. This behavior is explained by considering the effects

of both nanoparticle size and surface coverage presented in Table 5. While the roughly

18 nm AgNPs fabricated at 60 ◦C on plasma treated silicon should be SERS active

according to previous reports, the surface coverage (0.035) is too low to effectively

support a significant SERS EF, calculated here to be 1×101 [118, 264]. At 180 ◦C, the

surface coverage of the Ag nanofilm (0.58) was high enough to sustain a SERS EF,

calculated to be 4×104 [216]. At 120 ◦C, discrete particles in the 40 nm range were

observed and the surface coverage (0.40) of the AgNPs was high enough to allow a
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SERS EF of 2105, in agreement with previous studies [264]. Thus, for plasma treated

silicon, there was a clear correlation between temperature and AgNP properties that

ultimately influenced SERS EF.

Second, for AgNPs deposited on plasma treated glass surfaces, another optimum

was observed at 120 ◦C. The same explanation is offered for this surface as for plasma

treated silicon: at 60 ◦C, the AgNP decorated surface did not have enough AgNPs

to enable a significant SERS effect, while at 180 ◦C the particles were not sufficiently

isolated, limiting localized surface plasmon resonance effects. For the other sub-

strate/surface treatment conditions studied, there were no clear relationships corre-

lating temperature to AgNP properties and their effect on SERS enhancement factor.

The overall lack of a clear relationship between AgNP properties and SERS EF

for HCl treated silicon and glass indicates that other factors may have influenced the

SERS effect. One possible explanation for this is the presence of other species on

the surface that somehow modulate the efficiency of the SERS active surface. For

example, previous reports have shown that the chloride anion can have an activating

effect in SERS, and chloride was detected by XPS on surfaces treated with HCl

[210, 225, 259]. Thus, it is possible that the presence of chloride ion on the surface

influenced the SERS enhancement factor in addition to the AgNPs on the surface.

It should also be noted that the most frequently observed SERS EF over all of

the conditions studied is on the order of 105. Previous reports have demonstrated

SERS EF using AgNPs on the order of 108–1012 with the ability to detect analytes at

concentrations of 10−12 M [48, 102, 170]. These studies achieve such high sensitivity

by fabricating anisotropic silver nanostructures or depositing spherical AgNPs on

more exotic substrates such as silicon nanowires [48, 102, 170]. Thus, future studies

should focus on ways to increase the SERS efficiency of surfaces modified in sc-

CO2 by exploring such alternatives. In particular, due to its lower viscosity and

zero surface tension compared to liquid processing methods, sc-CO2 is well-suited to
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deposit nanoparticles in two- or three-dimensional structures where liquids would be

transport limited for nanoparticle deposition by higher viscosity and surface tension.

5.4 Conclusion

The results presented here provide scientific insight into the underlying mechanisms

that control heterogeneous AgNP deposition on surfaces in the sc-CO2 system as well

as engineering insight into what parameters can be used to tune AgNP properties such

as size, density, and surface coverage. For plasma treated silicon, it was shown that

both the nucleation and growth processes were thermally activated and temperature

was used to tune both the nanoparticle size and density. For plasma treated glass

and HCl treated silicon, it was shown that the nucleation process was thermally

activated, and furthermore that the combination of substrate/surface treatment had

a significant effect on both the nucleation and growth processes by limiting nucleation

and/or growth (similar to Chapters 3 and 4) to ultimately cause competition for the

silver precursor.

While the exact molecular mechanisms of these processes remain uncertain, it is

clear from this work that temperature and surface chemistry significantly influenced

the nucleation and growth processes, ultimately influencing the size, particle density,

and surface coverage of AgNPs deposited on silicon and glass substrates. This chapter

advances the theme developed in Chapters 2 through 4 that the surface chemistry of

the substrate has a significant influence on the nucleation and growth of nanoparticles

in the sc-CO2 deposition system.

In addition, these results offer two simple, useful variables that can be used to tune

the properties of AgNPs deposited on substrates by the sc-CO2 system. The AgNPs

deposited on silicon and glass served as SERS active substrates that could detect R6G

at a concentration of 1 µM, which represents a three orders of magnitude improvement

over previous efforts to fabricate SERS substrates using sc-CO2. Furthermore, it was
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shown that the AgNP properties had a significant effect on the SERS efficiency.

Finally, this chapter concludes the PSP investigations carried out for sc-CO2 fabri-

cation techniques in this thesis. In the following chapters, novel experimental design

approaches are implemented to rapidly optimize the synthesis of nanomaterials in

sc-CO2. The AgNP deposition process described in this chapter is used as the model

system for implementing the novel experimental design methods described in Chap-

ters 6 through 8.
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CHAPTER VI

LAYERS OF EXPERIMENT WITH ADAPTIVE

COMBINED DESIGN

6.1 Introduction

In Chapters 2 through 5, the process-structure-property relationships of various nano-

materials synthesized in supercritical carbon dioxide were investigated. In this chap-

ter, the first novel experimental design methodology is developed and implemented

for optimizing the deposition of AgNPs on a silicon wafer surface in supercritical car-

bon dioxide. Here, optimization implies finding the process conditions (temperature)

that yields the desired mean nanoparticle size of the fabricated products. A short

introduction to the current methods used for experimental design under uncertainty

are described, and this is followed by a description of the contributions of the Layers

of Experiment with Adaptive Combined Design methodology.

Models are used by engineers and scientists to understand and improve a process.

Once a model has been built, it can be used to predict the results of future exper-

iments or locate optimum process conditions. Models can be either mechanistic or

empirical, depending on how they are constructed. Mechanistic models are based on

the fundamental physical laws that govern a process, such as a chemical reaction, in

order to fit the parameters in the system, such as reaction rate coefficients [169, 305].

Empirical models do not invoke a model structure from first principles; instead, a

simple model structure (e.g. polynomial) is selected and fit by the experimental data

[193]. In order to refine either type of model, it is often necessary to conduct sequen-

tial experiments based on results from previous experiments [2, 249]. Thus, planning
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experiments, selecting the best model structure, and refining this structure are dis-

tinct challenges for the experimenter constructing a model of a chemical process.

Mechanistic models generally have greater predictive power than empirical models

since they utilize fundamental scientific understanding of the process [31]. For this

reason, mechanistic models can be used with more confidence than empirical models

to extrapolate from the data, i.e., to predict responses outside of the region of exper-

imental data collection [28]. Lastly, mechanistic models can be reformulated if the

process under study changes in a significant way, without the need to collect data to

identify a new model from the very beginning, a step that would be necessary for an

empirical model [267].

Systems are often studied under highly idealized conditions to simplify the corre-

sponding mechanistic model. For example, a surface reaction system when studied

under ultra-high vacuum (UHV) conditions on a single crystalline surface is signifi-

cantly simplified compared to the actual conditions where a catalyst would be applied

[60]. This idealized system can be represented by a simpler mechanistic model than

would a more realistic reaction system at atmospheric pressure on a polycrystalline

surface; furthermore, it is possible to collect experimental data both in situ through

spectroscopy and ex situ through measurements of metrics such as conversion by using

this simplified system [20, 173, 205, 302].

To study more complicated and realistic surface reaction systems, previous reports

have combined mechanistic and empirical modeling techniques, making it possible to

study catalytic surface reactions over a wider range of pressure conditions and ma-

terials compared to UHV, single crystalline systems [3, 227]. For example, Vlachos

and coworkers have established models for hydrogen formation from methane and hy-

drogen oxidation on the surface of a polycrystalline platinum catalyst at atmospheric

pressure by implementing a hierarchical, multiscale modeling technique [186, 219].

This technique optimized the kinetic parameters while increasing the usefulness of
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the resulting models by incorporating thermodynamic data in the semi-empirical

model [65, 187]. Thus, it was possible to postulate a reaction mechanism, develop

a semi-empirical model based on this reaction mechanism and previously collected

data, refine the model, and validate it against further experimental data collected

outside the design window used to construct the model.

Nonetheless, not all chemical reaction systems can be confidently described from

first principles calculations, i.e., in terms of a postulated reaction mechanism. This is

especially true in advanced technology processes such as nanofabrication: it is chal-

lenging to simultaneously propose, select, fit, and optimize empirical and/or mecha-

nistic models for nanomanufacturing processes. In such cases, one common approach

is to implement a factorial experimental design. Xu et al. implemented a sequen-

tial fractional factorial experimental design approach to maximize the aspect ratio

of zinc oxide nanorods synthesized in a hydrothermal process [319]. Alternatively,

empirical or hybrid (semi-empirical) models can be proposed for complicated systems

where the underlying processes are difficult to describe mechanistically or are not well

understood. Wissmann and Grover proposed a novel sequential experimental design

methodology employing both empirical and hybrid models in order to optimize the

film roughness of a yttrium film fabricated in a chemical vapor deposition process

[310, 311]. The authors compared the use of a random (model free) design and a

D-optimal (model dependent) experimental design for conducting each experiment in

a sequential manner. The random experimental design was shown to be better than

the D-optimal design for finding the process optimum when conducting experiments

one at a time (i.e., not in a batch-wise manner).

While these approaches address critical challenges in experimental design for

nanofabrication, there are several key issues that remain unexplored. For example,

there may be significant uncertainty in the design region of a nanomanufacturing pro-

cess as well as uncertainty in model structure for the process. Moreover, conducting
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many experiments throughout an unknown design region is prohibitively expensive

in terms of both time and money for nanomanufacturing, motivating the need to

efficiently allocate the number of experiments necessary to model and/or optimize

a process. Lastly, it is often necessary to meet some engineering tolerance for a

nanofabrication process given significant uncertainty in either the design region or

model structure of a process. Consequently, it is vital to develop a systematic pro-

cedure to study and optimize a nanofabrication process that presents these three

distinct challenges.

These issues are addressed in the current work, which presents a novel sequential

experimental design methodology, termed Layer of Experiments (LoE) with Adaptive

Combined Design (ACD), to optimize a nanofabrication process. The LoE component

of this methodology can “zoom in” or “zoom out” to find the process optimum after

each round of experiments based on a novel uncertainty metric that takes into account

stochastic, parameter, and structural uncertainty. Consequently, this LoE algorithm

decreases uncertainty in the design region while also implementing an evaluation

metric to determine whether the model is sufficiently accurate for the engineering

tolerance specified by the investigator. Since experiments are conducted in layers (as

opposed to sequentially one at a time), characterization costs are reduced and random

blocking can be implemented to reduce experimenter bias. The ACD component of

the LoE/ACD method balances two goals: exploring the region around the process

optimum by using a space-filling design while refining the model parameters using a

D-optimal design. It should be noted that the LoE/ACD methodology is implemented

to model and optimize the mean behavior of a system and focuses on uncertainty of

the mean behavior, as opposed to uncertainty attributed to within- or between-batch

variance.

The proposed LoE/ACD methodology is implemented to model and optimize a

sc-CO2 assisted deposition process for silver nanoparticles (AgNPs). The sc-CO2
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Figure 46: Layers of Experiments with Adaptive Combined Design Algorithm. The
uncertainty metric L∗ is used to assess model accuracy in each layer of experiments

process is a nanofabrication technique that is environmentally friendly and has been

employed extensively to deposit metal nanoparticles on substrates for applications in

microelectronics [39, 303] and catalysis [168, 323, 328]. However, rigorous modeling

and optimization approaches to the sc-CO2 nanofabrication system have not been

pursued since it is a relatively new advanced technology that has a design region

with significant uncertainty, does not possess a well-defined model structure, and is

not easily characterized by in situ or ex situ techniques. Consequently, it is an ideal

system to study using the proposed experimental design methodology. The LoE/ACD

technique successfully reduced the design region sequentially, concentrated design

points around the process optimum, and found the process optimum by conducting

12 total experiments (six in each layer).

6.2 Methodology

The overall LoE/ACD approach is outlined in Figure 46. First, a set of experiments

is conducted and data is collected. Then, an empirical model is chosen and the model

is fit using the experimental data. Next, the accuracy of the predictions made by

the model is assessed. If the accuracy is within the engineering tolerance set by the
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experimenter, the model is deemed acceptable and used to optimize the process. If

not, the next subregion for experiments is selected using the LoE technique, design

points are chosen using the ACD methodology, and the algorithm iterates until the

accuracy of the model falls within the engineering tolerance set by the experimenter.

Each of these steps is described in detail below.

6.2.1 Model Selection

Several methods have been used to select the best model from a set of candidate

models based on experimental data. Three different methodologies are used here for

model selection: the Akaike Information Criterion (AIC) [38], the Bayesian proba-

bility (PB) [266], and the minimization of the confidence interval. The AIC is given

by:

AIC j = n(ln(2πMSE j) + 1) + 2pj (6)

where n is the number of experiments conducted, pj is the number of parameters in

model j, and MSEj is mean squared error:

MSE j =

∑n
i=1(y(xi)− ŷj(xi))2

n
(7)

where y(xi) are the observed experimental responses and ŷj(xi) are the responses

predicted by model j. The model structure with the smallest AIC is chosen as the

best fit for the data. The Bayesian probability PB is calculated as

PB = P (Mj)× 2−pj/2 ×MSE
−νe/2
j (8)

where P (Mj) is the a priori likelihood of model Mj and νe is the number of repetitions

for each data point. The model with the largest PB is chosen as the best fit for the

data. The confidence for model j interval is defined by:

CI j(x) = ±tα,n−pj
√
σ2
j (x) (9)
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where α is the confidence level selected by the experimenter. The predicted variance,

σ2
j (x), is given by:

σ2
j (x) = a(j)(AT

j A)−1a(j)T σ̂2
j (10)

The model variance, σ̂2
j , is given by:

σ̂2
j =

∑n
i=1(y(xi)− ŷj(xi))2

n− pj
(11)

which is similar to Eq. 7 except that pj degrees of freedom have been lost by assuming

a model structure and this must be subtracted from n in the denominator. a(j) is

defined as the row vector
∂ŷj
∂θ
|x and the design matrix for model j, Aj, is defined as

∂ŷj
∂θ
|xi

. The CI(x) function is optimized over the design space, and the model structure

with the smallest confidence interval is chosen as the best fit for the data. The model

fitting was carried out by least squares fitting in MATLAB R2010a.

6.2.2 Assessment of Model Accuracy

In this work, uncertainty on the mean prediction of the model is studied; modeling

of variance is not considered. Uncertainty in a model is usually divided into three

components: structural uncertainty, which deals with uncertainty in model structure;

parameter uncertainty, which introduces uncertainty due to estimation of model pa-

rameters that are not known exactly; and stochastic uncertainty, due to randomness

in the process that is difficult to reduce [62]. Parameter and stochastic uncertainty

are usually quantified using a confidence interval measurement; however, these do

not assess structural uncertainty. Since nanofabrication processes possess significant

structural uncertainty in addition to uncertainty within and between experimental

runs, it is important to assess all three types of uncertainty when deciding whether

a model is acceptable within engineering tolerance. However, this has not been pre-

viously pursued, to the best of our knowledge. Thus, a novel uncertainty metric, L,

was proposed and defined as [148]

L = max(|T − (ŷ(x) + CI (x))| , |T − (ŷ(x)− CI (x))|) (12)
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where T is the targeted value for the process output and CI(x) is the confidence

interval defined in Eq. 9. The uncertainty metric, L, is optimized over the design

space:

x∗ = min
x
L(x) (13)

The result of this optimization, L∗, is compared to some preselected engineering

tolerance, d. If L∗ > d, the algorithm dictates that the experimenter continue on to

the next layer of experiments in order to further refine the model and find the process

optimum. If L∗ ≤ d, the model is accurate to within the necessary engineering

tolerances specified by the experimenter and can be used to optimize the process.

Optimization routines were performed using the fminunc function in MATLAB 2010a.

6.2.3 Selection of Next Layer

A key component of the LoE methodology is the ability to “zoom in” or “zoom out”

on the next region for data collection. This procedure is important in efficiently

handling uncertainty in the design region: the next layer will “zoom in” on a design

region if the optimum is found within the selected region, or “zoom out” if the process

optimum is not found in the selected region and change the design window for the

next layer of experiments. In addition, this ability to “zoom in” is critical for the

efficient allocation of resources in a smaller design window near the process optimum.

The LoE procedure must balance the objective of decreasing the window for the next

layer as much as possible with the objective of assuring that the process optimum is

not left out of the next layer. The first step to choose a new layer is selecting the

center of the new region. This could be achieved by simply optimizing

min
x
|T − ŷ(x)| (14)

However, if there is significant uncertainty regarding the model structure (as will be

the case for a nanofabrication process), this is not desirable. Instead, bootstrapping is
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used to resample residuals to generate a distribution of center point values using mul-

tiple potential model structures and optimizing these models as described by Eq.14.

The details of this procedure are described elsewhere [148]. Once this histogram has

been constructed, the center of the new subregion, c∗, is calculated as the mean of

the most frequent bin in the histogram.

After the center point has been determined, the size of the next layer must be

chosen. As stated above, if the size of the subregion is too small, it may miss the pro-

cess optimum, while if too large, it may decrease the algorithm’s efficiency in finding

the optimum. It is necessary to use some rigorous criterion to choose the optimal size

instead of making an arbitrary choice. The histogram of all possible center points

can be used as an indicator for the decision of subregion size. Given a center point

c∗, as the subregion size increases, the probability for including the process optimum

in the new subregion also increases. The probability for the subregion to include the

true optimum with respect to a distance r from the center is given by

ψ(r) =
1

N

m∑
j=1

nj∑
l=1

I(c∗ − r ≤ c̃
(j)
lj
≤ c∗ + r) (15)

where nj is the total number of optimization steps performed on model j, m is the

highest order model that was used, N is the total number of optimizations (i.e. N =∑m
j=1 nk), c̃

(j)
lj

is the center point calculated using model j for the lth optimization,

and I is the indicator function. Then the size of the new subregion, r∗, is calculated

as

r∗ = min(r|ψ(r) ≥ α) (16)

where α is some confidence level determined by the experimenter. Once the new

subregion has been selected, the ACD methodology can be implemented to choose

design points in this layer.
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6.2.4 Adaptive Combined Design

Experimental designs can take several forms. They can be model based optimal de-

signs such as D-optimal [99], which excels in parameter estimation but must assume

some model structure which may be incorrect; or they can be space-filling, model-free

designs [56] (such as minimax or Latin hypercube), which can efficiently explore a

complex response surface for the process optimum. In order to balance different de-

sign goals, previous reports have applied combined criteria that combine experimental

designs in order to choose design points for a process. For example, Goel et al. imple-

mented a design where half of the data points were collected using a D-optimal design

and the other half were collected using a Latin hypersquare design [106]. Alterna-

tively, Joseph and Hung implemented a constrained design combining D-optimal and

T-optimal criterion, termed DT-optimal, where a tuning parameter was introduced to

control how the new criterion’s characteristics were weighted between D-optimal and

T-optimal [139]. The goals of this study were model discrimination and parameter

estimation.

In the current work, the goal is to find a process optimum for the sc-CO2 process

when no single validated model is available for the system at the outset. Thus, it

would be useful to incorporate both model-dependent and model-free designs. In

the ACD methodology proposed here, a new design criterion combining a D-optimal,

model-dependent criterion and a minimax, model-free design criterion is applied in

a constrained manner; to the best of our knowledge this has not been previously

attempted. The D-optimal design minimizes the determinant of the inverse of the

information matrix, M = ATA [27]:

min |(M)−1| (17)

For the model-free design, a minimax design is applied, which seeks to minimize the

distance between adjacent design points. Let ξ be the design of N points, x ∈ <k
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represent an arbitrary point in the feasible region, τ be the Euclidean distance, and

ρ(x, ξ) the distance between x and its closest design point [137]:

ρ(x, ξ) = min
xi∈<

τ(x, xi) (18)

Thus, the minimax design ξ∗ of N points has a distance

ρ∗ = min
ξ⊂Ω

max
x∈Ω

ρ(x, ξ) (19)

where Ω denotes a set of sites. In the combined design, the objective function to be

minimized is defined as:

κ
∣∣M(ξ)−1

∣∣+ (1− κ)ρ(ξ) (20)

where 0 ≤ κ ≤ 1 is the pre-specified weighting parameter. The details of applying this

criterion are described elsewhere [148]. An important feature of this methodology is

the rigorous selection of the weighting parameter, κ, for the next layer. This selection

should reflect the uncertainty in the current layer. The κ value in the kth layer is

defined as

κ = 1−
max (0, L∗k−1 − d)

L∗0 − d
(21)

where L∗0 is the evaluation metric with simple mean model ŷ(x) = µ+ ε and L∗k−1 is

the value of the L∗ metric in the previous layer.

6.3 Experimental Methods

The sc-CO2 deposition method has been detailed elsewhere (Chapter 5, so only a brief

description is offered here. This method was used to decorate a silicon wafer with

silver nanoparticles on the surface for application in surface enhanced Raman spec-

troscopy (SERS). Briefly, a 2 cm × 3 cm size silicon wafer purchased from University

Wafer (10–20 Ω·cm, (100), p-type) was cleaned in an oxygen plasma for 10 minutes

to populate the surface with reactive silanol groups. The substrate was placed in a 30

mL stainless steel reactor along with 50 mg of the silver precursor silver (I) hexaflu-

oroacetylacetonate cyclooctadiene (Ag(hfac)(COD)). The reactor was then charged
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Table 10: Results of first layer of experiments

Temperature (◦C ) Mean AgNP size (nm)

60 18.3
60 17.8
90 24.3
120 44.0
120 47.5
150 51.8

Figure 47: Typical SEM image used for data collection of AgNP size on silicon wafer

with 400 psi of hydrogen gas as reducing agent and the final pressure was increased

to 1500 psi by introduction of carbon dioxide from a Teledyne ISCO 500HP high

pressure pump. Surfaces were characterized using a Zeiss Ultra60 scanning electron

microscope operated at 3 mm working distance and 5 kV accelerating voltage. Im-

ages were analyzed using the Image Analysis Toolbox in MATLAB R2010a and mean

nanoparticle size was calculated based on this automated analysis.

6.4 Results and Discussion

For the first layer of experiments the model structure was completely unknown be-

fore collecting any data, therefore a space-filling design was used to choose design

points for the first layer of experiments. Results of these experiments are given in

Table 10. A typical SEM image is shown in Figure 47. The target mean nanopar-

ticle size, T , was chosen to be T = 40 nm. This value was selected because it was

shown to be an optimum nanoparticle size for silver nanoparticles used in SERS,
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Table 11: Model selection criteria for first layer

Model order AIC PB CI∗(x∗) L∗(x∗)

1 35.8 0.59 7.37(100) 8.05(115)
2 37.7 0.41 34.2(128) 38.3(113)

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
0

1 0

2 0

3 0

4 0

5 0

6 0  1 s t  o r d e r  m o d e l
 9 5 %  c o n f i d e n c e  i n t e r v a l
 L  m e t r i c
 T a r g e t
 D a t a  p o i n t s

Me
an

 na
no

pa
rtic

le 
dia

me
ter

 (n
m)

T e m p e r a t u r e  ( o C )
Figure 48: Linear model fit of data collected in the first layer of experiments with
95% confidence interval and the associated L metric

where nanoparticle decorated surfaces function to detect trace amounts of analytes

[264]. The SERS performance depends on the nanoparticle size falling within a tight

engineering tolerance [264], thus, d was chosen to be d = 5 nm. Fitting linear and

quadratic models to these data, all three metrics (AIC, PB, and confidence interval)

for model selection indicated that a linear model was the best fit (Table 11). After

fitting the linear model, the results of the optimization defined by Eq. 38 yielded an

L∗1 value of L∗1 = 8.05 nm, which was larger than the chosen engineering tolerance of

d = 5 nm. Figure 48 shows the linear model, observed data, the uncertainty metric

L1, the 95% confidence interval, and the target mean particle size as functions of

temperature. Since L∗1 > d, the LoE/ACD algorithm dictates that it is necessary to

move to the next layer to conduct more experiments to decrease uncertainty in the

model and locate the process optimum. A histogram of center points from both 1st
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Figure 49: Histogram of center points calculated from bootstrapping and using Eq. 14

Table 12: Results of second layer of experiments

Temperature (◦C ) Mean AgNP diameter (nm)

98 32.3
98 29.2
108 34.9
121 41.8
128 42.0
128 49.0

and 2nd order models was constructed by the method described in the Methodology

section, and n1 = n2 = 100 optimizations were carried out to calculate center points

for each model type (Figure 49). The mean of the most frequent bin was c∗ = 113

◦C, which was chosen as the center point for the next subregion. The size of the

next subregion was calculated using Eq. 15, and the results are shown in Figure 50.

Choosing an α level of α = 0.98, the size of the new window is calculated to be r∗ =

15 ◦C (dashed lines in Figure 50). Thus, the next layer is centered at 113◦C bounded

by [98 ◦C, 128 ◦C].

Subsequently, the ACD criterion was applied to choose design points in the next

layer. To calculate κ, which is the weighting factor between a minimax (κ = 0) and

99



0 5 1 0 1 5 2 0 2 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

ψ
(r)

T e m p e r a t u r e  ( o C )
Figure 50: Plot of ψ(r) versus r using Eq.15 on the data shown in Figure 49; the
horizontal dashed line indicates the α = 0.98 confidence level and the vertical line
corresponds to the window size of the next layer for this confidence level

Table 13: Model selection criteria for second layer

Model order AIC PB CI∗(x∗) L∗(x∗)

1 55.1 0.39 2.83(116) 2.83(117)
2 52.0 0.36 3.12(107) 3.25(113)
3 54.0 0.25 4.18(120) 5.15(113)
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Figure 51: Plot of linear and quadratic models fit in second layer of experiments

D-optimal (κ = 1) design, Eq. 21 was applied with a linear model for the D-optimal

design; this resulted in a κ value of κ = 0.836. Using this κ value, design points for

the second layer were calculated. This design and corresponding results are shown in

Table 12. The AIC metric for model selection indicated that a quadratic model should

be selected to fit these data, while the PB and confidence interval metrics indicated

that a linear model should be used (Table 13). The optimal value of the performance

metric, L∗2, for the linear and quadratic models were found to be L∗2 = 2.83 nm and

L∗2 = 3.25 nm, respectively. Either value was less than the specified engineering

tolerance, d = 5 nm. Since L∗2 < d, the model uncertainty is acceptable with respect

to structural, parameter, and stochastic uncertainty, indicating that the model was

sufficient and the algorithm was stopped. It should be noted that the design points

at 90 ◦C, 120 ◦C, and 150 ◦C came from the first layer of experiments but are used

here in addition to the design points specified from the ACD algorithm since they

are the next design points adjacent to the new design region. Linear, quadratic, and

cubic models for the data collected in the second layer are shown in Figure 51.
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The LoE/ACD sequential experimental design methodology was successful in sys-

tematically optimizing the sc-CO2 process under design region uncertainty, model

structure uncertainty, and a tight engineering tolerance specified by the experimenter.

While the simple model structures used in this work sufficiently described the sys-

tem’s behavior, it was not known a priori that this would be the case. The simplicity

of the resulting models built here does not decrease the significance or utility of the

LoE/ACD methodology since it would still be able to capture more complex model

behavior if it were present. Furthermore, the evaluation metric falling below the

specified engineering tolerance is an indicator that the process is repeatable, a signif-

icant conclusion despite the fact that the models used were simple. Moreover, the

systematic approach of the LoE/ACD methodology was shown to robustly handle

uncertainty in the design region by either “zooming in” on the design region that

contains the process optimum or “zooming out” if the optimum was missed in the

current layer. The ability of the LoE/ACD algorithm to “zoom in” or “zoom out” is

vital for studying the local behavior of a system near the process optimum; efficiently

allocate resources in a reduced, local design region; and meet the engineering toler-

ance specified by the investigator. In the current study, the LoE/ACD algorithm was

able to systematically “zoom in” on the process optimum, decreasing uncertainty in

the design region while efficiently allocating resources in the second layer of experi-

ments where the process optimum was found while meeting the specified engineering

tolerance. However, the LoE/ACD algorithm could have just as easily “zoomed out”

if the original design region chosen did not contain the process optimum. Thus, the

primary contribution of the LoE/ACD method presented here is the ability to effi-

ciently find the process optimum given a tight engineering tolerance in a minimum of

experimental runs despite uncertainty in the design region and a lack of foreknowledge

of the sc-CO2 system’s behavior.

In the first layer of experiments in the present work, six runs were conducted over a
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window size [60 ◦C, 150 ◦C]. In the second layer, six experiments were conducted over

a window size [98 ◦C, 128 ◦C]; four of the data points from the first layer were also used

in constructing the model at the second layer. Thus, the window size was decreased

while yielding a reliable model after conducting only 12 experiments. Furthermore,

the model constructed can be used to optimize silver nanoparticle deposition for the

conditions used in the sc-CO2 process over the range [90 ◦C to 150 ◦C] if different mean

nanoparticle sizes are desired for other applications. A linear model best described

the dependence of mean silver nanoparticle size on temperature in the first layer

(Table 10 and Figure 48). In the second layer, the AIC indicated that a quadratic

model was the best fit for the data while the PB and confidence interval suggested

that a linear model was the best fit (Table 11). When the linear, quadratic, and cubic

models are plotted along with the data, all three fit the data well (Figure 51). Indeed,

the evaluation metrics for both the linear (L∗2 = 2.83 nm) and quadratic (L∗2 = 3.25

nm) models were less than the desired engineering tolerance (d = 5 nm). This is an

instance where engineering knowledge of the system is useful in model selection. If it is

hypothesized that nanoparticle size increases monotonically with temperature in this

system, the linear model may be the better choice. Alternatively, if it is hypothesized

that the nanoparticle size will reach some type of limit as temperature increases, a

quadratic model may be better, although this would necessitate further experiments

above 150 ◦C in this system to validate this model, an unnecessary step if the model

is to be refined only near the process optimum. The AIC, PB, and CI(x) values all

indicated that the cubic model would be a poor choice and yield an evaluation metric

L∗2 = 5.15 nm which was greater than the engineering tolerance and d = 5 nm.

In the first layer of experiments, a space-filling design was applied since there

was no foreknowledge of what the underlying model structure would be. In the

second layer, the ACD methodology was applied to balance the experimental design

between minimax and D-optimal. The weighting value κ between these two values
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was κ = 0.836, which indicates that the design applied was weighted toward a D-

optimal design. This reflects the fact that the model built in the first layer yielded

an uncertainty metric L∗1 = 8.05 nm which was relatively close to the engineering

tolerance specified by the experimenters from the start (d = 5 nm). If the model

constructed in the first layer yielded a larger L∗1 value, implying more uncertainty

in the model structure and parameters, the ACD methodology would have dictated

a weighting toward a minimax design in order to “spread out” design points and

explore the design space more thoroughly. For example, if L∗1 were instead L∗1 = 20

nm, the resulting κ value would have been κ = 0.194, yielding a design more heavily

weighted toward the minimax design in Eq. 20, reflecting a higher degree of model

uncertainty; the selection of the κ parameter is another example of how the LoE/ACD

methodology can simultaneously handle both design region and model uncertainty.

The experimental design in the second layer, bounded by [98 ◦C, 128 ◦C], was

[98 ◦C, 98 ◦C, 108 ◦C, 121 ◦C, 128 ◦C, 128 ◦C]. The design points placed at the

boundaries of the second layer reflect the D-optimal design employed in the ACD

technique; if a purely D-optimal design were implemented, the design points would

have been only at the boundaries of the design region (108 ◦C and 128 ◦C) because a

linear model was used to make the D-optimal design of the second layer. Instead, the

points at 108 ◦C and 121 ◦C reflect the minimax design employed in the ACD and are

important to further explore points around the process optimum. Consequently, the

ACD methodology successfully balanced the opposing design goals of design space

exploration using the space-filling, minimax design and parameter estimation using

the model-dependent, D-optimal design. In addition, it was noted that three data

points from the first layer were incorporated into the model construction in the second

layer. However, the ACD algorithm did not take these points into account when

constructing the design for the second layer, a consideration that may improve the

ACD methodology in future studies.
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6.5 Conclusion

A novel sequential experimental design methodology, termed Layers of Experiment

with Adaptive Combined Design, was implemented to study an elevated pressure,

elevated temperature carbon dioxide nanoparticle deposition process. It was shown

that the LoE/ACD algorithm was able to robustly study and optimize the sc-CO2

system under significant uncertainty in the design region and model structure in

addition to a tight engineering tolerance. The LoE component of this technique

decreased the design space to be explored from [60 ◦C, 150 ◦C] to [98 ◦C, 128 ◦C]

while increasing reliability in the model built around the target nanoparticle size,

T = 40 nm. The ACD component of this technique balanced the design goals between

a space-filling, minimax experimental design that explores the design space around

the process optimum and a model-based, D-optimal design that seeks to improve

the model structure. Conducting only 12 experiments in two layers, the LoE/ACD

approach was able to rapidly find the process optimum for this system and yield

models that can be used with confidence in statistical inference for this advanced

technology process.

In Chapter 7, the LoE/ACD methodology is implemented to optimize the sc-CO2

deposition system for a mean AgNP size of T = 20 nm. The efforts outlined in

Chapter 7 highlight the ability of the LoE/ACD methodology to zoom out and zoom

in on regions where the process optimum is located.
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CHAPTER VII

A SECOND CASE STUDY FOR LAYERS OF

EXPERIMENT WITH ADAPTIVE COMBINED DESIGN

7.1 Introduction

In this chapter, the LoE/ACD methodology developed in Chapter 6 is applied to

optimize the AgNP deposition process for a target AgNP size of T = 20 nm. This

LoE/ACD algorithm was able to find the process optimum for a nanoparticle depo-

sition process using the CO2-assisted process by conducting eight experiments in two

layers. In the first layer, the target mean nanoparticle size was not achieved, exem-

plifying uncertainty in design region for this process. Consequently, the LoE/ACD

algorithm redirected the second layer of experiments to a new design region, resulting

in the successful optimization of the process at 69 ◦C.

7.2 Experimental Methods

7.2.1 Layers of Experiments with Adaptive Combined Design

The LoE/ACD algorithm begins by conducting a set of experiments and collecting

data. Then, a model (empirical or otherwise) is chosen and the model is fit using

the experimental data. Next, the accuracy of the predictions made by the model is

assessed. If the accuracy is within the engineering tolerance set by the experimenter,

the model is deemed acceptable and used to optimize the process. If not, the next

subregion for experiments is selected using the LoE technique, design points are chosen

using the ACD methodology, and the algorithm iterates until the accuracy of the

model falls within the engineering tolerance set by the experimenter. Each of these

steps is detailed below.
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7.2.1.1 Model selection

Polynomial models for data were selected using the Akaike information criterion (AIC)

and Bayesian probability (PB). Methods for calculating these metrics are given else-

where [38, 266].

7.2.1.2 Assessment of model accuracy

A target size T = 20 nm and an engineering tolerance d = 5 nm were chosen with

surface enhanced Raman spectroscopy (SERS) as the motivating application [264].

The evaluation metric, L, is implemented to assess the model accuracy and is defined

as [148]:

L = max{|T − (ŷ(x) + CI(x))| , |T − (ŷ(x)− CI(x))|} (22)

where ŷ(x) is the fitted model and CI(x) is the confidence on the model prediction.

If L > d, the LoE algorithm specifies that a new layer with additional experiments is

necessary. If L ≤ d, the model is sufficiently accurate and the LoE/ACD algorithm

stops.

7.2.1.3 Selection of next layer

The next step in the LoE algorithm is choosing the location and size of the next layer

(subregion). To choose the center of the next layer, the optimization problem

minx |T − ŷ(x)| (23)

is solved nj times for each candidate model j by calculating residuals of the model

ŷ(x) and experimental responses y(x), randomly resampling (bootstrapping) these

residuals to formulate synthetic response variables, fitting each candidate model to

these synthetic responses, and solving Equation 23. A histogram of the center points

calculated from each optimization of each candidate model, c̃lj, is created; the mean

of the most frequent bin in the histogram is chosen as the center point for the next

layer, c∗. To choose the size of the next layer, the histogram of potential center points
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is used: as the size of the subregion increases, the probability for the subregion to

include the true optimum with respect to a distance r from the center is given by

[148]:

ψ(r) =
1

N

m∑
j=1

nj∑
l=1

I(c∗ − r ≤ c̃lj ≤ c∗ + r) (24)

where N is the total number of optimizations performed (i.e., N =
∑m

j=1 nj) and is

the number of candidate models used in the optimization routine.

7.2.1.4 Adaptive combined design

A combined design methodology is implemented to choose design points in the lay-

ers used in the LoE/ACD methodology. This combined design uses a constrained

approach to weight and optimize the design based on two criteria: one for a model

free, minimax design, and one for a model dependent, D-optimal design. Let ξ be the

design of N design points; then we define ρ(ξ) as the metric to be minimized that

yields a design minimizing the maximum distance between adjacent design points. A

D-optimal design seeks to minimize the determinant of the inverse of the information

matrix for the most probable model, that is,
∣∣M(ξ)−1

∣∣. Thus, the weighted combined

design metric to be optimized is [148]:

κ
∣∣M(ξ)−1

∣∣+ (1− κ)ρ(ξ) (25)

where 0 ≤ κ ≤ 1 is the weighting factor between these two design metrics. The

parameter κ is calculated as:

κ = 1−
max{0, L∗t−1 − d}

L∗0 − d
(26)

where L∗t−1 is the L∗ metric from the previous layer and L∗0 is the L metric calculated

fitting a simple mean model ŷ(x) = µ+ ε.

7.2.2 Experimental procedure

The silver nanoparticle deposition method by elevated pressure, elevated temperature

CO2 has been detailed elsewhere (Chapter 5), so only a brief description is presented
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Table 14: Results of experiments and model selection criteria in first layer

Temperature (◦C) Mean AgNP size (nm) Model order AIC PB

120 44 1 26.1 0.59
130 41.6 2 28.1 0.41
140 55.2
150 51.8

here. A 2 cm x 3 cm silicon wafer ((100), p-type, 10–20 Ω cm) was purchased from

University Wafer and cleaned in an oxygen plasma to populate the surface with re-

active silanol groups. The substrate was loaded into a stainless steel high pressure

reactor with the organometallic precursor, silver hexafluoroacetylacetonate cyclooc-

tadiene, hydrogen as reducing agent, and carbon dioxide. The reaction was run at

103 bar at the specified temperature. Products were characterized by a Zeiss Ultra60

scanning electron microscope (SEM), and mean nanoparticle sizes were extracted

from SEM images using automated image analysis in MATLAB 2010a.

7.3 Results and Discussion

7.3.1 First layer

A space-filling experimental design was chosen for the first layer of experiments in the

region [120 ◦C, 150 ◦C]. Results from these experiments are shown in Table 14. The

AIC and PB indicated that a linear model was the best fit for the data. Using a linear

model, the L∗ metric was calculated to be L∗ = 38.8 nm at x∗ = 130 ◦C (Figure 52).

Since L > d, the LoE/ACD algorithm dictated that another experimental layer was

necessary to optimize the process.

7.3.2 Second layer

The center and size of the next subregion were calculated using the procedures de-

scribed above. The histogram of center points is shown in Figure 53a; the mean of the

most frequent histogram was c∗ = 63 ◦C, which was chosen as the center of the next
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Figure 52: Linear model fit of data collected in first LoE with 95% confidence intervals
and L metric

Table 15: Results of experiments and model selection criteria in second layer

Temperature (◦C) Mean AgNP size (nm) Model order AIC PB

44 12.1 1 39.9 0.54
56 17.3 2 40.3 0.46
69 19.2
82 24.1
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Figure 53: (a) Histogram of potential center points (b) ψ(r) vs. r; dashed lines
indicate 99% confidence level and window size
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Figure 54: Linear model fit of data collected in second LoE with 95% confidence
interval and L metric
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Figure 55: Typical SEM image of silver nanoparticles on silicon wafer surface

region. The size of the next window was chosen using Equation 24 to be 25◦C, cor-

responding to a ψ level chosen to be ψ = 0.99 in Figure 53b so that there is a higher

degree of confidence that the optimum lies in the design region than confidence in the

model prediction (with confidence interval of 95%). The value for κ was calculated to

be κ = 0.01 from Equation 26; using this value in the ACD algorithm resulted in an

experimental design that is essentially minimax due to the weighting. Results from

this design are given in Table 15; the AIC and PB metrics indicated a linear model

should be fit to the data in this window. Using this model, L∗ was calculated to be

L∗ = 2.49 nm. Since L∗ ≤ d, the model was sufficiently accurate to within engineer-

ing tolerance and accepted; the plot of this model is shown in Figure 54, along with

the 95% confidence interval and the L metric. Figure 55 shows a typical SEM image

with silver nanoparticles deposited on a silicon wafer surface.

The goal of the LoE/ACD methodology was to rapidly and systematically optimize

the sc-CO2 AgNP deposition process under uncertainty in model structure, design

space, and an engineering tolerance requirement on the mean AgNP size, T = 20

nm. The investigators chose the design region [120 ◦C, 150 ◦C] as the initial layer in

which to conduct experiments; however, results indicated that this was a poor choice

for the chosen target. This is an example of how uncertainty in the design region for

a system can affect process optimization. Nonetheless, the LoE/ACD algorithm was

able to efficiently redirect the second layer of experiments to a region that was likely
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to contain the process optimum. However, due to the uncertainty in model structure

from the previous layer of experiments (i.e. the relatively large L∗ value in the first

layer), the weighting parameter between the minimax design and D-optimal design

was weighted significantly toward the minimax design in the ACD algorithm. This is

because a space-filling design like a minimax design is model free, so it will not suffer

bias from a poor model choice in constructing an experimental design; consequently,

the design points chosen for the second layer were well “spread out” in order to locate

the process optimum.

The results of these experiments indicated that the process optimum did indeed

fall within the design region explored in the second layer. Furthermore, the small

L∗ metric (L∗ = 2.49 nm) indicated that the linear model structure selected for

the specified target in this region was acceptable. If a further layer of experiments

were to be conducted, the weighting factor κ would be κ = 1, weighted completely

toward the D-optimal design since there is a higher degree of confidence in the linear

model in this region of the design space. These experiments based on the model

dependent D-optimal design would refine the model parameters. Last, the method

can be generalized to multiple independent variables (such as pressure or reaction

time).

7.4 Conclusion

The LoE/ACD methodology was implemented to optimize a silver nanoparticle de-

position process under structural uncertainty, design region uncertainty, and an engi-

neering tolerance requirement. After eight experiments conducted in two sequential

layers, the algorithm found the process optimum at T = 69 ◦C for a target mean

nanoparticle size of d = 20 nm with a tolerance of d = 5 nm.

In the next chapter of this thesis, an initial experimental design methodology is

developed for planning the first round of experiments for a system that is expensive
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to study (in terms of time and money), not well understood, and related to a similar,

non-identical system. This methodology is implemented to plan the first round of

experiments for iridium nanoparticle deposition in sc-CO2 based on prior data for the

AgNP deposition system in sc-CO2 as well as expert conjecture.
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CHAPTER VIII

INITIAL EXPERIMENTAL DESIGN INCORPORATING

PRIOR DATA, ENGINEERING MODELS, AND EXPERT

OPINION

8.1 Introduction

In the final chapter of this thesis, an initial experimental design methodology is

developed and implemented to plan the first round of experiments for a system that

is expensive and time-consuming to study, not well understood, and is related to (but

non-identical to) another system.

The methodology termed design of experiments (DoE) encompasses many statisti-

cal approaches that seek to study the behavior of a system where variation is present

[30, 193, 243]. For example, factorial designs are implemented to study behavior in a

system where multiple independent variables can influence behavior and it is unclear

which variables have the most effect on the system output [30, 190]. The factorial

design approach seeks to separate the main effects (due to a single independent vari-

able) and interaction effects (due to the influence of multiple independent variables)

that can influence the system output, and a polynomial model is then developed to

predict the future output of the system and/or optimize the system [61, 295, 319].

A vital factor to consider when implementing any DoE approach is how to choose

which experiments to run within the design space. If a system is expensive to study

in terms of time and money, running many experiments within the design space to

find the process optimum is infeasible and undesirable. For instance, many advanced

technology processes, such as nanofabrication methods in nanotechnology, cannot

be evaluated cost effectively via many experiments due to expenses associated with

115



running experiments (e.g., energy and capital costs) and/or product characterization

(e.g., costs associated with electron microscopy and/or device fabrication) [120, 150,

175].

Furthermore, it is often the case that a new process in nanotechnology to be

optimized may be similar but non-identical to a previously studied, older process.

A purely statistical approach to designing experiments on the new process would

implement a space-filling design. The most straightforward of these is a uniform

design, where the design points are placed the same distance away from one another

[87]. A Latin hypercube approach is also applicable to fill a design space when a

model is not known for a system [265]. However, since the space-filling design will

fill the entire design space selected by the investigator, some experiments may be a

waste of resources if far from the process optimum. Moreover, if there are multiple

process inputs that must be optimized, the multidimensional space-filling would likely

dictate an infeasible number of experiments. Last, any domain knowledge that may

exist for the older, related system is not used when designing experiments, losing an

important advantage for judiciously selecting design points.

On the other hand, it is possible to rely solely on specific domain knowledge

of the system to guide the experimental design, avoiding the use of a traditional

DoE approach. A domain-knowledge oriented approach may focus more on areas

of interest to the investigator compared to a purely statistical approach. However,

it is possible that the selection of the design space is incorrect, or that the domain

knowledge is incomplete and insufficient to effectively guide the experimental design.

Thus, resources would be wasted and the process optimum may never be found using

only domain knowledge.

Consequently, choosing a purely statistical or a purely domain knowledge-oriented

approach to selecting design points for a new system may lead to inefficiencies and
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wasted resources while attempting to find the process optimum in the initial ex-

perimental design. In order to overcome this challenge, Vastola developed a novel

methodology, termed here Initial Experimental Design (IED), that is a hybrid of sta-

tistical and domain knowledge-based approaches for designing experiments for a new

system when a related, older system exists [291]. Previous approaches have been used

to combine data from multiple sources, such as experimental data and expert opin-

ion, in selecting an experimental design [121, 138, 144, 234]. The contribution of the

current IED approach is that it synthesizes expert opinion, statistical experimental

design, prior data on a non-identical system, and engineering models for choosing the

initial design region for the new system.

As a demonstration of the potential utility of the IED approach, Vastola examined

data from a study by Zong and Watkins for the supercritical carbon dioxide-mediated

synthesis of copper thin films on silicon [291, 335]. Vastola analyzed data relating

thin film growth rate, R, as a function of precursor concentration, [P], in the work

of Zong and Watkins as prior data in the IED methodology [291]. While data for R

vs. hydrogen concentration, [H2], was reported by Zong and Watkins as well, Vastola

treated this data as “unknown” and implemented the IED approach to design ex-

periments for studying R as a function of [H2] [291]. The investigators incorporated

the prior data of R vs. [P] with hypothetical expert opinion while implementing the

IED methodology to generate a combined model that was used in selecting design

points for studying the variation of R with hydrogen concentration. This work re-

sulted in an initial design for studying the dependence of R on [H2] that balanced

a space-filling, maximin design (reflecting uncertainty in the design space) with an

objective-oriented optimization design (reflecting prior data and expert conjecture

for the system). While this application by Vastola showed the potential use of the

IED methodology, it was not applied to guide actual experiments conducted in the

laboratory and thus could not be fully validated [291].
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In the present work, we apply the approach developed by Vastola to select the

initial experimental design points in the deposition of iridium nanoparticles (IrNP)

from an organometallic precursor, iridium (I) hexafluoroacetylacetonate cycloocta-

diene (Ir(hfac)(COD)), on a Si wafer surface [291]. This study also makes original

contributions to Vastola’s approach by using a survey instrument to elicit expert re-

sponses, resolving conflicts between expert opinions, and using a local model approach

to select experiments in the subsequent experimental design layer. The previous data

and system for the current study come from the work of Casciato et al., where silver

nanoparticles were deposited on a silicon wafer substrate [43, 44]. Thus, the main

difference between the two systems is the selection of precursor: Ir(hfac)(COD) for

the “new” system and Ag(hfac)(COD) for the “old” system. The new model system

using Ir(hfac)(COD) was chosen because it is costly to study in terms of time and

money and also has not been extensively studied in previous work using sc-CO2 de-

position techniques: this precursor has been used in limited cases for Ir deposition in

vacuum-based chemical vapor deposition techniques [316, 317]. In the current work,

IrNPs with a mean size of 40 nm and within a tolerance of 5 nm were targeted for

deposition since iridium nanoparticles have application in catalysis and biosensors,

and the size of the particles is often important for optimal function [98, 128, 326].

Expert opinions were elicited from four investigators, each of whom has more than

ten years of experience in the area of nanomaterials synthesis, via a survey instrument

that was distributed via e-mail.

The results of the present study show that the IED methodology was able to

successfully plan experiments near the predicted optimum based on the experts’ con-

jectures. However, two morphologies were observed for the deposited IrNPs. In one

morphology, the particles were small (nanoscale) and discrete. For these particles,

the target mean size of 40 nm was achieved, and an Arrhenius model was fit to the

data. However, the tolerance on the model predictions did not fall within the 5
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nm engineering tolerance set by the investigators, so additional experiments would

be necessary to refine the Arrhenius model to meet this tolerance. In the second

morphology, the particles were large (near microscale) and agglomerated. A discus-

sion of the performance of the IED methodology along with the obtained results is

presented.

8.2 Methodology

8.2.1 Summary of the IED methodology

Vastola gives a thorough treatment of the IED methodology that is applied in this

work [291]. Thus, a summary is presented of the steps taken to implement the IED

methodology as it was applied to the current system (deposition of Ir nanoparticles)

based on data from the old system (deposition of Ag nanoparticles) given expert

opinion and engineering models. These steps are:

1. Choose a location and size for the design window based on experts’ responses

and confidences

2. Build individual models based on each expert’s responses and respective confi-

dences

3. Build a unified model based on the individual models and the experts’ respective

confidences in the individual models

4. Choose experimental design points based on the unified model, balancing be-

tween space-filling and objective-oriented designs

8.2.2 Survey for expert conjecture

A short survey was developed to elicit responses from experts in the field of nanoma-

terials synthesis for the deposition of IrNP in sc-CO2 based on prior data for AgNP

deposition in sc-CO2. Approval of the Georgia Institute of Technology’s Institutional
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Review Board (IRB) was obtained prior to distributing the surveys via e-mail. The

survey instrument used is available in Appendix B. In the prior work on AgNP

deposition, the range of deposition was [60 ◦C, 150 ◦C], and Casciato et al. imple-

mented an Arrhenius model to describe the mean nanoparticle size, ȳ, as a function

of temperature:

ln(ȳ) = β0 −
Ea
RT

(27)

where β0 is a fitting parameter related to the pre-exponential factor in the Arrhenius

equation, R is the ideal gas constant, and Ea is the effective activation energy [43, 44].

The Arrhenius plot included in the survey and based on data from Casciato et al.

is shown in Figure 56, along with the estimated values for β0 and Ea. Given this
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Figure 56: Arrhenius plot of prior data from AgNP deposition experiments in sc-CO2

[43, 44]

information, experts were asked for their best conjectures for the following:

1. Location and size of the design region and confidence in this conjecture
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2. Values of the parameters in the Arrhenius equation (β0 and Ea) and confidence

in these conjectures

3. Confidence that the IrNP system can be modeled using the Arrhenius equation

Experts reported confidence on a scale of 0–10, with 0 denoting a complete guess in

the conjecture and 10 denoting absolute certainty in the conjecture. For the model

parameters, experts were asked directly for their conjectures about Ea but indirectly

for their conjectures of β0. This was done by asking the experts for their conjecture of

the mean IrNP size in the center of their chosen design space and extrapolating their

resulting individual model to its y-intercept. Each of these conjectures is used in the

following sections that are concerned with choosing the design window, building the

individual models, building the unified model, and choosing the experimental design.

8.2.3 Choosing the experimental design window

The first step in the IED methodology is selecting the size and location of the exper-

imental design window. Since the chemical and physical properties of the precursors

used in the previous system and current system are different, it is likely that the

temperature ranges for nanoparticle deposition from the Ag and Ir precursors are dif-

ferent. Thus, experts were asked to give their conjectures for the lower bound (LB)

and upper bound (UB) on the design window for the current system, in the form of

a 95% confidence interval for both the LB and UB. The experts were also asked to

rate their confidence in this conjecture with a single value on a scale from 0–10. This

approach synthesizes the experts’ knowledge in choosing the region for the design

window and resolves potential conflicts in the experts’ opinions given via the survey.

The unified design window based on all experts’ responses was determined by

using the reported confidence as a weight on the smallest value in the LB and largest

value in the UB. Thus, if Expert i’s responses were of the form [ai, bi] for the 95%

confidence interval of the LB and [ci, di] for the 95% confidence interval of the UB,

121



then the unified lower bound, LBU , based on all experts’ responses would be calculated

as:

LBU =
n∑
i=1

uDi ai∑n
j=1 u

D
j

(28)

where uDi is the confidence of expert i in this conjecture about the design region and

n is the number of experts surveyed. The same approach is implemented to calculate

the unified upper bound, using di in the summation instead of ai. The individiual

models are then built over this design window, as detailed in the next section.

8.2.4 Building individual models based on expert opinion and prior data

The next step in the IED methodology is to develop individual models based on each

expert’s responses for the conjectured model parameters as well as prior data from

the previous system. A summary of the approach Vastola proposed is provided here

as it is applied to this work [291].

The response data for the old system, Ỹ, was updated to that of the new system,

Y. This was achieved using the difference between the Arrhenius model predictions

for the old system, g(X, β̃), and that of the current system, g(X, β), in the updated

design window given by each expert, X. The updated response data is then:

Y = Ỹ + (g(X, β̃)− g(X, β)) (29)

where β̃ are the parameters for the old system and β are the conjectured parameters

for the new system, taken from the midpoint of the expert’s conjecture. A model based

on each individual expert’s conjectures and the prior data could then be fit to this

pseudo-data. However, it is unlikely that the values for β and X are known exactly,

and this misspecification may be significant and should not be ignored. Consequently,

the 95% confidence intervals specified by the experts for the design region lower bound,

design region upper bound, β0, and Ea were used to add variance terms to the models.

Similarly, the model for the new system may be misspecified; an additional variance

term is added to g(X, β) to account for this uncertainty. Introducing these variance
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terms to the model makes it a hierarchical Bayes model [63, 104]. This step increases

the model’s utility by assuming it is not possible to precisely know the conjectured

design region and parameters. With these variance terms included in the Bayesian

hierarchical model, the model is then simulated using Gibbs sampling. The result is

an Arrhenius model with updated parameters based on the conjectures of each expert

and the prior data for the AgNP system. These models are then unified via weighting,

as detailed in the next section. For an in-depth treatment of the implementation of

this hierarchical model, see Vastola [291].

8.2.5 Building a unified model

The unified model is built using the experts’ confidence (on the 0–10 scale) in the con-

jectured design window, conjectured parameters, and confidence that the Arrhenius

model structure is correct. Each confidence is considered a probability (p(Design),

p(Parameters), and p(Structure), respectively) that the conjecture is correct, and

these independent probabilities are multiplied together to calculate the total trust

each expert has in his or her individiual model, ûi(x):

ûi(x) = p(Design)× p(Parameters)× p(Structure) (30)

Then the weight given to expert i’s opinion (i.e., the normalized trust) is denoted as:

wi(x) =
ûi(x)∑n
i=1 ûi(x)

. (31)

The unified model, Y (x), is then defined as

Y (x) =
n∑
i=1

wi(x)Y i(x). (32)

where Y i(x) is expert i’s individual model. Using the experts’ confidences for weight-

ing these models is another contribution of the present work. This unified model is

then used to simulate predictions for use in selecting the experimental design points

in the design window; results are presented in the next section.
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8.2.6 Choosing the experimental design points

A minimum energy design (MED) is used to choose the experimental points within

the design window [64]. The concept of the MED can be understood through a simple

example. Consider n positively charged particles: if they are all placed into a box,

they will spread out in such a way to minimize the energy of the system of particles.

The analogy to the experimental design is that the location of the particles represents

the design points and the design window is the box where the particles are placed.

As charge increases for a design point, the nearest design points are pushed farther

away, and vice versa. The total potential energy for this type of experimental design

is

En =
m−1∑
i=1

m∑
j=i+1

q(xi)q(xj)

d(xi,xj)
(33)

where m is the total number of experimental design points, d is the Euclidean distance

between design points, and q is the charge of design point xi. Vastola defined this

charge function so that an expert’s confidence in the individual model and how close

the model comes to the target nanoparticle size, TNP , both influence the charge and

subsequently the experimental design [291]. The probability that the model response

at a point x is within a tolerance d of the target size, TNP , is defined as

p(x) ≡ P (TNP − d ≤ Y ∗(x) ≤ TNP + d) , (34)

Thus, the charge at any point xi is defined as

q(xi) = (1− f(p(xi),u(xi)))
γ (35)

where u(xi) is the vector with the j-th position possessing the trust level in model j

at the design point xi, γ is a tuning parameter set by the investigator. The function

f was defined by Vastola as [291]:

f(p(xi),u(xi)) = p̃(xi) + sgn (m− p̃(xi)) (m−mû(xi))

∣∣∣∣ p̃(x)

m
− 1

∣∣∣∣ (36)
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The function f is defined as in Eq. 36 because it gives the overall charge function q

several properties that make it well-suited to balancing the statistical and experimen-

tal design goals described above [291]. The tuning parameter γ was shown to balance

a space-filling maximin design (for γ approaching zero) with an objective-oriented

design that focuses design points around the process optimum (for large γ). It was

also shown that the magnitude of γ that gives the objective-oriented design depends

on the particular system and process under study, so absolute values for γ are not

meaningful comparing across systems.

After the charge function q was defined, a modified Fedorov exchange algorithm

was applied to minimize Eq. 33 in the MED [89]. This algorithm iteratively tests

designs in the search region; if the next design tested decreases En, the design is kept

until updated by a future design that decreases En even further, until a minimum is

reached.

8.3 Experimental Methods

8.3.1 Materials

Carbon dioxide gas (99.99%) and hydrogen gas (99.99%) were purchased from Air-

gas. The organometallic precursor iridium hexafluoroacetylacetonate cyclooctadiene

(Iridium(hfac)(COD)), methanol, acetone, and isopropyl alcohol were purchased from

Sigma Aldrich and used as received. Test silicon wafers (p-type, 10–20 Ω·cm, (100))

were purchased from University Wafer. The substrates were cut into 2 cm x 3 cm

pieces and rinsed with methanol, acetone, and isopropyl alcohol sequentially, then

dried under a gentle stream of N2. Substrates were subjected to 10 minutes of clean-

ing in an oxygen plasma in a Harrick PDC-32G Plasma Cleaner.

8.3.2 Nanoparticle deposition

In order to deposit IrNPs on the substrates under study, 50 ± 0.1 mg of the Ir(hfac)

(COD) precursor was loaded into a 30 mL hot wall stainless steel reactor along with
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the substrate. The reactor was initially pressurized by 400 ± 10 psi of hydrogen, then

brought to 1500 ± 10 psi pressure by introduction of carbon dioxide by a Teledyne

ISCO 500HP pump; the reactor configuration has been previously described [161].

During pressurization, the reactor was simultaneously heated to the desired tempera-

ture using heating tape. Temperature and pressure were monitored by a thermocouple

inserted into the center of the reactor and a pressure transducer, respectively. The

reaction was allowed to run for two hours, followed by depressurization over a 10

minute period and removal of the products.

8.3.3 Characterization

Scanning electron microscope (SEM) images were recorded using a Zeiss Ultra60

SEM operated at 5 kV accelerating voltage and 4 mm working distance. Image

analysis of SEM images was carried out automatically using the regionprops function

in MATLAB 2010a. Energy dispersive X-ray (EDX) analysis was carried out on the

same Zeiss Ultra60 SEM with an accelerating voltage of 20 kV and a working distance

of 8 mm.

8.4 Results and Discussion

The survey responses regarding the size of the design window are shown in Table 16,

the responses regarding the model parameters are shown in Table 17, and the ex-

perts’ confidence in whether the model structure is Arrhenius are listed in Table 18.

From the responses in Table 16, it is clear there was significant conflict among the

experts for the location of the design region. The approach adopted in this work

synthesizes the experts’ responses to resolve these conflicts in choosing the region for

the design window. Given the responses in Table 16, Eq. 28 was used to determine

that the window for the unified design region was [45 ◦C, 190 ◦C]. Once this de-

sign window was established, the individual models were built using the hierarchical

Bayesian model with Gibbs sampling described in the Methodology section using the
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Table 16: Expert survey responses for conjectures of the design window and confidence
in conjecture for IrNP deposition in sc-CO2. Intervals denote 95% confidence interval

Expert Conjectured LB Conjectured UB Confidence in LB and UB choices

1 [40,50] [190,210] 4
2 [60,100] [140,170] 7
3 [60,120] [150,250] 3
4 [0,30] [130,150] 3

Table 17: Expert conjectures for activation energy and nanoparticle size at the mid-
point of the conjectured design window. Intervals denote 95% confidence interval

Expert Conjecture
for Ea

Conjecture for mean NP size in
center of design region

Confidence in
conjectures

1 [14,18] [50,60] 4
2 [10,25] [6,20] 7
3 [15,30] [20,60] 5
4 [10.5,14.5] [28,112] 7

Table 18: Confidence in Arrhenius model structure

Expert Confidence in Arrhenius model structure

1 2
2 7
3 5
4 7
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expert conjectures from the survey instrument shown in Table 17. Based on these

expert conjectures, the Bayesian hierarchical model with Gibbs sampling was used to

determine the updated values of the parameters Ea and β0. These final model pa-

rameters are shown in Table 19, along with the midpoints of the experts’ conjectured

parameters to demonstrate how the Gibbs sampling method modified the given pa-

rameters by introducing the variance terms described above. Using these confidences

Table 19: Conjectured parameters and final parameters after Gibbs sampling of
Bayesian hierarchical model

Expert Conjectured Ea Final Ea Conjectured β0 Final β0

1 16 15.96 8.99 9.01
2 17.5 15.59 7.84 7.23
3 22.5 20.82 10.19 9.72
4 12.5 12.28 8.46 8.39

in Tables 16, 17, and 18, the trust each expert has in his/her model, ũi(x), was

calculated by Eq. 30. For example, the trust that Expert 1 has in his/her model is

calculated as ũi(x) = 0.4 × 0.2 × 0.4 = 0.03. Each expert’s trust in his/her model

and the weight given to each model in the unified model, wi(x), (i.e., the normalized

trusts) are shown in Table 20. Figure 57 shows each expert’s individual Arrhenius

model, along with the unified model. The unified model predicts that the target of

40 nm IrNP will be achieved at T = 165 ◦C.

Table 20: Confidence in Arrhenius model structure

Expert Expert i’s confidence in model, ũi(x) Weight given to expert i’s model, wi(x)

1 0.03 0.05
2 0.34 0.57
3 0.08 0.13
4 0.15 0.25

The unified model was then used to specify the experimental design via the modi-

fied Fedorov exchange algorithm discussed in the Methodology section. The potential

designs are shown in Figure 58 as a function of the tuning parameter γ, shown on the
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Figure 57: Individual expert models and unified model for IrNP deposition

y-axis. As γ increases, the designs move from a maximin, space-filling design (at γ =

0.5) to an objective-oriented design (at γ = 4.5). For the objective-oriented design,

the design points cluster around the input of T = 165 ◦C, the temperature at which

the unified model predicts that 40 nm IrNP will be synthesized.

The parameter γ was set as γ = 4.5 because this was an aggressive experimental

design clustering points near the optimum predicted by the unified model at T =

165 ◦C. The choice of γ = 4.5 corresponds to the experimental design of [45 ◦C,

131 ◦C, 149 ◦C, 158 ◦C, 170 ◦C, and 184 ◦C]. These experiments were carried out

as described in the Experimental Procedure section. A typical SEM image of the

deposited IrNP products are shown in Figure 59 for IrNP synthesized at T = 149

◦C. Two types of structures are present: small Ir particles on the nanometer scale as

well as large agglomerations of Ir. The mean IrNP sizes for the small IrNPs at each

experimental design point are shown in Table 21. These data were then transformed

using the Arrhenius equation and are shown in the Arrhenius plot in Figure 60. The
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Figure 58: Potential experimental designs as a function of tuning parameter γ

parameters from this Arrhenius plot are Ea = 14.3 kJ/mol and β0 = 7.3 with an

R2 = 0.75. A local model incorporating the points in the region [131 ◦C, 184 ◦C] was

also fit because these points are those clustered around the process optimum where

the Arrhenius model is most useful. At the lowest temperature setting, another

mechanism may be controlling nanoparticle deposition that cannot be described by

the Arrhenius model, but since this data point is far away from the region of interest,

it is not included. The parameters for this local model are β0 = 13.4 and Ea = 36.3

kJ/mol, and its R2 value is 0.89. The chemical identity of the IrNPs was confirmed

using EDX and these data are included in Appendix C.

8.4.1 Plan for potential follow-up experiments

In order to quantify whether the model predictions were within the engineering toler-

ance of 40 ± 5 nm, the evaluation metric developed by Casciato et al. in their Layers

of Experiments (LoE) with Adaptive Combined Design (ACD) work was used. This
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Figure 59: Typical SEM image of IrNP deposited on Si wafer surface at T = 149 ◦C

Table 21: Experimental data for IrNP deposited on Si wafer surface in sc-CO2

T (◦C) Mean IrNP size (nm)

45 8.1
131 12.0
149 23.4
158 32.0
170 37.8
184 40.9
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Figure 60: Arrhenius plots for global model and local model (incorporating points
from 131 ◦C to 184 ◦C) shown in Table 21
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metric is defined as

L = max(|T − (ŷ(x) + CI (x))| , |T − (ŷ(x)− CI (x))|) (37)

where TNP is the targeted value for the process output, CI(x) is the 95% confidence

interval on the model prediction, and ŷ is the Arrhenius model. The uncertainty

metric, L, is optimized over the design space:

x∗ = min
x
L(x) (38)

The result of this optimization, L∗, is compared to the tolerance d. If L∗ > d, the

Layers of Experiment algorithm dictates that the experimenter continue on to the

next layer of experiments for collecting additional data in a more focused region in

order to further refine the model and find the process optimum. If L∗ ≤ d, the model is

accurate to within the necessary engineering tolerances specified by the experimenter

and can be used to optimize the process. Optimization routines were performed using

the fminunc function in MATLAB 2010a.

Applying this methodology to the present work, the target nanoparticle size of 40

nm corresponds to an Arrhenius model value of ln(40) = 3.69. The tolerance of ±5

nm corresponds to a tolerance in the Arrhenius model of ln(45)−ln(40) = 0.118. The

local model was used for this analysis since it is focused on describing the behavior of

the system in the region of interest; understanding the global behavior of the system

was not necessary. The resulting L metric along with the confidence interval, target,

and Arrhenius model are shown in Figure 61. The L metric reaches a minimum at

1
RT

= 0.268, corresponding to a temperature of 175 ◦C. The L∗ value is 0.322, greater

than the d value of 0.118, indicating that the algorithm should proceed to the next

layer since the model has not achieved the process optimum within the necessary

tolerance set by the investigators. The LoE algorithm would constrain the design

points in the region [159 ◦C, 189 ◦C], and the adaptive combined design would place

design points at [159 ◦C, 159 ◦C, 172 ◦C, 176 ◦C, 189 ◦C, 189 ◦C] [43].
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Figure 61: Plot of L metric with local Arrhenius model, confidence interval, and
target IrNP size

The goal of the present work was to implement the IED methodology for effi-

cient planning of IrNP deposition experiments from Ir(hfac)(COD) in sc-CO2. This

methodology combined the use of prior data from a similar system, Ag(hfac)(COD)

deposition in sc-CO2, with the opinions of experts in the area of nanomaterials syn-

thesis. The target nanoparticle size was 40 nm ± 5 nm for this study.

The expert opinions gathered were first used to choose the size and location of

the design space. For the Ag(hfac)(COD) system, the size and location of the design

window was [60 ◦C, 150 ◦C]. Due to the experts’ conflicting opinions elicited via

survey, Eq. 28 was used to resolve these differences and widen the design window

for the Ir(hfac)(COD) system to encompass [45 ◦C, 190 ◦C]. The individual models

for each expert were built using the Gibbs resampling technique described in the

Methodology section. Table 19 illustrates how the experts’ conjectured values for

the model parameters, β0 and Ea, were changed to the updated values based on this
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Gibbs resampling. This result indicates that the 95% confidence intervals reported by

each expert were successfully incorporated to account for the experts’ uncertainty in

each response. Next, the expert conjectures were used to develop a unified model. As

illustrated by Figure 57, the unified model is weighted most heavily toward Expert

2, since s/he had the most confidence in his/her conjectures (see Table 20).

The Fedorov exchange algorithm was used with the unified model and varying

values of γ to yield several possible experimental designs that could be chosen by the

investigators (Figure 58). The unified model predicted that the process optimum for

fabricating 40 nm IrNP would be found at 165 ◦C, and the choice of γ = 4.5 served to

cluster the design points near this optimum, with only one point far away at 45 ◦C.

This result shows the usefulness of the IED methodology in efficiently directing the

first round of experiments for a new system that is similar but not identical to an old

system: the IED methodology clustered design points within the region of interest

to the investigators. The local model fitted to the experimental data in Figure 60

indicates that the optimum is achieved at 175 ◦C, only 10 ◦C away from the prediction

of the unified model. While 175 ◦C may not be the true optimum for the system, it

is likely near this point.

In order to evaluate the tolerance of the local model, the LoE methodology de-

veloped by Casciato et al. was used [43]. The L∗ metric was calculated to be 0.322,

which is greater than the tolerance set by the investigators of 0.118 when using a

local Arrhenius model in the region near the process optimum. Thus, it would be

necessary to move on to a further layer of experiments to increase the reliability of

the model predictions. If an additional round of experiments were necessary, the next

layer would be in the region [159 ◦C, 189 ◦C]. Using the local model for this analysis

was an important choice and contribution motivated by the desire to find the process

optimum; model building was not the focus of this work, so building a useful global

model was not necessary. Overall, the IED methodology succeeded in directing the
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initial experimental design near the process optimum, achieving the primary goal of

this work.

Though the IED methodology was useful as described above, there are drawbacks

that should be addressed. While the IED approach succeeded in efficiently designing

experiments to fabricate discrete IrNPs of 40 nm mean size, an unexpected result

also occurred in this system. Large, agglomerated particles formed on the surface

of the Si wafer, along with the smaller, discrete particles that were desired for the

Ir(hfac)(COD) system. For the Ag(hfac)(COD) system, only discrete particles were

observed, and this agglomeration was absent. Only a single experimental variable, the

identity of the chemical precursor, was changed between the Ag(hfac)(COD) system

and the Ir(hfac)(COD) system. However, this had significant effects on the process

outcome: both mean IrNP size and morphology varied as a function of temperature,

a result not observed for the old Ag(hfac)(COD) system. Thus, the IED method-

ology may be challenging to implement if unexpected results due to such a simple

change of independent variables are possible. Moreover, manipulating more than one

independent variable simultaneously may increase the likelihood of unintended and

undesired outcomes for the new system, further limiting the applicability of the IED

approach.

Furthermore, in addition to this issue, it was not possible for the experts surveyed

to even predict the deposition of large, agglomerated particles. This was because

questions of the survey did not address this possibility since it was not observed in

the old, Ag(hfac)(COD) system. The questions of the survey assumed a particular

behavior of the system — deposition of solely discrete Ir nanoparticles — that did

not actually occur. However, the experts may have assumed that since the questions

were asked in such a way, no other behavior was possible. Additionally, even if they

believed another mode of growth were possible, framing the questions without this

possibility may have discouraged the experts’ thinking away from any alternative

135



system behaviors. Thus, another significant shortcoming of the IED methodology is

its potential sensitivity to the questions that are asked. The questions asked may be

as important as the answers received from the experts, since the survey will guide the

potential range of responses the experts can give. Future studies implementing this

methodology must be careful to avoid this potential pitfall. Comments received from

the experts are included in Appendix D.

The reason for the differences in behavior between the Ag(hfac)(COD) system

and Ir(hfac)(COD) system is not immediately obvious. Since the goal of this work

was demonstration of the utility of the IED methodology for designing the initial

round of experiments, an extensive study of the mechanism of deposition was not

carried out. However, potential causes of the discrepancy in behavior for the old

and new systems are described here. The morphology of the iridium nanoparticles

potentially implies a Volmer-Weber (VW) growth mode, where particles deposited on

a surface have stronger particle-particle interactions than particle-surface interactions,

leading to the observed aggregation and lack of discrete particles in this work. This

VW growth behavior has been observed frequently for iridium deposition in other

systems, supporting the hypothesis of a Volmer-Weber growth mode in the current

work [21, 105, 119]. Moreover, the Frank-van der Merwe (FM) growth mode, where

particle-surface interactions are stronger than particle-particle interactions leading to

discrete particles on the surface as a film is formed, has not been frequently observed

for Ir deposition. On the other hand, silver can follow either a VW or FM growth

mode [204, 306]. Thus, it is possible that the IrNP deposition proceeds by VW growth

in sc-CO2, while AgNP deposition proceeds by FM growth.

It is also possible that there is gas-phase reaction occurring more readily in the

Ir(hfac)(COD) system compared to the Ag(hfac)(COD) system, resulting in the ob-

served agglomerated particles. The iridium precursor may dissolve in and/or trans-

port through the sc-CO2 more easily than the silver precursor. Increased solubility
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and transport could be due to the fact that Ir(hfac)(COD) exists as a monomer,

while Ag(hfac)(COD) exists as a dimer [15, 316]. Thus, Ir(hfac)(COD) has a higher

vapor pressure than Ag(hfac)(COD), increasing its ability to dissolve in sc-CO2, and

is smaller than the dimer Ag(hfac)(COD), increasing its ability to be transported

through the sc-CO2 [15, 316]. These effects would increase the available precursor for

reaction in the fluid phase for the Ir(hfac)(COD) system, potentially explaining the

different growth modes. A last potential explanation relates to the diffusivity of the

Ir and Ag species on the surface. The self-diffusivity of iridium (4.7 × 10−3 cm2·s−1)

has been shown to be greater than that for silver (2.6 × 10−3 cm2·s−1) [4] in the range

[25 ◦C, 300 ◦C]. At the nanoscale, this difference may result in an increased ability

of Ir to diffuse on the surface and thus promote the rate of aggregation relative to

that of silver, resulting in the agglomerates observed. These conjectures should be

investigated in future studies to improve understanding of the observed differences

between AgNP and IrNP deposition shown here.

8.5 Conclusion

The IED methodology was applied to efficiently choose experimental design points

in a new system for the deposition of IrNP from Ir(hfac)(COD) in sc-CO2. The goal

was a target IrNP mean size of 40 nm ± 5 nm. The IED approach used prior data

relating the mean size of AgNP as a function of temperature in the sc-CO2 system with

Ag(hfac)(COD) as the precursor compound. Experts were supplied with data for the

Ag(hfac)(COD) system and asked to give their conjectures about the design window,

parameters, and Arrhenius model structure for the Ir(hfac)(COD) system based on

the previous data and their expert knowledge. Conflicts in the experts’ opinions were

resolved by the proposed methodology, and the unified expert model predicted a

process optimum at 165 ◦C. Experimental data for the Ir(hfac)(COD) system showed

that the process optimum was at 175 ◦C, close to the predicted optimum of 165 ◦C.
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The predictions made by the local model for the data, fit in the range [131 ◦C, 184 ◦C],

did not fall within the desired engineering tolerance of 5 nm. Moreover, there was an

additional growth mode of large, agglomerated islands of IrNP observed. The survey

did not ask the experts for their thoughts on any possible behaviors of the system

other than the fabrication of discrete IrNPs. Consequently, the experts did not have

the opportunity to discuss any other outcomes. This sensitivity to the questions asked

is a potentially significant drawback of the IED methodology.

This chapter concludes the novel experimental design methods developed and

implemented in this thesis. In the following and final chapter (Chapter 9), the final

conclusions of this thesis are given, and directions for future work are also discussed.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

The goals of this thesis were two-fold, and the thesis can be considered in two sec-

tions. In the first section, Chapters 2 through 5, process-structure-property relation-

ships were investigated for the synthesis of various materials in sc-CO2. Within this

section of the thesis, these PSP relationships were studied for three systems: (1) de-

position of CZTS particles and films for solar energy applications, (2) deposition of

ZnS nanoparticles on carbon nanotubes for optical applications, and (3) deposition

of AgNPs for sensor applications. The relationships between substrate chemistry,

temperature, and resulting structure and morphology were used to study the PSP

relationships for the three systems in sc-CO2.

The main research theme that resulted from this section of the thesis was that

surface chemistry has a significant effect on the nucleation and growth phenomena

of nanomaterials fabricated in the sc-CO2 system. Carboxyl and hydroxyl groups

appear to promote nucleation and growth in the three systems studied. Moreover, by

rationally controlling the surface chemistry (through selection of substrate or surface

cleaning steps) it is possible to control the fabrication of thin films and nanoparticles

with defined size.

In the second section of this thesis, Chapters 6 through 8 present novel experimen-

tal design methodologies that were developed and implemented in an interdisciplinary

approach for the optimization of nanomaterials fabricated in advanced technology

techniques, such as the supercritical carbon dioxide process described in Chapters 2

through 5. In this context, optimization refers to fabricating materials with the de-

sired properties, such as mean nanoparticle size or film thickness. Specifically, these

139



experimental design approaches were developed to rapidly and efficiently optimize

systems that are expensive to study in terms of time and money. The optimization of

a AgNP deposition process was first investigated, using a novel layers of experiments

with adaptive combined design methodology to fabricate AgNPs with a defined, op-

timal mean diameter. Next, a methodology for choosing the initial experimental

design on a new system based on a related, previously studied system was investi-

gated, taking advantage of expert opinion and prior data to plan experiments. Both

the LoE/ACD and IED approaches took advantage of Arrhenius models built in the

AgNP deposition studies detailed in the first section of the thesis. The main research

theme from this section of the thesis is that novel experimental design methodologies

can contribute to the efficient study of nanomaterials fabricated in the sc-CO2 system.

9.1 Process-structure-property investigations

The deposition of CZTS particles and films in sc-CO2 was achieved in Chapters 2

and 3 of this thesis. In Chapter 2, a continuous flow process was used to fabricate the

CZTS particles, and large, agglomerated CZTS particles deposited onto an oxygen

plasma cleaned Si surface. Detailed characterization of the products demonstrated

the samples were indeed CZTS based on energy dispersive X-ray spectroscopy, X-ray

diffraction, and Raman scattering analysis. The sc-CO2 approach is greener than

many alternative methods of CZTS fabrication that exist since the CO2 solvent is

more environmentally friendly than alternative solvents. Further study of the effect

of substrate chemistry on CZTS deposition was carried out in Chapter 3 of this thesis.

It was shown that the presence of an oxide layer on the surface of the substrate was

vital for promoting particle nucleation that leads to the formation of a CZTS thin

film. Moreover, the process inputs of temperature, concentration, and reaction time

were used to vary deposition between favoring growth of large CZTS particles in the

fluid phase and fabrication of a CZTS thin film on the surface of the substrate.
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Controlling the deposition of the CZTS thin film vs. the deposition of large,

agglomerated CZTS particles is a potentially valuable avenue for further research

in the sc-CO2 assisted fabrication of CZTS. One way this issue may be approached

in future studies is to promote nucleation and growth only at the substrate surface

by using a cold wall reactor and a heated substrate. Such approaches have been

used previously for deposition of metals (such as copper) on Si surfaces in sc-CO2 for

microelectronics applications as well as in the microelectronics industry for deposition

of Si surfaces incorporating dopants [25, 26]. One potential drawback of a cold wall

reactor system is the introduction of temperature and/or concentration gradients that

may affect the transport of precursors to the substrate surface [192, 293]. Nonetheless,

a cold wall reactor approach may make it possible to further promote deposition of

CZTS thin films over the growth of CZTS particles in the fluid phase. Future work

should also entail the fabrication of devices based on CZTS deposited in the sc-CO2

system. The work discussed in this thesis has focused mostly on the characterization

of the structure and chemical properties of the CZTS material, but not how it would

function in an actual device. Understanding how to manipulate the process conditions

in the sc-CO2 system to yield optimal device performance in terms of photoconversion

efficiency would be a worthy avenue for further investigation.

ZnS nanoparticles were deposited on carbon nanotubes in the sc-CO2 system in

Chapter 4 of this thesis. The sc-CO2 system is significantly greener than alterna-

tive approaches which use environmentally unfriendly chemicals. The ZnS-carbon

nanotube nanocomposites that were fabricated possessed the characteristic chemi-

cal, physical, and optical properties that have been previously reported for ZnS-CNT

compounds. Preliminary investigations showed that the deposition mechanism for

decoration of the carbon nanotubes with ZnS nanoparticles proceeded in a heteroge-

neous manner.

One drawback of the sc-CO2 approach implemented in Chapter 4 is that the
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particles did not uniformly cover the surface of the CNTs. Future studies should focus

on improving the process by encouraging the uniform deposition of ZnS NPs on the

CNT surface. It may be possible to manipulate the chemical functionalization of the

CNTs to encourage greater nucleation across the length of the nanotubes [16, 78, 153].

For example, the CNTs could be treated to increase the number of -COOH groups

on the nanotubes. Alternatively, it may be possible to study the effect of alternative

functional groups (such as amines or thiols) on the nucleation of ZnS particles on the

CNT surface. Moreover, the size of the ZnS particles is relatively large compared to

previous studies. Thus, it may be desirable to determine whether size control of the

ZnS particles deposited on the CNT surface is possible in the supercritical carbon

dioxide system.

Silver nanoparticles were deposited on Si and glass substrates in Chapter 5 of

this thesis, and it was shown that the pretreatment of the substrate surface had

a significant effect on the size and density of the deposited AgNPs. Moreover, by

varying temperature, it was possible to control the size of the deposited AgNPs in

the range from 10 nm to 200 nm. The data for particle size vs. temperature were used

to construct Arrhenius models and estimate effective activation energies for the sc-

CO2 assisted deposition process. The models built and data collected in this chapter

were then used to inform the LoE/ACD and IED work in the following chapters.

Future studies for the deposition of Ag nanoparticles in supercritical carbon diox-

ide should focus on shape control of the deposited nanoparticles, since certain nanos-

tructures (such as nanoprisms) demonstrate higher SERS efficiency than the spheri-

cally shaped particles deposited here [136]. Shape control of AgNPs has been achieved

in several other synthesis systems but has not been readily demonstrated for AgNP

synthesis in sc-CO2 [270, 281]. Controlling the shape of the AgNPs in the sc-CO2

system may be achieved by the use of stabilizing agents such as polyvinylpyrrolidone
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(PVP) or halide ions (such as Br−), which have been shown to direct the growth di-

rections of nanoparticles and result in nanoparticles with defined shape [94, 283, 289].

9.2 Novel experimental design approaches

First, a layers of experiment with adaptive combined design methodology was de-

veloped in Chapters 6 and 7 for rapidly optimizing advanced processes, such as

nanoparticle synthesis in supercritical carbon dioxide. This LoE/ACD approach was

developed for systems that are expensive to study in terms of time and money. Con-

sequently, it is difficult to optimize such systems because it is not feasible to conduct

many experiments throughout the design space. The LoE/ACD approach was applied

to find the optimal temperature for depositing AgNPs on Si surfaces in a supercritical

carbon dioxide process. The LoE/ACD approach was successful in efficiently finding

the process optimum for the selected optimal particle sizes by conducting a limited

number of experiments in two subsequent layers.

While this approach was successful, there are several issues that remain unad-

dressed or unresolved and should be investigated in the future. The first and foremost

is the issue of sample size. It is currently unclear how many experiments to conduct

in each layer, and this is a vital issue to address for a methodology that purports to

decrease the costs of optimizing the system. In the present work, a heuristic approach

was used to decide how many experiments to conduct; however, the approach should

be rigorous and systematically determine how many experiments are necessary to

conduct within a layer [115, 172, 286]. Another area that was not addressed in this

work was variance modeling [76, 198]. The LoE/ACD methodology was based solely

on mean modeling of the nanoparticle size; however, it is possible that minimizing the

variance of the nanoparticle size distribution may also be important. In addition to

within-batch variability, it may be important to address the between-batch variability

in this process.
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The IED methodology described in Chapter 8 was used to plan the inital round

of experiments for the deposition of Ir nanoparticles on a Si wafer surface in sc-

CO2 from an iridium (I) hexafluoroacetylacetonate cyclooctadiene precursor. This

methodology is most useful for rapidly optimizing a system that is expensive to study

in terms of time and money. The major contribution of the IED approach is that it

incorporates prior data on a similar, non-identical system for AgNP deposition; an

Arrhenius model; and expert opinion in order to plan the initial experiments for the

new system for Ir deposition. This was accomplished by surveying the experts for

their opinions and, based on these opinions, constructing individual Arrhenius models

corresponding to each expert. The individual models from each expert were then

combined into a unified model using each expert’s confidence in his or her conjectures.

The resulting unified model was used in the experimental design, which combined a

space-filling minimum energy design with an objective-oriented design. The resulting

design focused the experiments near the process optimum but did not satisfy the

engineering tolerance set on the model prediction. In addition to the small particles

that were formed, large Ir particles were also deposited on the Si surface, a result

that was not predicted by the experts in the survey instrument.

Future work in the area of initial experimental design should focus on improving

the IED methodology and its shortcomings. First, the IED approach is highly sen-

sitive to which specific questions are posed. For example, in the work discussed in

Chapter 8, no questions were asked about alternative potential growth modes for the

Ir particles, so this could not have been predicted by the experts completing the sur-

vey. It is possible that this work should be extended to include open-ended questions

that allow experts to discuss any issues they feel may arise in the new system. How-

ever, such responses would be more difficult to quantify than the survey approach

adopted here using confidences rated on a scale of 1 – 10. Potential collaboration
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with experts in survey instrument writing may improve the usefulness of the IED ap-

proach. For example, collaboration with investigators who commonly design surveys

in the biobehavioral sciences (such as psychology or anthropology) may fulfill this

role [22, 66, 77, 239]. Second, similar to the issues raised above for the LoE/ACD

approach, it is unclear what the optimal sample size should be for experiments con-

ducted in the IED methodology. One potential approach to this issue could be sur-

veying experts for their conjecture on how many experiments are necessary within

the design space. Alternatively, it may be possible to produce pseudo-data from the

experts’ individual models (i.e., taking a boostrapping approach), and identify the

model coefficients using the pseudo-data. This approach could then be implemented

for different numbers of samples and different experimental designs, e.g. a D-optimal

design or space filling design, to determine how many experiments to conduct. Last,

it was noted above that the IED methodology resulted in a model that did not meet

the engineering tolerance on the model predictions set by the investigators. In such

a situation, it would be necessary to use a sequential experimental design approach

in combination with the IED method, such as the LoE method detailed here or other

sequential design methodologies [6, 311].
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APPENDIX A

XRD AND RAMAN DATA FOR CZTS DEPOSITED ON

VARIOUS SUBSTRATES
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Figure 62: XRD spectra for samples fabricated in the base case conditions
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Figure 63: Raman spectra for samples fabricated in the base case conditions
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Figure 64: XRD spectra for samples fabricated at 1 minute reaction time
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Figure 65: Raman spectra for samples fabricated at 1 minute reaction time
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Figure 66: XRD spectra for samples fabricated at low concentration
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Figure 67: Raman spectra for samples fabricated at low concentration
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Figure 68: XRD spectra for samples fabricated at 400 ◦C
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Figure 69: Raman spectra for samples fabricated at 400 ◦C

149



2 0 3 0 4 0 5 0 6 0

Int
en

sity
 (A

U)

2 θ ( d e g r e e s )

 C Z T S  o n  M o O x

Figure 70: XRD spectrum for CZTS deposited on MoOx surface
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Figure 71: Raman spectrum for CZTS deposited on MoOx surface
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APPENDIX B

SURVEY FOR INITIAL DESIGN OF EXPERIMENTS

A supercritical carbon dioxide (sc-CO2) deposition method was used to decorate a sil-

icon wafer with silver nanoparticles on the surface for application in surface-enhanced

Raman spectroscopy. A 2 cm × 3 cm size silicon wafer purchased from University

Wafer (10–20 Ω·cm, 100, p-type) was cleaned in an oxygen plasma for 10 min to pop-

ulate the surface with reactive silanol groups. The substrate was placed in a 30 mL

stainless steel reactor along with 50 mg of silver precursor silver(I) hexafluoroacety-

lacetonate cyclooctadiene (Ag(hfac)(COD)). The reactor was then charged with 400

psi of hydrogen gas as a reducing agent and the final pressure was increased to 1500

psi by introduction of carbon dioxide from a Teledyne ISCO 500HP high pressure

pump. Surfaces were characterized using a Zeiss Ultra60 scanning electron micro-

scope operated at 3 mm working distance and 5 kV accelerating voltage. Images

were analyzed using the Image Analysis Toolbox in MATLAB R2010a, and mean

nanoparticle diameter was calculated based on this automated analysis. Table 22

and Figure 72 summarize the data from this process. The Arrhenius plot for these

data are shown in Figure 73. From the above data and using the Arrhenius equation,

namely:

mean AgNP diameter = Ae(EA/RT ) (39)

the activation energy of the system is estimated as (with a 95% confidence interval

in parenthesis):

Êa = 15.25kJ/mol; (12.82991, 17.61729) (40)

New System for Future Experimentation
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Table 22: Table of experimental results

Temperature (◦C) Mean AgNP Diameter (nm)

60 18.3
60 17.8
90 24.3
98 29.2
98 32.3
108 34.9
120 44.0
120 47.5
121 41.8
128 42.0
128 49.0
150 51.8
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Figure 72: Plot of experimental data for mean nanoparticle size vs. temperature
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Figure 73: Arrhenius plot of experimental data

New experiments are going to be conducted using the same setup as the pre-

vious experiment but with one difference: the 50 mg of silver precursor is going

to be replaced with 50 mg of iridium(I) hexafluoroacetylacetonate cyclooctadiene

(Ir(hfac)(COD)) precursor. The goal of the new experiment is to find the system op-

erating condition, in this case the temperature setting, to create iridium nanoparticles

with a mean diameter of 40 nm. We will refer to the experimental setup when using

the silver precursor as the old system and the experimental setup with the iridium

precursor as the new system. Please answer the following questions based on your

expectations for the new system.

Q1. The temperature range for the old system is 60◦C to 150◦C.

(a) For the new system, what do you expect is the minimum temperature needed

in order to create nanoparticles? Please state you answer as a 95% confidence interval

which you think will contain the true value.

(b) For the new system, what do you expect is the maximum temperature at

which nanoparticles can still be created? Please state you answer as a 95% confidence
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interval which you think will contain the true value.

(c) How confident are you in your answers to Q1, (a) and (b)? Please choose one

integer value between 0 (complete guess) – 10 (complete confidence) (5 excluded).

Q2. Denote the midpoint of your interval in Q1(a) by a and the midpoint of your

interval in Q1(b) by b. How confident are you that the new system behavior can be

described by the Arrhenius model in the interval [a, b]? Please choose one integer

value between 0 (complete guess) – 10 (complete confidence) (5 excluded).

Q3. For question Q3, assume the behavior of the new system in the interval [a, b]

can be described by the Arrhenius model. Additionally, let m denote the midpoint of

the interval [a, b].

(a) In the temperature range [a, b], what do you expect the activation energy (Ea)

for the new system to be? Please express your answer as a 95% confidence interval

which you think contain the true value.

(b) At the temperature m, what do you expect the mean nanoparticle size to be?

Please express your answer as a 95% confidence interval which you think will contain

the true value.

(c) Please choose one integer value between 0 (complete guess) – 10 (complete

confidence) (5 excluded) to express your overall confidence in your answers to Q3

only.
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APPENDIX C

EDX SPECTRUM FOR IRIDIUM NANOPARTICLES ON

SILICON

Figure 74: EDX spectra of Ir nanoparticles deposited on Si surface
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APPENDIX D

EXPERTS’ COMMENTS FOR SURVEY

• Expert 1 comments:

– Q1. Note that this is range of experiment and not nanoparticle formation.

Also, the 60 and 150 ◦C results seem not to follow an Arrhenius rela-

tionship (are the 60 C particles really pure Ag?). Most metal(hfac)COD

organometallics will undergo facile removal of the COD ligand followed by

adsorption of the metal(hfac) and bimolecular reaction to form metal in

zero oxidation state and metal (hfac)2, which then desorbs. A key ques-

tion is what does this relatively low activation energy represent? Surface

diffusion?

• Expert 2 comments:

– Q1.

For the new system, what do you expect is the minimum temperature

needed in order to create nanoparticles? Please state you answer as a 95%

confidence interval which you think will contain the true value.

This is very difficult to say because the chemistry of Ir is very different than

Ag, specifically the redox potential for the metal ion and the hydrogen

reduction reaction. It is quite possible that the hydrogen may not be

a strong enough reducing agent to reduce the Ir+ to ground state for

nanoparticle formation. The first experiment would be to determine if

the reduction is even possible and with that I would start with a value

intermediate of the temperatures used in the old system. My estimation,
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if the reaction is possible, is that the minimum temperature for the new

system would be greater than the old system. Interval of 60 ◦C to 100 ◦C.

For the new system, what do you expect is the maximum temperature at

which nanoparticles can still be created? Please state you answer as a 95%

confidence interval which you think will contain the true value.

The maximum temperature is likely due to the stability and solubility of

the precursor and/or product, and thus would probably be similar to the

old system, given that the 150 ◦C is an actual maximum temperature for

the synthesis and not a limit of the experimental apparatus. Interval would

be 140 ◦C to 170 ◦C.

My confidence would be a 7 but would like to do more background inves-

tigation of the literature before going further.

– Q2.

I would say 7, granted if the synthesis is even possible. On a side note,

it is difficult to say why the Arrhenius model fits the data. It could be

that the temperature is influencing the reduction reaction rate, leading

to more nucleation sites at higher temperature, but this would lead to

smaller particles, which is not observed. There could be a solubility effect,

but it is not clear what the system pressure is at the different reaction

temperatures. Was the reaction run isobaric or isometric? Lastly, the

temperature effect could be influencing the ripening effect of the particles

on the silicon surface. In this case the differences in the metal mobility of

the new versus old system could be very different and may not follow the

Arrhenius model at all.

– Q3. No justification, just numerical answers.

• Expert 3 comments:
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No justification was given for any response, just numerical answers.

• Expert 4 comments:

I based my answers solely on the 1st ionization potentials of Ir vs. Ag, to

estimate an Ea value for Ir+.

158



REFERENCES

[1] Adschiri, T., Hakuta, Y., Sue, K., and Arai, K., “Hydrothermal synthesis

of metal oxide nanoparticles at supercritical conditions,” Journal of Nanopar-

ticle Research, vol. 3, no. 2, pp. 227–235, 2001.

[2] Agarwal, A. K. and Brisk, M. L., “Sequential experimental design for

precise parameter estimation. 1. Use of reparameterization,” Industrial & Engi-

neering Chemistry Process Design and Development, vol. 24, no. 1, pp. 203–207,

1985.

[3] Aghalayam, P., Park, Y., Fernandes, N., Papavassiliou, V.,

Mhadeshwar, A., and Vlachos, D., “A C1 mechanism for methane oxi-

dation on platinum,” Journal of Catalysis, vol. 213, no. 1, pp. 23 – 38, 2003.

[4] Agrawal, P. M., Rice, B. M., and Thompson, D. L., “Predicting trends

in rate parameters for self-diffusion on fcc metal surfaces,” Surface Science,

vol. 515, no. 1, pp. 21–35, 2002.

[5] Ahmed, S., Reuter, K. B., Gunawan, O., Guo, L., Romankiw, L. T.,

and Deligianni, H., “A high efficiency electrodeposited Cu2ZnSnS4 solar cell,”

Advanced Energy Materials, vol. 2, no. 2, pp. 253–259, 2012.

[6] Alaeddini, A., Yang, K., and Murat, A., “ASRSM: A sequential experi-

mental design for response surface optimization,” Quality and Reliability Engi-

neering International, 2012.

159



[7] Als-Nielsen, B., Chen, W., Gluud, C., and Kjaergard, L., “Associa-

tion of funding and conclusions in randomized drug trials,” The Journal of the

American Medical Association, vol. 290, no. 7, pp. 921–928, 2003.

[8] Anastas, P. and Warner, J., Green Chemistry: Theory and Practice. Oxford

University Press, USA, 2000.

[9] Anderson, M. and Whitcomb, P., Design of Experiments. Wiley Online

Library, 1974.

[10] Ang, S.-Y. and Walsh, D. A., “Highly stable platinum electrocatalysts for

oxygen reduction formed using supercritical fluid impregnation,” Journal of

Power Sources, vol. 195, no. 9, pp. 2557–2563, 2010.

[11] Anwar, M., Hogarth, C., and Bulpett, R., “Effect of substrate tem-

perature and film thickness on the surface structure of some thin amorphous

films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA),” Journal

of Materials Science, vol. 24, no. 9, pp. 3087–3090, 1989.

[12] Atkins, P. and de Paula, J., Physical Chemistry. Oxford University Press,

7 ed., 2002.

[13] Bahlawane, N., Premkumar, P. A., Brechling, A., Reiss, G., and

Kohse-Hinghaus, K., “Alcohol-assisted CVD of silver using commercially

available precursors,” Chemical Vapor Deposition, vol. 13, no. 8, pp. 401–407,

2007.

[14] Bai, L., Ma, X., Liu, J., Sun, X., Zhao, D., and Evans, D., “Rapid sep-

aration and purification of nanoparticles in organic density gradients,” Journal

of the American Chemical Society, vol. 132, no. 7, pp. 2333–2337, 2010.

160



[15] Bailey, A., Corbitt, T. S., Hampden-Smith, M. J., Duesler, E.,

and Kodas, T. T., “Synthesis and characterization of 1, 1, 1, 5, 5, 5-

hexafluoroacetylacetonato-(1, 5-cyclooctadiene) silver (I) dimer. An unusual

β-diketonate coordination mode,” Polyhedron, vol. 12, no. 14, pp. 1785–1792,

1993.

[16] Banerjee, S., Kahn, M. G., and Wong, S. S., “Rational chemical strategies

for carbon nanotube functionalization,” Chemistry-A European Journal, vol. 9,

no. 9, pp. 1898–1908, 2003.

[17] Barkhouse, D., Gunawan, O., Gokmen, T., Todorov, T., and Mitzi,

D., “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 so-

lar cell,” Progress in Photovoltaics: Research and Applications, vol. 20, no. 1,

pp. 6–11, 2011.

[18] Bayrakcceken, A., Smirnova, A., Kitkamthorn, U., Aindow, M.,

Turker, L., Erouglu, I., and Erkey, C., “Pt-based electrocatalysts for

polymer electrolyte membrane fuel cells prepared by supercritical deposition

technique,” Journal of Power Sources, vol. 179, no. 2, pp. 532–540, 2008.

[19] Bechet, D., Couleaud, P., Frochot, C., Viriot, M., Guillemin, F.,

and Barberi-Heyob, M., “Nanoparticles as vehicles for delivery of photody-

namic therapy agents,” Trends in Biotechnology, vol. 26, no. 11, pp. 612–621,

2008.

[20] Bell, A., “The impact of nanoscience on heterogeneous catalysis,” Science,

vol. 299, no. 5613, pp. 1688–1691, 2003.

[21] Berko, A. and Solymosi, F., “Effects of different gases on the morphology

of Ir nanoparticles supported on the TiO2 (110)-(1×2) surface,” The Journal

of Physical Chemistry B, vol. 104, no. 44, pp. 10215–10221, 2000.

161



[22] Bernard, H. R., Research Methods in Anthropology: Qualitative and Quan-

titative Approaches. Altamira press, 2011.

[23] Bhargava, R., Gallagher, D., Hong, X., and Nurmikko, A., “Optical

properties of manganese-doped nanocrystals of ZnS,” Physical Review Letters,

vol. 72, no. 3, pp. 416–419, 1994.

[24] Binnig, G., Quate, C., and Gerber, C., “Atomic force microscope,” Phys-

ical Review Letters, vol. 56, no. 9, pp. 930–933, 1986.
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[85] Eyett, M. and Bäuerle, D., “Influence of the beam spot size on ablation

rates in pulsed-laser processing,” Applied Physics Letters, vol. 51, p. 2054, 1987.

[86] Fan, S.-K. S. and Huang, K.-N., “A new search procedure of steepest as-

cent in response surface exploration,” Journal of Statistical Computation and

Simulation, vol. 81, no. 6, pp. 661–678, 2011.

[87] Fang, K.-T., Lin, D. K., Winker, P., and Zhang, Y., “Uniform design:

theory and application,” Technometrics, vol. 42, no. 3, pp. 237–248, 2000.

[88] Faraday, M., “The Bakerian Lecture: Experimental relations of gold (and

other metals) to light,” Philosophical Transactions of the Royal Society of Lon-

don, vol. 147, pp. 145–181, 1857.

[89] Fedorov, V. and Hackl, P., Model-oriented Design of Experiments, vol. 125.

Springer Verlag, 1997.

169



[90] Feng, S., Zhao, J., and Zhu, Z., “The manufacture of carbon nanotubes

decorated with ZnS to enhance the ZnS photocatalytic activity,” New Carbon

Materials, vol. 23, no. 3, pp. 228–234, 2008.
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