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The Reactor Prayer

Our reactor,

who art in my lab,

leak-free be thy piping,

thy heater work, thy computer not freeze,

during experiments, as it should work in theory.

Give us this day our daily result,

and help us quickly fix the problems,

as the problems will inevitably come against us.

Lead us not into insanity, but deliver us from equipment failure,

for thine is the hope, the promise of graduation.

Forever and ever

(or until my defense)

Amen
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SUMMARY

In this thesis a tool to be used in experimental design for batch processes is

presented. Specifically, this method is to aid in the development of a process model.

Currently, experimental design methods are either empirical in nature which need

very little understanding of the underlying phenomena and without the objective

of more fundamental understanding of the process. Other methods are model based

which assume the model is correct and attempt to better define the model parameters

or discriminate between models.

This new paradigm for experimental design allows for process optimization and

process model development to occur simultaneously. The methodology specifically

evaluates multiple models as a check to evaluate whether the models are capturing

the trend in the experimental data. A new tool for experimental design developed here

is called the grid algorithm which is designed to constrain the experimental region

to potential optimal points of the user defined objective function for the process. It

accomplishes this by using the confidence interval on the objective function value.

The objective function value is calculated using the model prediction of the best

performing model among a set of models at the predicted optimal point.

This new experimental design methodology is tested first on simulated data. The

first simulation fits a model to data generated by the modified Himmelblau function

(MHF). The second simulation fits multiple models to data generated to simulate

a film growth process. In both simulations the grid algorithm leads to improved

prediction at the optimal point and better sampling of the region around the optimal

point.

xvi



This experimental design method was then applied to an actual chemical vapor

deposition system. The films were analyzed using atomic force microscopy (AFM)

to find the resulting film roughness. The methodology was then applied to design

experiments using models to predict roughness. The resulting experiments were de-

signed in a region constrained by the grid algorithm and were close to the predicted

optimum of the process. We found that the roughness of a thin film depended on the

substrate temperature but also showed a relationship to the nucleation density of the

thin film.
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CHAPTER I

INTRODUCTION

1.1 Motivation

When finding the optimal settings for a batch process to create the desired amount

and quality of product, one rarely has a perfect model of the process to ensure the

correct settings are chosen. The optimal setting depends on the goal of the process,

but is typically defined as the setting which gives the best yield, purity, or produces

product at a desired speed. Whereas a continuous process normally operates at

steady state, a batch process is dynamic. The state of a batch reactor is continuously

changing making batch models more complex coupled with having less data available

than a continous process. To find the optimal settings, one performs experiments to

relate process settings to final performance and properties. The process is depicted in

Figure 1. The experimental data is then combined with a model to estimate unknown

model parameters. This model is then used to select additional experiments, and the

model can be used to design improvements to the current process. The model for a

process is chosen based on the purpose of the model, what knowledge of the process

is incorporated into the model, and in what data range the model is applicable.

In many cases of experimental design, an empirical model such as a polynomial fit

is used [130, 97, 145, 66]. In other cases, mechanistic or hybrid models based on

physical principles are used [108, 31, 122, 79]. Here, our focus will be on modeling

batch processes.

An empirical model is one where a relationship between the output of a process

(y) is modeled without using physical principles such as mass or energy balances. An

1



Experiments

Develop/Improve 
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Acquire Experimental

Data
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Process Design/

Improvements to
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Figure 1: Schematic of method to find optimal settings for a process

example would be the equation of a line

y = θ1x + θ2 (1)

In this equation, θ1 and θ2 are parameters that relate the value of the process input

x to the expected value of y. In this empirical model, the parameters do not have a

physical meaning other than that θ1 is the slope of the line and θ2 is the intercept of the

line. The values of the parameters are usually found by minimizing the error between

yexp (the experimental data) and ŷ (the model’s predicted value of y) using a least

squares technique. An empirical model is made to fit the available data as efficiently

as possible, without necessarily considering the underlying phenomena. Because of an

empirical model’s best-fit nature, in general it cannot be used to predict the outcome

of an experiment done outside of the sample data used to fit the model.

2



Empirical models are commonly used to model processes that are not well under-

stood [56], such as how many calories one can expect to burn after a certain number

hours of exercising. One only wants an approximate value of the calories burned, and

one does not want to model all the processes in the body that burn calories (nor are

all these processes understood well enough to yield an accurate model), so the model

parameters represent an aggregate of the cell processes. One could not necessarily

take the slope of the line for this model and relate it back to the exact processes

occurring in the body.

A mechanistic model is a model whose form is directly related to some understand-

ing of the process, based on first principles [56]. An example of a purely mechanistic

model is the ideal gas law

PV = nRT (2)

which can be derived from first principles using the kinetic theory of gases. This

equation is often used to model the properties of a gas in a process, and the parts of the

model have physical meaning. Pressure, volume, number of moles, and temperature

are measurable quantities, and the gas constant has a well established value. A good

mechanistic model can help an experimenter interpolate more accurately or even

extrapolate from the data given.

Hybrid models combine aspects of both empirical and mechanistic models [56].

Parts of the model may relate back to physical properties, but the value of that

property may be determined by fitting it as a parameter to experimental data. A

very common example of this in chemical engineering is the Arrhenius equation

r = A0e
− Ea

RT (3)

which models the rate of reaction. Typically data is acquired from the process at

different temperatures, and the values of A0 and Ea are determined by fitting this

data. A0 is the pre-exponential factor and corresponds to the rate of reaction in the

3



limit of infinite temperature. Ea is the activation energy for the reaction. If a molecule

does not have enough energy to overcome this activation barrier, the reaction will not

take place.

Many models one encounters in practice are hybrid models. As researchers gain

more knowledge of the process, they add more terms to the model or change the

terms in the model to reflect their deepened understanding. The added insight does

not necessarily translate into knowing exact values for these terms for every system.

For this reason these values are sometimes fitted to experimental data, giving the

model an empirical element. Semi-mechanistic [20] and grey-box models [133] are

other terms used for hybrid models. These two studies are focused on developing

models from data already acquired, not on designing experiments to acquire data

which would lead to better models.

In process design, a systems engineer will often use a model that has already been

developed by another researcher or engineer. Unfortunately, such models can take

decades to develop. Rather than wait until a highly accurate mechanistic model has

been developed, a systems engineer can use partial mechanistic models. A partial

model will have limited accuracy and may still be under development, but it can

still be useful in process design, especially when restricted to a limited range of

process settings. The engineer will start making modifications to the process with

the limited data he has. By using partial models, the engineer begins using the model

to make informed modifications based onscientific insight rather than modifications

based purely on past performance of the process.

With the ever-changing product industry, such as microelectronics and pharma-

ceuticals, one will have to modify and re-optimize a process many times over the

equipment’s lifetime. Not only could the process be used for different products, but

the specifications for products could change frequently due to new technology or

tighter government regulation. The advantage of a mechanistic model compared to

4



an empirical fit is that it can be adapted and reused for such modified situations.

Due to better understanding of the process, the time needed to perform subsequent

optimizations is reduced. However, empirical models are typically simpler to generate

and have fewer parameters to identify. If limited experimental data is available, they

may be more useful for process optimization. We are proposing a method that uses

both types of models.

In a survey paper about control in microelectronics, Edgar et. al comment that

advances in modeling will be needed to meet the technical challenges for that industry

in the near future [42]. Modeling of processes such as etching and deposition were

mentioned specifically as needing better equipment models. The lack of models for

these processes has hindered improved understanding of the mechanisms involved

and prevents a smooth transition from one generation of equipment to the next. The

International Technology Roadmap for Semiconductors (ITRS) has also identified as

a grand challenge a “strong demand on manufacturing environments to rapidly and

efficiently adapt to high-mix and low-volume product runs” [60]. With a life span for

equipment around five years, the transition can be very expensive in terms of time

and cost. With better process models one has the capability for better design and

control of the processes. Also note that it is impossible to include all effects in a

process model. At some point the experimenter needs to make a tradeoff between

how much time is spent building the model and how useful this model will be. The

process tools in a semiconductor manufacturing facility actively produce product only

30% of the time and lacking an effective process model, cause of the problems are not

easy to find or fix [42]. Using model predictive control (MPC) on these processes is

one of the future directions mentioned. Obviously before one can do MPC, one needs

an accurate process model on which to base control of the process. If the process is

linear, one could do system identification (empirical) to get the model. However, for a

nonlinear batch process this method is not so effective. Continuous process properties
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are often identified using a local linear dynamic model. For a batch process, however,

a local model is often inappropriate and the process is nonlinear. For these reasons

MPC of batch processes are very difficult.

Much of the research in microelectronics process modeling and design is still largely

empirical. For example, Li et. al. used the uniform design method in their experi-

ments on plasma spray coatings [67]. The uniform design method is a form of facto-

rial design and uses multiple levels for each process variable to be investigated. They

then tried to fit their results to a polynomial equation using regression analysis. They

predicted deposition efficiency, porosity, and microhardness. They developed three

different equations for each parameter they wanted to predict and then ran one trial

to see how well their equation predicted. However, the benefit of developing mech-

anistic versus empirical models has been realized in other areas like plasma etching

[51]. In fact, in the 2007 ITRS the development of first principle models for material

properties was mentioned as an area where research is needed [60].

Other engineering fields that rely heavily on batch processes are biochemical en-

gineering and bioprocesses. While much of the research on modeling in this area

uses neural networks [35, 102, 128], research in process modeling is moving toward

more fundamental understanding. A more fundamental understanding of the cell

at the molecular level “would enable biochemical engineers to develop their biopro-

cesses, biosystems, and applications . . . much more efficiently and rationally” [137].

More fundamental understanding of a process generally leads to movement away from

purely empirical models towards models that incorporate some prior knowledge. Once

models that explain the process fully are available, the biochemical engineer will have

some of the tools needed to make decisions about their systems rationally and more

efficiently.

In bioprocess engineering, some of the key variables of the process cannot be

monitored directly. Instead the states are estimated using a process model which is
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then used in process control [115]. Sensors that do not measure a variable directly

but instead infer the value of the variable from other process parameters are called

soft sensors. Soft sensors need models that bridge process parameters to the desired

variables. These models sometimes take the form of purely empirical relationships,

but empirical models are not as good at extrapolating outside of the current data

range (something that could be essential when designing a new process or for model

predictive control (MPC)). A model which incorporates prior knowledge of the system

or first principles would be needed to overcome this, in the form of a hybrid model

or even a purely mechanistic model. Xiong et al. have developed an in-situ sensor to

estimate the states in a thin film grown via chemical vapor deposition [148].

In control of bioprocesses, the final reactor design (especially choices on the level

of factors such as mixing, shear effects, and gas mass transfer rates) plays a key role

[2]. With more understanding of mixing, shear effects, or gas mass transfer rates,

a better model for process design could be made or other important factors could

be identified to better understand the process. All three of these examples (more

detailed models of bioprocesses, soft sensors for bioprocesses, and bioprocess reactor

design) show a need for more fundamental understanding of bioprocesses and hence

more accurate models of the bioprocesses. The need is not for another type of model

or in manipulating data, but clearly much effort is being put into identifying new

models for various processes. However, no model is ever perfect, so there is a need for

a better method to go about finding a process model that is useful for engineering.

1.2 Process Design

Process design and process optimization are terms typically used in the chemical

engineering field that mean designing a process to maximize profit [100, 125]. Much

of the research in this area is focused on tradeoffs between the different setpoints that

a process may have and how that affects the other unit operations in the process.
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This is important when one is designing a new plant or making modifications to a

plant and is accomplished using commercial software like Aspen Plus or CHEMCAD.

The process sometimes already exists or the process is understood well enough to use

a process model in the design software.

In contrast, this thesis is focused on process design in the sense of designing a

process model to be developed and to be used during the design process. Once

developed this model could also be incorporated in design software. Before one gets to

the step of optimizing the whole process or plant, one must first establish the process

models to use. Typical unit operations in the chemical industry such as distillation

columns or filtration systems have been used for years and thus have process models

that enable a user of the design software to decide on the size and type of unit

operation to include in the overall process. But what about other industries such

as microelectronics or bioprocess industry with new processes which are continually

evolving? Traditional process design cannot really be attempted until reliable process

models can be found.

Of the microelectronics unit operations, chemical vapor deposition (CVD) is one

of the more complex processes. Through proper equipment design and operation

one can control the phenomena occurring inside the equipment [118]. Better process

models could lead to improvements in the equipment design, and also further enhance

the understanding of the process. For CVD, the approaches for improved process

diagnostics need to be in situ, due to the environment in the deposition chamber

such as low pressure, substrate and film purity, and chemical precursors used [117].

With improved process models, one can develop soft sensors which can be used to

better control the process [42]. For example, a reliable optical model led to the

development of in-situ sensors to better control a chemical vapor deposition process

[148].
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Chemometrics is a term used by chemists that refer to using mathematics, espe-

cially modeling and statistics, to infer information from measured data and getting

it into a form one can use [147]. In Wold et al.’s review of chemometrics, he points

out some of the future directions that chemometrics needs to take to progress in its

usefulness in industry and in academia. One point is that the methodology of ex-

perimental design is under-represented, where data analysis has been the main focus

in the field for some time. Another is that empirical and mechanistic models do not

need to be competing processes, but are rather complementary modeling techniques.

Also, experiments are demanding more and more resources as experiments collect

more data using more techniques and hence making experiments more expensive.

This necessitates the use of statistical experimental design to make experiments more

efficient.

1.3 Design of Experiments

Design of experiments is a method used to plan experiments to gain the most infor-

mation possible from the experiments. Rippin outlined some of the basic questions

that are asked while planning a new experiment [109].

1. On which subsystem should attention be concentrated?

2. What experimental configuration should be used?

3. What responses should be measured, where and when?

4. What experimental variables should be manipulated?

5. What settings should be chosen for manipulated variables?

While experimental design can help answer all five of these questions, most of the

methods are focused on questions 4 and 5. To say whether the experiments are/were

appropriate, some measure of effectiveness is needed. Measures such as goodness of
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fit and mean squared error are typically used. It is important to assess the contribu-

tion of individual model improvement to the performance of the whole system and

care should be taken to use a realistic criterion for the significance of the remaining

uncertainty.

Most behavior criterion during a series of experiments act the same: initial rapid

improvement, possibly oscillating around a certain point, followed by a further region

of steady improvement which slows down as the number of experiments is increased.

After some period of time, more experiments will not improve the model and either

new parameters are needed or a new model is needed if further accuracy is to be

achieved. There are a wide range of experimental design techniques in research, and

some of the techniques are introduced below. The research in experimental design

is largely separated depending on whether the model to be developed is empirical or

mechanistic.

1.3.1 Traditional Design of Experiments

When constructing models, especially the structure zone model, an empirical model

mentioned in section 1.5, the experimenters were required to do hundreds of ex-

periments in order to validate their models. When one incorporates a design of

experiment (DOE) approach, it is possible to quantify more characteristics of the

model with fewer experiments, using a statistical approach. DOE is generally used

for empirical models. One runs enough experiments to obtain statistically significant

empirical parameters for a model. Common methods used are 2k factorial approach

(where k is the number of factors or process variables in the experiment) , as well as

the fractional factorial DOE [84, 140]. Disadvantages of the fractional factorial are

less precision in the model parameter estimates, and confounding or masking of main

effects with interaction effects. Factorial experiments are commonly used in research

[11, 14, 25, 73].
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Response surface modeling (RSM) is a method to predict the local shape of the

response surface of a system [84]. It is used mainly for optimizing system settings

and to make a system more robust. RSM is most useful when the system does not

have a linear response between the high and low levels of a factor, i.e. the center

point result does not equal the average of the results with high and low settings.

To this end there are several approaches to DOE. Most popular is the face-centered

central composite design (CCF). A central composite design is a factorial or fractional

factorial experiment with center points and a group of “star points” to allow for

estimation of nonlinearity. Another design is the Box-Behnken design. Unlike the

CCF, this design preserves rotability but the estimation of points on the corners of

the box are poor. RSM is used in many current research projects for modeling of

batch processes [57, 107].

Another popular experimental design technique is the Taguchi method. The

Taguchi method is best when one is trying to find the most robust operating point

for a process [99]. Again, the focus here is on the result (i.e. a more robust pro-

cess) rather than the knowledge about the process gained from the experiments. This

method has found use in batch process modeling as well [83].

Other experimental design techniques have been used to create a better sampling

scheme. Defining a regular grid on the experimental space and randomly picking

points from that grid is called Latin Hypercube sampling (LHS) [40]. Alternatively,

one can space the grid points irregularly based on spatial variation of the function or

adaptively based on previous samples and an experimental design objective [120]. All

of these sampling methods are designed for better sampling of the entire experimental

region, whereas here we are interested in designing our experiments for best prediction

at the unknown optimal point of a process.

Work that combines experimental design with mechanistic and empirical models

has been largely limited to studies for speeding up simulation times. Specifically,
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the concept of surrogate models has been introduced to replace complex mechanistic

models with simpler empirical models [105, 143].

1.3.2 Alphabetic Optimality Experimental Design

In the 1980s a revolution swept the experimental design community with the use of

computers. Optimal design theory originated with the work of Kiefer in 1959 [88],

but didn’t become practical until computer algorithms were developed. The algo-

rithms allowed “best” designs to be generated based on the experimenter’s choice of

model, sample size, constraints on variables, and other constraints. These criteria are

characterized by letters of the alphabet and are called alphabetic optimality criteria,

with the most well-known being D-optimality. D-optimality works by choosing an

experimental design to achieve certain properties in the moment matrix

M =
X ′

jXj

n
(4)

where Xj is the design matrix for a model defined as

Xj =
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and where

a
(j)
lr = [∂ŷj(θj ,xr)/∂θjl]θj=θ̂j

l = 1, . . . , pj (6)

Here, a
(j)
r =

[

a1r, a2r, . . . , apjr

]

is for the rth experimental setting and θj =
[

θj1, θj2, . . . , θjpj

]

is a vector of parameters for the jth model. The inverse of M

contains the variance and covariance of the regression coefficients scaled by n
σ2 . n is

the number of data points from experiments and σ2 is the variance of the data col-

lected. Therefore, the variance and covariance of the parameters can be controlled by
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controlling the moment matrix. The determinant of X ′
jXj is inversely proportional

to the square of the volume of the confidence region on the regression coefficients,

θ. How well the set of coefficients are estimated is reflected by the volume of the

confidence region. A large |M′M
−1| implies poor estimation of θ in the model.

Much research has focused on D-optimal design and its applications [39, 48,

108].Other alphabetic optimality criterion are the A-optimality, G-optimality, and

V-optimality [84]. The A-optimality tries to minimize the trace of |X ′
jXj|, which

minimizes the variance on the regression coefficients of the model. G- and V-optimal

designs are concerned with the prediction of the response and use prediction vari-

ance criteria. A G-optimal design minimizes the maximum scaled prediction variance

over the entire design region. The V-criterion uses a set of points in the region and

minimizes the average prediction variance over this set of points. Ds-optimal is a

modification to D-optimal, which minimizes |(A′A)−1|, using a submatrix of A com-

posed of the set of s coefficients of interest in the model, where s ¡ total number of

coefficients in the model [124].

D-optimality has been the focus of recent research in the engineering field. Kuhfeld

et al. proposed a program that designs D-optimal experiments for large factorial

experiments. The purpose of the program is to “free experimenters from worrying

about how an array is constructed, and instead allows them to concentrate on how

it will be used.” “For any researcher, finding orthogonal arrays, nearly-orthogonal

arrays, and D-efficient designs can require a great deal of trial and error with different

approaches, calling for many different types of expertise, none of which has anything

to do with their research per se” [64]. D-optimality helps researchers determine

which experimental design estimates parameters with the most confidence. Work by

Franceschini et al. used experimental design to elucidate the parameters of kinetic

models for a biodiesel process [44]. The drawback for D-optimal designs is the ability

to only consider one model. If one is characterizing a new process, an established
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model may not already be available.

1.3.3 DOE and Chemical Vapor Deposition

Applying DOE to CVD experiments is not in itself a new idea. CVD experiments are

very time-consuming, so the need for intelligent selection of experiments is critical.

One can choose which design is best for finding the optimal setup for the system,

as well as which is best for model building. Numerous works in the field have em-

ployed DOE to optimize the process [90, 12, 36, 67, 91, 110, 130]. Robbins et al.

employed DOE on a plasma-enhanced CVD process to optimize electrical conductiv-

ity in nanocrystalline gallium doped zinc oxide. They employed a three-level central

composite design (face centered cubic) to study the effects of RF power, pressure,

and electrode gap on the conductivity and growth rate of the films [110].

In other work by Topol et al., a low pressure CVD system for depositing manganese-

doped zinc sulfide was optimized using a DOE approach. DOE was used to optimize

the zinc sulfide deposition using a screening experiment to find the most important

process parameters and then a full DOE on the remaining parameters to optimize the

deposition. Once the zinc sulfide was optimized, the investigators added Mn to the

films to find the maximum luminance and efficiency for electroluminescence emission

[130].

Young et al. characterized the microstructure of a diamond thin film made by

microwave CVD [152]. In this study they do not use a form of DOE but the authors

do a one-factor at a time approach. They identify the overall effect on hardness for

each of the three factors they study, but they do not present a model for microhardness

or make any suggestions for future experiments on those films. In this situation it is

difficult for other researchers to use these results. Since every reactor is different, this

sort of “reactor-specific” result is a common problem in CVD research.
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Work on diamond-like amorphous carbon thin films used a DOE approach to opti-

mize the microhardness of the films. Four process variables and their interactions were

analyzed to produce the best microhardness of a film deposited by plasma-enhanced

chemical vapor deposition [12]. They developed a RSM model as an empirical model

for the microhardness. They stopped short of actually testing their model, and the

paper does not mention any subsequent experiments to be performed.

1.4 Model Discrimination

In determining the best model for a process, there has been much research effort in

model discrimination and parameter identification. A method for model discrimina-

tion developed by Box and coworkers [121] uses Bayesian probability to predict which

mechanistic model is more probable, given existing experimental data. Equation (7)

can be used for either mechanistic or empirical models,

P (Mj|Y, MSEj) = P (Mj) × 2−pj/2 × MSE
−νe/2
j (7)

where Mj is model number j, Y is the experimental data, νe is the number of repe-

titions for each data point, pj is the number of parameters in model j, and MSEj is

the sum of squares of the model error:

MSEj =

∑n
i=1(y(xi) − ŷj(xi))

2

n
(8)

Here y(xi) is the experimental measurement, i=1,2,..n, and ŷj(xi) is the prediction

from model j for experiment xi. A model is penalized in Eqn. (7) for having more

parameters, fewer repetitions of the experiment, or larger error than an alternative

model. This method is used to discriminate between existing models using existing

data, but is not designed as an iterative process for experimental design. A sequential

experimental scheme was developed to discriminate between multiple models [47] by

designing the experiments where the models in question have the largest difference in
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prediction

maxx(abs(ŷ1(x) − ŷ2(x))) (9)

This idea of designing experiments for discriminating among models was originated

by Box et al [18]. This work began with information theory and designed a criterion

that functions with any number of possible models using prior probabilities. This

discrimination function takes the form for m different models and n experimental

points

D =
1

2

m
∑

i=1

m
∑

j=i+1

PiPj

(

(σ2
i − σ2

j )
2

(σ2 + σ2
i )(σ

2 + σ2
j )

+ (ŷi
n − ŷj

n)2(
1

σ2 + σ2
i

+
1

σ2 + σ2
j

)

)

(10)

where σ2 is the variance of the observed data, ŷi
n is the predicted value for the system

y from model i using the first n− 1 observations, and σ2
i is the prediction variance of

model i. The prediction variance is a measure of the uncertainty of the model

σi
2(x) = a(i)(X′

iXi)
−1a(i)′σ2 (11)

By choosing the next experiment that maximizes D, one attains the maximum ex-

pected discrimination among the m models. Experimental points that maximize the

models’ prediction differences, however, are not necessarily desirable when one is try-

ing to gain information about the optimal design point of the process. For example,

the models might actually agree at the optimal design point.

Takors et al. use a D-optimal experimental design to design experiments for model

discrimination [126]. D-optimal designs are very model dependent, and if the correct

model is not known beforehand, D-optimal can be troublesome. To get around this

problem, the authors used a “true” model to design the D-optimal experiments. They

then discriminated between 10 other models to see which model was the best out of

the 10. This experimental design method is therefore dependent on having a correct

model at the beginning, which is often not the case.

Previous model discrimination work largely depends on either having a relatively

good model to begin with as it is often assumed one model is the true model [18, 24],
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or else the point where two models diverge is the best next experimental point. The

work on this thesis develops a sequential experimental design technique in which

one does not need to know the correct model beforehand. The method also aids in

discriminating between competing models to find the best model for the process and

process objectives.

1.5 Modeling of Thin Film Microstructure

In today’s world of ever-shrinking length scales, thin film technology has become

increasingly important and has found widespread use in a variety of applications. As

device sizes become smaller, relevant length scales shrink into the nanometer range.

In this range microstructure that was ignored on the bulk scale becomes increasingly

important for the emerging nanotechnology. Recently there have been links made

between microstructure and desirable properties of thin films in applications such as

solar cells [65], microelectromechanical (MEMS) devices [23], and dynamic random

access memory [141]. The properties of thin films have been found to vary according

to preparation conditions [80]. For this reason a relation between material selection,

preparation, structure, and property has been sought. “A good understanding could

provide the basis for materials selection, process selection, and process design to tailor

microstructures for optimized performance of polycrystalline films in their wide range

of specific engineering applications” [127]. The ITRS has identified the impact of

physical properties of materials on the electrical, mechanical, and thermal properties

as an important challenge for the future [60].

1.5.1 Structure Zone Model

One of the first models attempting to address microstructure prediction is the struc-

ture zone model (SZM), first published by Movchan et al. in 1969. Their model

used the reduced temperature T
Tm

to predict the final microstructure, where Tm is

the melting temperature of the deposited substance [85]. The model was modified
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by Thornton in 1977 to include the effects of deposition pressure as well as reduced

temperature. He accomplished this by adding a “zone T” for the region T
Tm

≤ 0.5.

The SZM has a few key assumptions [129]:

1. Incident atoms transfer kinetic energy to the crystal lattice to become adatoms

2. Adatoms diffuse over the surface until desorbed or stay in low-energy lattice

site

3. The following 4 processes are significant for the process

(a) Shadowing (which is seen via roughness measurements)

(b) Surface diffusion: quantified by finding surface diffusion activation energy

(c) Bulk diffusion: quantified by finding bulk diffusion activation energy

(d) Desorption: quantified by finding sublimation energy

Notable work was done by Messier et al. where the SZM was modified to include

the nanostructure, and the zone T became a subzone of the first zone, as seen in

Figure 2 where the pressure is measured in microTorr [129]. The SZM was originally

developed to predict a sputtering process, but has since been adapted to include de-

position processes such as CVD and sol-gel deposition techniques. Schuler et al. were

able to predict the microstructure of a thin film grown via a sol–gel technique by using

a ratio of the thickness of a single atomic layer and the size of the crystal grains. They

extended their model to CVD by considering the layer deposited to be infinitesimally

small. When one makes this assumption their model agrees with that predicted by

SZM [116]. The SZM model was developed under the assumption that temperature

and pressure remain constant throughout the deposition which could be a significant

limitation when the model is used for process design. The SZM model is an example

of a qualitative mechanistic model. After doing many experiments, the researchers

were able to describe mechanisitically (what process dominated the deposition and
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Figure 2: Structure Zone Model [129]

microstructural formation) what ocurred on the surface and qualitatively described

the resulting microstructure.

The SZM model has also been used as the basis for computer simulations of

thin film growth. Savaloni et al. developed a 2D model to predict microstructure

by constructing an algorithm which takes into account the mobility of the atoms

once they reach the surface of the film. The model calculated the probabilities of

an adatom hopping based on the temperature of the substrate and the amount of

nearest and second-nearest neighbors. They varied the substrate temperature, the

deposition rates, and the angle of incidence and the model gave results that agreed

with the SZM [114]. However, at higher deposition rates their simulation resulted in

dendritic growths on the substrate which is not observed in experiments.

1.5.2 Kinetic Monte Carlo

Other attempts to model thin film microstructures have used kinetic Monte Carlo

simulations (kMC). These simulations use kinetic parameters obtained via experi-

mentation to model the film morphology. The model developed by Ni et al. is similar

to the one by Savaloni mentioned earlier in that it includes adatom hopping on the

substrate surface, but in 3D and atoms were allowed to hop over longer distances

than in the Savaloni model. This model was used to predict the roughness of a de-

posited surface and was extended to films with two components. It was also used in
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simulations to control the roughness of a film [89]. This model used generic molecules

so one cannot compare to the SZM since a reduced temperature requires a Tm which

is specific to a material.

Work by Rubio et al. simulated depostion and annealing of three-dimensional

polycrystalline thin films to understand the role of elementary atomistic diffusion

mechanisms on the deposition and thermal processing of polycrystalline thin films

[113]. An event manager controlled the timing of the simulation and ran the two

types of events in the simulation: deposition and diffusion. Deposition was modeled as

atoms approaching the substrate at a rate equal to the desired growth rate. Diffusion

was modeled by atom jumps which occur at a probability which was proportional to a

rate which depends on migration energy and on the change in system energy due to the

jump. The model was used to study the effects of temperature, deposition rate, and

adhesion energy on the film microstructure. Monte Carlo (MC) models are typically

hybrid models as the activation energies are estimated from experimental data or from

molecular dynamic modeling. MC models are typically used to model uncertainties

which can be used in experimental design [55, 138]. However, experimental design has

not specifically been used to estimate parameters in a Monte Carlo model but this

could be done. A finite difference method could be used to estimate the Xj matrix

and experiments could be designed to improve a MC model.

1.5.3 Grain Growth Models

Another approach to modeling the microstructure of thin films is through studies

of nucleation, grain growth and grain coalescence. The microstructural characteris-

tics of importance include grain shapes, grain sizes, distribution of grain sizes and

distribution of grain orientations [127].

A model tracking the motion of grain boundaries was developed by Zhang et al.

They constructed a simulation code to predict the microstructure of metallic thin
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films. The program makes use of 1D and 3D kinetic lattice Monte Carlo (KLMC)

models to predict the profile and microstructure (grain size, grain shape, grain orienta-

tion, texture, and roughness) of thin films as a function of their deposition conditions

(temperature, flux distribution, deposition method, substrate geometry, materials).

KLMC makes use of an atomic lattice to move the atoms in the simulation and is

also known as atomic kinetic monte carlo. The program they developed is called

FACET and is a downloadable program from their website [154, 155]. To reduce the

computational time of their model, they make a few key assumptions:

1. It is a two-dimensional simulation.

2. They describe facets and grain boundaries with line segments. Each facet is

described by one line segment, while boundaries are described by multiple line

segments to show proper grain shape and film structure.

3. Each nucleus has its own unique orientation which affects facet growth rates.

Each grain is allowed to rotate by any angle around the axis.

4. Initial size, texture, and nuclei density are input factors.

The program calculates how the facets of a film move. They can jump to another facet,

jump to the substrate surface, or interact with an adjacent grain possibly combining

into one grain. The user inputs the deposition flux and the activation energy for

each type of diffusion. The program then calculates the jump rate or probability

for each jump direction and determines the new facet location. The purpose of this

program is to provide a tool for virtual experiments. The software gives the user an

approximation of what the film may look like after the experiment.

Friedrich et al. developed a program called GROFILMS to model a 2D thin film

microstructure [46]. This model uses line segments to simulate fundamental film

growth phenomena. This model addresses issues such as substrate wetting, grain
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growth, crystal facetting, grain boundary grooving, shadowing, internal microstruc-

ture, and surface topography. The paper does not necessarily model a paticular

film-building process like CVD or sputtering, but alludes to sputtering as the desired

type of system. They compare their model to the SZM to show that their model is

valid. The parameters they use to generate a film are substrate surface tension and

interfacial tension. They do not use any experiments to back up their predictions,

but instead compare the predictions between the two models.

Rollett et al. simulated the growth of abnormal grains using a Monte Carlo model

[112]. By taking into account the different grain orientations possible in a thin film,

they used the concept of grain boundary energy to simulate grain growth. Unfortu-

nately, grain boundary energies cannot be estimated easily on a typical deposition

system.

1.5.4 Nucleation Models

Some of the grain growth models need a nuclei density to proceed. Unfortunately,

nuclei density are generally too small to measure experimentally, so many models

have been developed to describe the nucleation of thin films as well. Zinsmeister et

al. described the nucleation of a thin film using a system of stochastic equations. Each

equation described the mobility of a size of cluster up to a cluster of n atoms and used

fitted parameters such as a collision factor, adsorption energy Ea, and binding energy,

Eb to develop their hybrid model [157]. One of the problems mentioned in modeling

nucleation is the short time window of nucleation. Most analyzation techniques take

a second to acquire data from a nucleating thin film which is unfortunately too long

to see the developing nucleation islands [157].

Other work in nucleation modeling has focused on the three types of growth

for thin films [136]. Particle growth form small clusters as the film grows. True

layer growth or Frank-van der Merwe growth is characterized by each layer being
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identical to the previous layer and is often seen in the homoepitaxy of metals and

semiconductors. Stranski-Krastenov or layer-plus-island growth has identical initial

layers, but then forms islands. This type of growth is typically found in heteroepitaxy

of metals and semiconductors. Stowell et al. did numerical simulations of nucleation

density using deposition rate, J , adatom diffusion, D, and the binding energy of n

atoms, En [123].

Evans et al. developed a nucleation model using “mean-field” rate equations, a

set of partial differential equations that describe the nucleation process [76].

N1

dt
= F − (ρ + 1)Knuc − Kagg (12)

Nisl

dt
= Knuc (13)

where F is the flux of atoms to the surface and ρ is the number of adatoms needed

for a stable cluster. The rate of nucleation is calculated

Knuc = ηρhN1Nρ (14)

where ηρ is the capture number for a cluster of size ρ, h is the hopping frequency, N1

is the number of adatoms on the surface, and Nρ is the mean density of clusters of

size ρ. h = υexp(−βEd) where υ = 1× 1013, the attempt frequency for hopping, and

β =
1

kBT
(15)

where kB is the boltzman constant, and T is the temperature.

Nρ = cρexp(−βEρ)(N1)
ρ (16)

where cρ is the number of configurations of stable clusters, Eρ is the binding energy

for the cluster. The rate of aggregation of adatoms is Kagg = ηavhN1Nisl. These

rate equations are also hybrid models since the energies need to be estimated from

experimental data.
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1.5.5 Multiscale Modeling

Modeling of processes has occurred on many different scales which usually depends

on the level of understanding of the process being modeled. Continuum models on

the gas flow in a CVD reactor have been done [58, 22, 95], as well as modeling on

the microscale which are represented by the grain growth and nucleation models

mentioned previously. The macroscale continuum models are useful for describing

flow patterns within the reactor as well as analyzing the heat transfer within the

reactor which definitely have an effect on the microstructure. The drawback is that

such models cannot describe the microstructure of the thin films very well unless it

is coupled with a microscale model.

Multiscale modeling of CVD processes has also been attempted for linking macro-

and microscale processes [77]. Jensen et al. developed a model in which the mi-

croscale film growth provided boundary conditions for the macroscale model of chem-

ical species transport. While previously described models focused on surface evolution

with adatom hopping, this model simply looks at the probability of whether or not

a species will actually stick to the surface or go back to the bulk gas phase. They

introduce an effective reactivity function which takes into account the number and

nature of encounters a molecule will have going from the bulk phase to the substrate

surface. The function is calculated statistically by finding the possible trajectories a

molecule could take from a point some distance from the substrate surface. Then the

function is used as a boundary condition for macroscopic simulations [111]. However,

this model does not describe the microstructure of the resulting film.

Yu et. al. developed a method for microstructure prediction in thermo-mechanical

processing in metals [153] by trying to bridge macroscopic and mesoscopic models.

The mesoscale is smaller than the macroscale of substrate diameter, but it is larger

than modeling the individual atoms which would be the microscale. They attempted

to combine FEM and MC simulations. Their methodology took a continuum-based
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model (FEM) and used that information for an empirical (MC) simulation. They

presented FEM results and MC results from other papers, but they did not combine

the two and only explained the methodology they are going to use. Again, this is

a modeling study, with no experimental validation or demonstration. In this thesis

the main focus will be on microstructural modeling, but macroscale models such as

growth rate will also be included. Although the focus will be on the microstructure,

the macroscale features of the reactor cannot be ignored.

1.5.6 Observations from Current Models

Looking at the current simulations available today, one sees many different approaches

to modeling the surface and microstructure evolution. From empirical modeling via

SZM to modeling of film evolution to kMC to multiscale modeling, all methods seem

promising in the end goal of predicting and controlling thin film microstructure. Em-

pirical models are simple to use in design but assume constant process settings and

because of their simplicity have limited predictive power. Mechanistic models can

provide more insight, but are more difficult to use for design. Also, they require

more experiments to identify parameters or the process settings are not physically

observable. One thing that is lacking is an approach attempting to combine the dif-

ferent modeling techniques currently in place. Finding a link between SZM (empirical

models) and kMC and/or multiscale modeling could lead to a model that captures

the evolution of the microstructure. We want to combine the best features of each

approach and use them simulataneously to conduct the best experiments to build the

models. This is especially important since experiments are slow and costly, and no

single model is ever the “true” model anyway.

1.6 Microstructure Optimization

Microstructural optimization has also garnered attention in the research community.

Medina et al. have developed a method of optimizing the microstructure of a hot
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metal extrusion process [81]. Here the process was well understood fundamentally

and uncertainty in the model was less of a concern. A model for microstructure was

used to determine the best process settings to obtain the desired microstructure. They

then actually designed their process around the desired trajectory of the process. This

is an example of process design that models developed by the method in this thesis

would enable. Once a good model for microstructure is obtained, process optimization

such as in this example becomes possible.

1.7 Chapter Outline

In Chapter 2 a full description of the metalorganic chemical vapor deposition (MOCVD)

system is given. This is the system which our assumptions and theories were tested

on. The design of the hardware is given, as well as some equations used in the PI

control loop for precursor delivery are detailed.

In Chapter 3 a description of experimental design is given and active areas of

experimental design research are described. These elements are then combined into

an experimental design methodology to be used throughout the thesis. The basic

methodology is shown in Figure 3.

In Chapter 4 a simulation study based on the experimental design developed in

Chapter 3 is presented. The simulation focuses on refining the experimental design

to be used on an experimental system. First, simulated data using the modified

Himmelblau equation is used and the results of fitting a model to that data with

added noise is presented. Next, a simulated study of thin film growth is presented

with multiple models to fit the simulated data with added noise.

In Chapter 5 the results from Chapter 4 are used in implementing this experimen-

tal design on an experimental MOCVD reactor system. The methodology is used to

design experiments to find the optimal point of operation in the process to achieve

the optimal roughness of the film.
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Figure 3: Proposed experimental design algorithm. Two models are shown here, but
any number of models may be used.

In Chapter 6 some additional considerations for experimental design are presented.

The technique of identifying a poor model is presented and some additional work on

the experimental design methodology is presented in a study to fit the growth time

of the CVD reactor. Also presented is ensuring whether your metric upon which to

build your model is robust. An attempt to measure grain size is shown and the failure

of this metric for model design is highlighted.

In Chapter 7 the conclusions of the thesis are presented, as well as future directions

of research. This work has unique contributions to the field of model building, process

design, and experimental design. This is the first experimental design methodology

to our knowledge with the specific aim of developing process models. Mechanistic

models are often developed removed from experimentation, and the result is a model

that does not relate well to the actual process and cannot be applied to the process

directly. Alternatively, experimental data is used to develop empirical models, but

these models are only useful in the range where the data was collected and should not

be used to extrapolate into other regions. By anchoring the model in experiments

while also testing hypotheses for deeper understanding of the process, a practical
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model for experimenters can be developed.

This work also demonstrates the need for researchers with a diverse skill set. While

many are either experimentalists or theorists, there is a definite need for researchers

capable of working in both realms or at least capable of working closely with another

researcher with a complementary skill set. Models developed without experiments will

be unlikely to have a practical application, while models developed without theory

will have limited predictive range.
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CHAPTER II

CHEMICAL VAPOR DEPOSITION EXPERIMENTAL

TESTBED

To test our theories and assumptions an experimental testbed was needed to provide

experimental data. Chemical vapor deposition (CVD) is a common batch method for

depositing thin films and is used in a variety of applications such as microelectronics

[52, 86, 141], thermal barrier coatings [135, 139, 156], and fuel cells [72, 82, 146]. The

strength of CVD is the ability to deposit uniform films over non-uniform surfaces, as

well as the advantage of not requiring high vacuum or needing line-of-site to the sub-

strate for deposition, as physical vapor deposition methods require [117]. The exact

mechanisms occuring during CVD are not always very well understood or quantified,

and for this reason on the factory level many substrates are wasted trying to find

the correct recipe to deposit the desired microstructure [42]. If one had a better

understanding of the underlying mechanisms, one could design better CVD systems

to deposit the desired mechanisms. However, due to the quickly changing nature of

the microelectronics industry, always making devices smaller and smaller, a detailed

study of these mechanisms is difficult. For this reason, a low pressure metalorganic

cold wall chemical vapor deposition (MOCVD) system was constructed to test the

experimental design methods developed. This system was originally constructed to

deposit yttria-stabilized zirconia thin films, but for simplicity we currently deposit

only yttria oxide (Y2O3).

Thermal chemical vapor deposition works by heating a substrate to high temper-

atures and flowing over the substrate the reactive gases which contain the chemical to

be deposited. Metalorganic precursors are used in CVD due to their low sublimation

29



Figure 4: Schematic of the chemical vapor deposition system showing the three sec-
tions: upstream, chamber and sensor, and downstram. “NO” and “NC” denote nor-
mally open and normally closed valves respectively. “P” denotes the pressure sensor
and “MFC” denotes mass flow controller.

temperatures and highly reactive nature [104, 103]. At high temperatures (> 600◦C),

the precursor compound begins to decompose and the metal deposits on the surface

creating a thin film. The reactor system can be divided into three parts: upstream,

deposition chamber, and downstream. This is shown schematically in Figure 4.

2.1 Upstream

Figure 5 shows a photograph of the experimental testbed in our laboratory. The

upstream portion consists of six mass flow controllers (MFC) [MKS Instruments], two

precursor evaporators [Kurt J. Lesker], two UV cells [Ocean Optics], a flow manifold

which is described later, and stainless steel tubing connecting all of the VCR fittings

[Swagelok].

The evaporators are cylindrical containers of stainless steel. Each container is 5”

tall and 2” in diameter covered with a 3-3
8
” Conflat vacuum flange. The cover has

three tubes going into it: a 1
8
” sealed tube for a K-type thermocouple, an inlet tube (1

4
”

OD tubing) that extends 4-5
8
” into the container, and an outlet tube (1

2
” OD tubing).

The inlet tube introduces Argon gas into the evaporator to dilute and help carry the
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precursor to the rest of the reactor. A larger tube diameter is chosen to carry the

precursor vapors to prevent clogging in the tubing due to condensed or decomposed

precursor and 1
2
” tubing is used whenever the gases contain the precursor vapors. Both

the inlet and the outlet tubing have a manual valve on them to either open up or close

off the evaporator from the rest of the upstream system. An evaporator is packed with

precursor inside a drybox [Unilab] by grinding up the yttrium tetramethylhexadione

(Y(C11H19O2)3 or Y(tmhd)3) precursor [Strem Chemicals, CAS 15632-39-0] into a

fine powder using a mortar and pestle, and then coating 1
4
” diameter stainless steel

ball bearings with the precursor to increase the surface area for sublimation of the

precursor. A drybox is used for evaporator packing due to the moisture sensitivity of

the precursor described later. When an evaporator is reattached to the reactor system,

it is pumped down to a base pressure of 0.6 torr. If an evaporator is not pumped

down, a large pressure buildup inside the evaporator will occur as it is heated to

the sublimation temperatures. This pressure buildup, upon opening the evaporator,

could cause some of the precursor powder to blow out of the evaporator and into the

reactor system, causing loss of precursor.

Except for the MFCs and the flow manifold, everything else in the upstream

section is housed inside a hot air convection oven [Grieve NB-350] to keep the system

at a constant temperature and to prevent precursor condensation in the tubing. The

oven temperature is set manually, but is monitored using a thermocouple.

The concentration of the sublimated metalorganic precursor in the evaporator

were calculated using the ideal gas law and Raoult’s law and shown in Table 1. The

vapor pressure of yttria precursor is reported in [49]. This is only a rough calculation

of how much could be in the gas phase of the evaporator at one time. Chou et al.

analyzed the evaporation of tmhd precursors and listed some factors that affected

precursor evaporation rates [33]. The evaporation rates decreased over time due to a

decrease in the effective surface area and an increase in the diffusion distance in the
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Table 1: Y(tmhd)3 precursor physical properties and concentration determination.

property units value
molecular weight g

mol
638.71

melting point oC 170–173
sublimation temperature K 413

gas constant R Lmm Hg
gmolK

62.36

vapor pressure torr 0.062
total pressure in reactor torr 1.5

calculated mole fraction of precursor – 0.0413

calculated concentration of precursor in evaporator µmol
L

2.4

region above the sample in the evaporator. For these reasons ball bearings are coated

with the precursor to increase surface area as much as possible and the carrier gases

are directed into the evaporator to minimize the diffusion length for the sublimated

molecules.

To monitor the molar flowrate of precursor to the reactor chamber a UV cell

connected to a spectrometer [Ocean Optics Model S2000] by fiber optic cable is used.

Two channels of absorbance are used to monitor the precursor flow. Slave 1 is used to

monitor the absorbance in the Y(tmhd)3 UV cell and Slave 2 is used to monitor the

stability of the UV lamp and is connected directly to the light source. Y(tmhd)3 has

a maximum absorbance at λmax = 286 nm. This wavelength is used to calculate the

concentration using the Beer-Lambert relation, c = A
εb

, where c is the concentration

in mol
L

, A is the absorbance, ε is the molar absorptivity of Y(tmhd)3 in L
mol cm

and

has a value of 34673.7 [38, 106], and b is the length of the UV cell which is 10 cm.

With a known concentration and molar flowrate of argon, nAr, one can calculate the

molar flowrate of Y(tmhd)3, nY . Using the ideal gas law, c = nY

V
= nY

(nY +nAr)RT
P

with

R=62.3638 L×mm Hg
mol×K

. Rearranging this equation yields

nY =
1

P
RTc

− 1
nAr (17)

Using Equation (17) one can monitor the precursor flow, to determine more accurately

how much precursor has been used, and to determine when the evaporator needs
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Table 2: Parameters for PID controller for precursor mass flow

KP 0.00203
KI 0.001
KD 0.00
limit ± 0.5 [sccm]

repacking. Monitoring precursor delivery is one of the problems in MOCVD that leads

to repeatability issues [38, 106]. Using Equation (17) a PI controller for precursor

delivery was designed. The equation used in the Labview software for converting

absorbance to molar flow rate is

nY =
A

PΓ
T

− A
nArΛ (18)

where Γ = ε×b
R

= 5560 K
mm Hg

and Λ = 7.4× 10−7 mol
s×sccm

× 106 µmol
mol

× 60 s
min

= 44.4µmol
min

.

Pressure, temperature, and absorbance are collected by the computer and used to

calculate the molar flowrate every second. The manipulated variable is the argon gas

flow and the parameters for the controller are shown in Table 2. Due to the noisy

nature of the UV system, no derivative term was used, and additionally the controller

was limited to varying the argon flow by 0.5 sccm in either direction during each time

step.

To ensure that the amount of precursor coming out of the evaporator was constant

from one evaporator packing to the next, the evaporators were tested after being

freshly packed. The same pressure and temperatures were used, as well as similar

flowrates through the evaporator and the chemical came from the same source bottle.

The initial results are shown in Figure 6, and one can see the variability in the molar

flowrate of precursor coming out of the evaporators.

A drybox was then used to ensure that the moisture in the surroundings and

other uncontrollable environmental factors were constant from one packing to the

next. The drybox is filled with nitrogen and the level of water vapor in the box is

carefully tracked and was kept less than 0.1 ppm. Because of the strict control on
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water vapor, anything put into the drybox chamber needs to be baked in an oven

at 130oC for 3 hours. After taking the components for the evaporator out of the

oven, they are immediately taken to the drybox and put in the antechamber and left

under vacuum for at least one hour. Anything plastic which could not be baked in an

oven was to be left in the antechamber under vacuum overnight before going into the

drybox, to ensure that any water vapor be driven off. After packing the evaporators

in the drybox environment the study was redone and the results are shown in Figure

7, where the molar flowrates are much more repeatable from one evaporator packing

to the next. There is still some variability, especially at higher flowrates, but these

variations are much less dramatic than in Figure 6 and can be compensated for by

changing the flowrates or the oven temperature.

While it is important to know how much precursor is coming into the reactor

chamber via the UV cells, not all of the precursor coming in will be incorporated into

the deposited film. Precursor molecules can react prematurely and deposit on the

walls of the reactor. The precursor may not come in contact with the substrate and

instead is sucked into the liquid nitrogen trap and the pump. However, knowing that

precursor is coming into the chamber is useful for monitoring the level of precursor

in the evaporator, and is important when one wants to calculate how much of the

precursor is being incorporated into the film to find the reactor efficiency.

Once the precursor passes through the UV cell, it is combined with another stream

of argon and enters the flow manifold. The flow manifold is designed to precisely

control the time at which the precursor goes into the reactor chamber. The manifold

is made of four bellows-sealed valves [Swagelok] two of which are normally closed

and two are normally open. The opening and closing of these valves is controlled

using four solenoid valves [Swagelok] which are controlled by the computer software

designed for the reactor [149]. The manifold has two inlets and two outlets. With no

pneumatic pressure to the solenoid valves, the dummy argon flow goes to the reactor
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chamber while the stream containing the precursor bypasses the reaction chamber

and goes directly to the outlet pump. When the pneumatic valves are on, the two

streams switch. The flow manifold is outside of the oven, but the tubing is heated

using heating tape [Omega]. The dummy argon flow and the flow manifold are used

to continually flow gas through the chamber to minimize the variations in the gas

flow inside the reactor. In practice, the flow switch is far from ideal and often leads

to flow variations visible on the UV data.

The tubing for this reactor is placed within the oven whenever possible to ensure

temperature uniformity and to prevent condensation of precursor in the lines. To

ensure that the gas reaches thermal steady state before reaching the precursors, the

length of tube needed to heat the gas to the appropriate temperature was calculated

[131], with an extra 20% added to ensure gas temperature uniformity and to ensure

there is no clogging in the tubes.

2.2 Deposition Chamber

The deposition chamber consists of two standard stainless steel ultra high vacuum

reducing crosses [MDC Vacuum Products] which are also housed inside the oven to

prevent precursor condensation. The main flange and the reducer flange are 4-1
2
” OD

and 2-3
4
” respectively. The two flanges are rotated 90◦ from each other as shown in

Figure 8. The bottom reducing cross has one reducing flange that has an outlet to

the pump while the other reducing cross has a manual valve attached which is used

to release pressure in case of system overpressuring. The top flange of the lower cross

is attached to the upper cross, while the bottom flange is where the substrate heater

and holder are inserted into the system. The top cross has one reducing flange, which

is the inlet flow from the flow manifold. The other reducer flange has two tubes

connected to it. One is for the oxygen and the other is used as a purge flow. Oxygen

is needed for the precursor compound to decompose properly [74, 93] and is also a
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component of the film deposited. The flow of oxygen and the flow of precursor were

separated to hinder any reaction of the precursor in the gas phase before reaching the

deposition chamber. The top of the upper cross is attached to a viewport used with

the emissivity correcting pyrometer (ECP) [SVT Associates] used to monitor in situ

surface temperature and growth rate. The deposition chamber is also housed inside

the oven to ensure temperature uniformity.

The type of deposition chamber for this study was chosen to be cold wall vertical

flow reactor. This type is commonly used in rapid thermal processing and is best for

the in situ sensing mentioned later. Cold wall reactors are characterized by heating

the substrate directly while hot wall reactors heat the entire deposition chamber. Cold

wall reactors can be advantageous because the precursor is more likely to deposit on

the substrate and not on the walls because it is at a higher temperature than the

walls of the reactor, which are heated in hot wall reactors.

To understand the flow patterns inside the deposition chamber the Reynolds num-

ber was calculated as well as the space time of the gases through the chamber. In

addition modeling was performed with COMSOL. A Reynolds number for the gas

flow in the deposition chamber was calculated using the Reynolds equation:

Re =
D × φ × ν

µ
(19)

where: φ[=] kg
m3 = 0.00677, D[=]m =diameter, µ[=]Pa× s = 0.0002099 (conditions at

1.01 bar and 0oC), and the velocity is calculated using a maximum flow of 700 sccm

and the diameter of the tubing. ν is in units of m
s
. For the main reactor which has

D = .0508m, ν = 1.5m
s
, the Reynolds number = 24.7. For the 1

2
” tubing leading to

reactor, D = 0.0127, ν = 24.1m
s
, the Reynolds number = 98.84. Thus the flow in the

reactor is in the low laminar regime since the transition Re is 1200.

The volume of the reactor was calculated using an equation obtained from the
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Table 3: Constants used in residence time calculations. Density and viscosity values
for argon were used.

value units

sccm to moles conversion 7.4e-7 moles
sccm

molecular weight of argon 39.948 g
mole

φ (at reaction conditions) 0.1499 m3

g

m3 to cm3 1003 cm3

m3

calculated volume 2249 cm3

ideal gas law. PV = nRT =⇒ d(PV ) = d(nRT ) =⇒ d(PV ) = FdtRT =⇒

dP

dt
=

FRT

V
(20)

where F is the flowrate from the mass flow controllers which was constant at 1000

sccm and where dP
dt

is a constant. The volume and the temperature of the reactor

remain constant. The deposition chamber was pumped down, then the pump valve

was closed leaving the chamber under vacuum. Argon gas was then flowed into the

chamber at a constant rate, using a mass flow controller. Using the data from this

experiment [149] along with Equation (20), the volume of the reactor was calculated

to be 2249 cm3. Then, using the conversion of mass flowrates to volumetric flowrates

and other constants in Table 3, the space times at various flowrates were calculated

τ = V
vo

where V is the reactor volume and vo is the volumetric flowrate. The density

used was calculated for reaction conditions using the ideal gas law, rather than STP

conditions. The space times are shown in Table 4 and represent on average how long

a particle will spend in the reaction chamber. If the space time is too short, the

precursor particles may not have time to react with the surface. Alternatively, if the

space time is too long, the precursor particle may decompose and deposit somewhere

other than the substrate surface.

The space time is useful to approximating how long a molecule will be in the reac-

tor, but that is only under ideal flow conditions. Irregularities in the flow within the
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Figure 5: Picture of CVD system with oven doors closed.

Table 4: Space times at different flowrates through the reactor chamber.

Flowrates [sccm] space times [s]
700 0.725
450 1.128
350 1.450
250 2.030
200 2.537
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Figure 6: Results of initial study on precursor molar flowrate repeatability. The ‘×’
markers are from the first evaporator packing, the ‘◦’ markers are from the second
evaporator packing.
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Figure 7: Results of precursor molar flowrate repeatability after using the drybox
environment for packing. The ‘×’ markers are from the first evaporator packing, the
‘◦’ markers are from the second evaporator packing, and the ‘+’ are from the third
evaporator packing.
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Figure 8: Picture of CVD deposition chamber.

reactor can be approximated using simulation programs such as COMSOL. COM-

SOL is a finite element calculation tool and is used to study the effects of flow non-

uniformity in the reactor. A 2D model of the reactor was made for the calculations

and is shown in Figure 9. Because this is a 2D representation of a 3D reactor, the

heater assembly was not modelled but the substrate is floating at approximately the

correct position as if it were sitting atop the heater assembly. Including the heater

assembly in the 2D model would hinder any flow moving from left to right below the

substrate due to the 2-D assumption. The pump outlet is the bottom right outlet

of the reactor. The two upper flanges are where the inlets are located. The top

left flange has two inlets, the window purge and the O2 line. The window purge is

modeled with an elbow pointing upward to see how running gases through this line

would help the flow inside the reactor. The top right flange is the precursor inlet.

The goal of these simulations was to try to observe the effects of flow inside the

reactor (i.e. how many stagnant regions were there, does the argon flow uniformly

over the substrate, etc.). For this simulation the properties of argon gas were used,
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Figure 9: COMSOL drawing of 2D reactor–dimensions in meters

and the outlet was modeled to have a pressure of 2 torr or 266 Pa. The settings

for each simulation are shown in Table 5, which lists the flowrates coming into the

chamber from the three inlets: a 1
4
” window purge, a 1

4
” O2 inlet, and a 1

2
” precursor

inlet.

Model 1 was used to try to see what the flow would be like in the reactor if the

O2 and precursor lines were mixed before reaching the reactor. This actually results

in one of the more uniform flows over the substrate, as seen in Figure 10(a). In this

model, the O2 was not turned on. The window purge line gets some flow out of the

upper area of the chamber, but does not seem to affect the flow dramatically. An

eddy forms beneath the precursor inlet and there is also an eddy in the bottom left

flange of the reactor. These eddies can cause the precursor molecules to get trapped

inside the reactor and not make it onto the substrate or to not make it out of the

reactor during the expected space time. To ensure the reactor is clear of precursor
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Table 5: COMSOL simulations

Model # purge O2 Precursor units
1 10 0 240 sccm
2 10 150 90 sccm
3 40 120 90 sccm
4 40 105 105 sccm
5 40 25 185 sccm
6 40 50 160 sccm
7 10 157 287 sccm

molecules after every experiment, it is pumped to a low pressure without any further

precursor flow to allow the molecules to diffuse out.

Models 2–5 try various flow settings of oxygen to try to get rid of the stagnant

region with all three inlets active. The results are shown in Figure 10(b) and show the

formation of an additional recirculation zone above the substrate due to the oxygen

flow. All of the results from Models 3–5 are very similar to Model 2. Model 6 is the

result when both the O2 and precursor inlets have very similar flowrates in m
s

and the

resulting flow pattern is in Figure 10(c). Here the eddy under the O2 is smaller but it

appears that the mass flow from the precursor takes the gas over to the other side of

the reactor before the gas flow is directed downward by the pump. This is indicated

by the lack of flow lines from the precursor inlet. Model 7 is simulating what would

happen at a total flowrate of 450 sccm with similar ratio of gas flows to the other

experiments and is shown in Figure 10(d). The increased flow increases the size and

number of recirculation zones in the reactors. For this reason the gas flows through

the reactor were kept below 250 sccm.

The design of this reactor causes many complicated flow patterns. First, most ver-

tical flow reactors have the inlet at the top of the reactor and some use a showerhead

to mix the reactant gases. In this reactor that design was not possible due to the

line of sight needed for the reflectometer which is described later. Consequently, the

inlets have to come in from the side of the reactor and rely on gravity and the pump
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(a) Model 1 (b) Model 2

(c) Model 6 (d) Model 7

Figure 10: COMSOL results
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to draw the particles toward the substrate and out of the reactor chamber. This leads

to imperfect mixing of the O2 and precursor flows. Second, the tubes used for the

gases are just pointing into the chamber with no nozzle. The rapid expansion from

the pipe to the reaction chamber causes abnormal flow patterns. The flow separates

from the walls and recirculates causing a “Hamel-flow” vortex [118]. The eddies and

vortices are nonuniformities that effectively increase the space time calculated pre-

viously. Third, the pump outlet for the reactor is to one side of the reactor causing

uneven gas flow over the substrate. Again, because of the nature of the design, partic-

ularly the location of the heater assembly and the method of inserting and removing

the substrate from the reaction chamber, this could not be avoided.

2.2.1 Heater Assembly

The heater assembly flange [Kurt J. Lesker] is shown in Figure 11 and is inserted into

the lower flange of the deposition chamber and attached using an O-ring and a clamp.

This flange contains the power feedthrough for the substrate heater [Heatwave Labs

part: 101275-27] and a connection for a thermocouple attached to the back of the

substrate heater. The substrate heater has a maximum temperature of 1200◦C and

the substrate is placed on top of the substrate heater and attached to the heater via

clips. The substrate heater has wires which attach to the power feedthrough, so a

ceramic coating [Cotronics Corp.] was used to protect these wires from the reactive

gases in the chamber and to extend the life of the heater. The substrate heater is

powered by an AC power supply [Behlman Electronics Model P1350] and the voltage

output is controlled via the Labview software designed for our reactor system [149].

The heater voltage is increased gradually to protect the filament from burning out. A

current sensor [Veris Industries] was added to monitor the current flow to the heater.

There were slight differences noticed in the voltage applied to the heater to reach

a certain surface temperature. The power supply is rated to 1350 W of power, which
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Figure 11: Picture of CVD heating assembly.

far exceeds the maximum power of the heater (242 W according to Heatwave Labs

documentation). The total power (W = V × A varied slightly from one experiment

to the next, suggesting the contact resistance between the substrate and the heater

changed from one run to the next. The substrate clips used to affix the substrate to

the heater may be applying different force on the substrate from one experiment to

the next, causing the contact area to change. The substrate has also been known to

deform at high temperatures [61] which could also cause variation.

The substrates used in this study were circular with 1” diameter, (100) orientation,

p-type doped, prime grade silicon wafers with a flat on one edge [Wafer World Inc.].

The flat edge was very helpful in determining the substrate orientation on the heater.

This was important especially when determining the direction of film thickness non-

uniformities. The substrates were RCA cleaned and blown dry with N2 before being

clipped to the heater assembly. The full RCA clean can be found in Appendix A.

Extreme care was taken during the RCA clean due to the use of HF in the etch step.

When handling the HF bottle thick neoprene gloves, a labcoat, and lab glasses are

45



worn and all mixing of chemicals is performed in the fume hood. In addition, the

fume hood door is closed to protect the face during mixing. To perform the RCA

clean and to minimize contact with the HF solution during the procedure, a wafer

dipper [Entegris D11-0215] was used.

The surface temperature of the substrate is usually reported in literature as the

temperature of the thermocouple attached to the back of the heater or the method

of finding the surface temperature is not mentioned at all [50, 80]. Due to heater-

substrate heat transfer, the actual substrate surface temperature is much lower than

the temperature reported by this thermocouple. This can lead to issues when inter-

preting the data, especially if one is trying to gain an understanding of the underlying

physics of the reaction. First, the reaction activation energies will be incorrect. Sec-

ond, reporting the temperature from the back of the heater leads to repeatability

problems. One CVD system will not necessarily have the same thermocouple place-

ment as another system. Even if one tries to place the thermocouple in the same

place, the thermocouple could become dislodged during handling leading to drift in

the temperature values which would further complicate temperature data interpre-

tation. While this thermocouple does indeed provide useful information especially if

other equipment fails, it is not an ideal method for reporting the surface temperature

of the system. Some researchers use a thermocouple placed on the substrate under

simulated reaction conditions [142] to gain an idea of the surface conditions during

deposition, but this can also be inaccurate due to heater drift from one run to the

next. With the use of the emissivity correcting pyrometer on our equipment, we have

much more accurate surface temperatures, so the small changes in resistance of the

heater can be corrected by adding more voltage. In this way the in situ sensor is

helping us to keep our reaction conditions more repeatable and insensitive to heater

drift as well as for final film thickness.

To make the surface temperature data more repeatable, an emissivity-correcting
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pyrometer (ECP) [SVT Associates Model: In-Situ 4000] is used to monitor the surface

temperature as in [21, 144]. ECP works by measuring thermal radiation intensity

at 950 and 850 nm and normal reflected light intensity at 950 and 470 nm. The

theory of ECP will be briefly described here but for a more in-depth description of

the theory and our implementation the reader is directed elsewhere [149]. A real

surface’s thermal radiation can be described using blackbody radiation multiplied by

the emissivity of the surface. As a surface adds layers (i.e. during deposition) the

emissivity of the surface changes. The emissivity, ε, is measured independently using

the reflectance, R, at the same wavelength, ε = 1 − R. The ECP is mounted on a

quartz viewport [MDC Vacuum Products] that is extended outside the oven using a

straight tube which is attached to the upper flange of the deposition chamber. To

minimize the area the ECP views and to simplify sensor data interpretation a cover

is used on the ECP lens to reduce the size of the lens to 1
4
” instead of 1”.

2.3 Downstream

The downstream portion of the system is located outside of the oven and consists

of a pressure transducer, a liquid nitrogen trap, a pump, and the tubing to connect

the three. The pressure transducer measures from 1 to 760 torr and passes this

information to the pressure controller which adjusts the throttle valve to control the

pressure at a certain setpoint [MKS Instruments] via the LabVIEW program for the

equipment. Since this pressure instrument has a wide range, another pressure sensor

[MKS PDR2000] was needed at lower pressure ranges. This sensor works from 0.001 to

10 torr and is very useful in leak detection and ensuring an accurate pressure reading

at low pressures. Since this pressure sensor is more precise at low temperatures, the

reading from this sensor is recorded in the experimental settings for the experiment.

The liquid nitrogen trap is used to condense the vapors from the deposition chamber

before the vapors reach the pump. The pump [Alcatel 2063 SD] has a pumping speed
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of 40-50 cfm to provide pressures as low as 1 torr at flowrates up to 1000 sccm.

The procedure for running the CVD system has gone through numerous modifi-

cations as equipment has been added to the reactor and as understanding of sources

of variability matured. Above all, the reactor was analyzed before changing any pro-

cedures to make sure no unnecessary safety risks were being taken. The most up to

date procedure for the CVD system can be found in Appendix B.

2.4 Thin Film Analysis

Once the films are deposited on the substrate, they need to be characterized ex situ

to find the microstructural properties of the resulting film. The main techniques used

were spectroscopic ellipsometry, x-ray diffraction (XRD), and atomic force microscopy

(AFM).

Spectroscopic ellipsometry [J.A. Woollam Co., Inc. M-2000VI] was performed at

three angles (65, 70, and 75o) to find the thickness of the thin film. Ellipsommetry

uses a wavelength of light, shines it at an angle across a substrate, and the light

coming off the substrate hits a detector. The wavelength of light changes when it goes

through another medium (i.e. the thin film) and one can approximate the thickness

of the film using this change in wavelength. The software for the program enables

the user to build a model of the thin film, and the software fits the model to the

light measured from the substrate using user-specified parameters. A typical model

is composed of a silicon wafer layer, a Cauchy layer (referring to the Cauchy model

which is the mathematical form used to fit the refractive index of the thin film), and

a roughness layer. The adjustable parameters were the thickness of the thin film and

the An coefficient of the Cauchy model. The roughness was set to 20 nm and models

roughness by having a 50% void in the roughness layer. A typical fit with the model

to experimental data is shown in Figure 12.

The atomic force microscope is used [Agilent PicoSPM II microscope] to determine
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Figure 12: Typical model fit to ellipsometry raw data. The three lines are for the
three angles used (65, 70, and 75o), and the solid lines are for the model fit to the
data.

the roughness and grain size of the thin films. The microscope is placed on an air

table to reduce noise from vibrations. Non-contact mode AFM tips [Nanoandmore

ARROW-NCR-10] are used in air in the analysis. A contact AFM imaging tip moves

along the surface and bends when there are features on the surface that it comes

in contact with. A non-contact imaging tip is oscillated at the resonance frequency

above the surface, when the tip is near a surface feature the oscillation of the tip

changes. By tracking these changes an image is constructed using the AFM imaging

software for the microscope. For a more detailed explanation of the operation of

an AFM see [54]. For this analysis, only non-contact imaging was used for all the

characterizations. The images are 2 µm × 2 µm, and were taken with a scan speed

of 1 line/second. At least three images were taken from different positions on the

substrate to ensure that an accurate sampling of the surface was obtained. Images

are processed with the Gwyddion software [gwyddion.net] to correct for tip artefacts

by removing the polynomial background using a polynomial of the 3rd degree. The

RMS roughness was then obtained using the statistical properties module (see Figure

13), and the results from different scans from the same surface were averaged. An
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Figure 13: A screenshot of Gwyddion, the AFM image processing software used in
this study. The red circle depicts the surface roughness obtained using the statistical
quantities tool after image smoothing.

image from the AFM on one of the sample films is shown in Figure 14.

XRD [Panalytical] was performed on the thin films to determine the microstruc-

ture of the thin films. An XRD scan on a silicon substrate is shown in Figure 15 and

the 100 peak is visible at 2θ = 20. A Scan of a Y2O3 film is shown in Figure 16. The

purpose of doing the XRD scan was to determine what phase the material was in and

to optimize this microstructure as well. Unfortunately, identification of XRD scans

is troublesome at best. There are many different microstructural configurations for

ceramic materials and it is very difficult to positively identify any of the peaks much

less the microstructure as a whole. This is caused by many reasons including a shift

in the XRD scan either due to user error or from some artifact of the machine. After

many weeks of training, attempted identification, and help from the available experts,
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Figure 14: A 2 µm by 2 µm atomic force microscope image of a thin film grown in
the reactor.

Figure 15: XRD scan of a silicon substrate
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this analysis technique is abandoned and left for an expert to pursue later. The focus

of the microstructural models developed was not on crystallographic structure but

on roughness and grain size. Therefore XRD data was not used in developing the

models in this thesis.
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Figure 16: XRD scan of a yttrium oxide thin film.
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CHAPTER III

METHODOLOGY FOR EXPERIMENTAL DESIGN

In this chapter, we will speak briefly about the different areas of experimental design.

We will then develop the experimental design used in this thesis. This design incor-

porates aspects of many different experimental design techniques for the purpose of

quickly finding the optimal point of a process and to develop a useful process model.

3.1 Past Work

Experimental design is an effective way to conduct a comparison between treatments

in terms of a recorded response [92]. Different treatments are made using controlled

variables or “factors” which can be controlled during the experiment. Different values

or “levels” for each factor are chosen and different experiments are run for each level

of a factor. The response variables are measurements or observations made after

changing the factors. The effect a factor has on the observation is termed a “main

effect”. Factorial and fractional factorial experiments are a commonly used form

of experimental design used in industry and research. It is easy to implement in

a production setting and the conclusions one can draw from the experiments are

statistically sound.

Factorial experimental design is an enhancement of the one factor at a time ex-

perimentation that is sometimes used in research studies. One factor at a time exper-

iments determine the effect of a factor on a response by changing that factor alone.

However, it is often important not only to determine if factors have an influence on the

response, but also determine if there is significant interaction between the different

factors [140], and factorial experiments address this issue. A factorial experiment is

where all combinations of the factors are explored and more than one factor are varied

53



Factor

1

Factor

2

Figure 17: Design of experiments example with two factors. The experiments are
shown as boxes placed at the high and low settings of the factors to elucidate the
interaction between factors.

at a time to analyze the interaction between factors. An example of a 22 factorial

(two factors with two levels each) experimental design is shown in Figure 17. To gain

the necessary interaction information from the one factor at a time approach, more

experiments would be needed than the factorial experimental design. A fractional

factorial design is a carefully chosen subset of the factorial experiments used when

the number of factors and levels is large compared with the resources available (time

available to run experiments or limited amount of reagent for reaction) to run the

experiments.

Suppose you have a process and there are many factors affecting your process

output such as temperature and flow rate. The process also has limits on each of

these factors such as a maximum and minimum operating temperature and maximum

and minimum flowrates to meet production requirements. The high and low level of

a factor are usually put on a coded scale from -1 to +1 which make the analysis

of the effects more straightforward. Using one factor at a time experiments, each

factor is varied from its current setpoint independently of the other factors and four

experiments would be run, but the interaction between factors would not be analyzed.

Using a factorial experimental design, one would still run four experiments, but would

not only have the information on the effect of the individual factors on the process
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output, but also information on the interaction between the two factors that would

be missed using one factor at a time methodology. Plus, one would have data over

a larger range of experimental conditions making factorial designs more efficient and

ultimately more effective than one factor at a time experiments [84].

Another important development in experimental design came from Taguchi which

was introduced in the United States in the 1980s [84]. The Taguchi method is an

experimental design aimed at making a process more robust to noise factors. The main

idea of the work was to identify the factors that cause variability in the process outputs

and to design experiments to minimize this variability [99]. These experiments are

sometimes called crossed array designs because they design the experiments using

process factors in an inner array and the noise factors in an outer array. A noise factor

may or may not be controlled in the experiment, but are not controlled in the day-

to-day operation of the process. By varying the controllable factors, the operating

point for the process is found which minimizes the variability caused by the noise

factors. The actual experimental designs developed by Taguchi has received much

scrutiny in statistics and engineering fields due to sometimes inefficient and ineffective

designs [84]. However, the concepts developed to solve the robust parameter design

problem are very important and is still an interesting and active area of research

[3]. Among his contributions was that his work influenced engineers and statisticians

to rethink statistical methods in terms of sensitivity to environmental variables as

well as prompting the use of product and process variability as an important part of

process performance criterion [140].

Robustness has also been a very active area of modeling research. In chemical

engineering the research has been focused on robustness of process models for use in

process control [1, 4, 6, 17, 75]. Other work in the engineering field has focused on

designs which are robust to uncertainty [10, 69]. This uncertainty is quantified using
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an imprecise probability which is constructed using information economics. “Infor-

mation economics is the study of choice in information collection and management

when resources to expend on information are scarce” [69]. Experimental design is a

form of information economics as one is trying to construct experiments using the

least amount of resources possible, but this work also includes the management deci-

sion of when the cost of more experiments outwieghs the information gain from new

experiments and experiments are stopped.

Response surface methodology (RSM) was developed to deal with the ineffiecien-

cies identified in the Taguchi method [84]. RSM is a sequential experimental proce-

dure that uses factorial, fractional factorial, or other experimental designs to identify

the optimum of a process [88]. An example of this methodology is shown in Figure

18 where a factorial experiment plus a center point have been run and are shown

as boxes. This first set of experiments are designed to help find the optimal point.

Once the optimal point is found, the next set of experiments (shown as circles) are

designed in the vicinity of the optimal point to acquire more data around the op-

timal point. In this example, the optimal is within the initial experimental region,

but this is not always the case in response surface methodology. This procedure of

experimentation, optimization, then more experiments is repeated until the goals of

the experiments are achieved. The main drawback of this approach is its empirical

nature. The model is found using relations in the experimental data and do not relate

theory to explain the experimental results. RSM works well to optimize an objective

function, but what if the objective function changes due to changing costs or changing

specifications on the product? Changing the process settings may cause some of the

data acquired to be useless in finding the new optimal point for the process whereas

a mechanistically-based model would allow for extrapolation to other experimental

regions.

RSM is also a good example of sequential experimental design. Even if a set of
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Figure 18: Example of response surface methodology. The first set of experiments
are shown as boxes, the second set of experiments are shown as circles. The second
set of experiments are planned in the vicinity of the estimated optimal point of the
process.

experiments is impeccably designed, experimental results likely lead to more ques-

tions than answers about the process requiring more experiments if the resources are

available to do so. One or all of the experimental designs mentioned here can be used

sequentially. A good example of this is in [91, 90], where the researchers perform a

factorial design, then design the next set of experiments using the results from the

first set of experiments.

Methods for developing mechanistically-based hybrid models focus more on pa-

rameter estimation. The base model is derived from first principles or from prior

knowledge of the system, but the knowledge is sometimes incomplete and parameters

need to be estimated from experimental data. The focus for experimental designs

for these types of models is accurately estimating the unknown parameters of the

model [53, 79]. These designs typically employ D-optimal experimental design, which

minimizes the variance of the model parameter estimates.

Dopt = min|(X ′X)−1| (21)

D-optimal has several variations itself including Ds optimal design [124] and DS op-

timal design [70]. Other optimal design theories are A-optimal

Aopt = mintr((X ′X)−1) (22)
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which minimizes the variance of the model parameter estimates. E-optimal experi-

mental design minimizes the maximum eigenvalue in (X ′X)−1. Other experimental

designs make use of the prediction variance from Equation (11) such as G-optimal

which minimizes the maximum prediction variance over the design space

Gopt = min(max(a(i)(X′
iXi)

−1a(i)′σ2)) (23)

V-optimal is similar to G-optimal but minimizes the maximum prediction variance

over only a set of points in the design space. These optimal experiments improve

the certainty of the fitted parameters but this is only useful if the model developed

is the correct one. One can design experiments to get better estimates of the model

parameters, but if the model is incorrect, having precise model parameters does not

help.

Another experimental design method of interest in current research is Bayesian

experimental design. Bayesian solutions change in a sensible way when the prior

probability distribution and the utility function change [28]. This has been imple-

mented in a Bayesian D-optimal design [27, 41] where the utility function for the

experimental design is constructed to give the best estimation of the model parame-

ters. Bayesian experimental design has also been used alone as a method of designing

experiments [37, 62, 87]. A Bayesian calibration method for computer models has

been introduced that includes model inadequacy in the probability calculation [63].

For systems where little prior information is available, optimal Bayesian designs corre-

spond to non-Bayesian experimental designs. When non-informative prior probability

distributions are used, the Bayesian approach does not offer an advantage. Since little

was known about our system of interest and we wished to rely on the experimental

data, informative prior probabilities were not used and Bayesian statistics were not

used in the experimental design methodology development.

In addition to experimental designs which assist in constructing a model and

improving a model, there are also experimental designs to assist in discriminating
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Figure 19: The discrimination function is large where two models’ predictions disagree
the most.

between multiple possible models. Box et al. was one of the first to tackle this

problem and used a probability associated with each model to find the best model.

However this was developed to distinguish between models using existing data and

not specifically for designing new experiments to distinguish between possible models

[18]. The concept of model discrimination was extended to experimental design by

Atkinson et al. Initial work by Atkinson in this area focused on designing experiments

to detect poor regression models [9], but was later extended to designing experiments

to discriminate between different models [7, 8]. The idea was to design experiments

where one would maximize the difference in predictions of the models. In Figure 19,

one can see that the discrimination function designs experiments where two models’

predictions disagree the most. By running experiments at this point, one can de-

termine which model fits your process and experimental region best. An important

assumption in [7, 8] was that one of the models is the correct model. However this

does not help an experimenter with a new process which probably will not have the
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true model available. Can one still design experiments to see which one is best or to

find if both the models are poor and a new model is needed? This is one of the key

questions we hope to answer in designing the new methodology in this chapter.

3.2 Methodology

The focus here is to combine the best features of various methods for experimental

design that are currently being used. By combining the methods for empirical and

mechanistic models, one could efficiently find an optimal point, while also building

mechanistic models that are useful in explaining the phenomena behind the process.

Here optimal is defined as minimizing or maximizing some predefined continuous ob-

jective function, but other definitions of optimal are also possible, such as designing

the process to perform within a certain interval. The insight gained from these exper-

iments can be used for future work, whether it be to re-optimize the process around

a different operating regime or to design a new process. At best, one or more of the

models will have a good prediction over the entire region, such that it can be used

for process design over the entire experimental range in question, although this will

not necessarily be achieved.

The basic steps in our proposed methodology are illustrated by Figure 20. One

begins with an initial probability of each model Mj , where j = 1, 2, ..m, and a hy-

pothesis as to which experimental settings, xr, r = 1, 2, ..q, should be varied to reach

the design goal. The next step is to design an experiment or set of experiments to

acquire some initial information about the system to obtain initial estimates of the

unknown parameters θj in each model.

After each sequential experiment has been performed, the parameters for each

model are reestimated using a parameter estimation technique. In this work, the

parameters are estimated using a least squares minimization between the model and

all of the data. Once the parameter estimate, θ̂, has been obtained for each model,
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Figure 20: Proposed steps of experimental design algorithm.

the performance of each model can then be examined. The optimal point for each

model is estimated as

x̂j = min
x

f(ŷj(x)) (24)

where f(x) is the objective function to be minimized. Note that x̂j is the estimated

optimal point from the model j and not necessarily x̄, the true optimal point of the

process. As a model becomes more accurate, x̂j and x̄ will ideally converge to the

same value.

The probability of each model is calculated using Eqn. (7), and here we set the a

priori probabilities P (Mj) to be equal for all models. The prediction variance σ2
j (x)

is used to calculate the confidence interval

CIj(x) = ±tα/2,n−pj

√

σ2
j (x) (25)

where α is the level of confidence desired [84]. Once the performance of each model

has been calculated, the stopping criteria are used to evaluate whether to continue
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the experiments or not. The stopping criteria used here are evaluated using the most

probable model, j∗. The first criterion considers whether the change in MSE of model

j∗ is less than εtol, where εtol is a prespecified constant value. The second criterion

checks whether the confidence interval at x̂j∗ is below the desired level, εCI . If the

first stopping criterion is true, then additional experiments are unlikely to improve

the design or the confidence interval on the model prediction. If either criterion is

true, then the experiments are finished and intervention by the experimenter is needed

to interpret the results. The experimenter must decide whether the most probable

model is good enough, if this model needs modification, or if an entirely new model

is needed. At any time during the experiments, it is possible to add one or more new

models and continue to iterate through the methodology.

The basic steps of the methodology are

1. Define purpose of the model

2. Find which inputs to process affect the output (screening experiment)

3. Define objective function

4. Define stopping criterion

5. Choose experimental design

6. Run experiments

7. Fit parameters (if needed) and characterize models

8. Use stopping criterion to decide whether more experiments are needed

9. Add to possible models and/or change existing models using knowledge gained

from previous experiments

10. Continue experiments
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3.3 Initial Experimental Design Work

For the intial work, a method for discriminating among multiple possible models was

used to optimize a process and design experiments sequentially. In [24], the next

experiment is chosen based on Equation (26). The function Dj,k(x) is maximized

over the experimental inputs x to find the best experimental setting to discriminate

between the models. This equation picks the best experimental point based on the

difference of two models’ predictions and weights it using the prediction variance of

each model:

Dj,k(x) = (PjPk)
[ŷj(x) − ŷk(x)]2

2σ2(x) + σ2
j (x) + σ2

k(x)
(26)

where Dj,k(x) is the discrimination function between models j and k, ŷj is the predic-

tion of model j, and σ is the experimental variance. The prediction variance of model

j at settings x as calculated by Box and Hill [18] is σ2
j (x). The prediction variance is

a measure of the uncertainty of the model

σj
2(x) = a(j)(X′

jXj)
−1a(j)′σ̂2

j (27)

The model variance σ̂2
j is used since the experimental variance is generally not known

a priori. It is calculated in Equation (27) is calculated similarly to MSEj in Eqn.

(8), except the summation is divided by n − pj , where pj is the number of estimated

parameters in model j because pj degrees of freedom are lost by estimating pj pa-

rameters.

σ̂2
j =

∑n
i=1(y(xi) − ŷj(xi))

2

n − pj
(28)

In the methodology attempted initially, the two distinct approaches used by Box

and by Buzzi-Ferraris were combined using the framework of model discrimination.

An objective function was proposed that accounts for system performance, based on

the probabilities of the candidate models. Both empirical and mechanistic models

were included. Initially, it was expected that the empirical model will be more likely
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if it has fewer parameters, but after many experiments, the mechanistic model may

become more probable and therefore be more useful for process optimization.

The case study for this method is from thin film deposition (a microelectronics

process). Chemical vapor deposition (CVD) is a commonly used process, where the

properties of the thin film are determined by the microstructure which in turn is

determined by the processing conditions. Currently, this process is not well under-

stood and much time and resources in industry are spent finding the correct recipe for

the deposition process [42]. A well-developed model could reduce optimization time

and therefore increase productivity of microelectronics fabrication facilities. Using

our own customized CVD reactor, we are building a model to predict microstructure

from processing conditions of the reactor.

The goal of the initial case study is to compare the usefulness of a mechanistic and

an empirical model in the early “nucleation” phase of the deposition process [43]. Both

models have a number of parameters that must be estimated from measurements.

Computer experiments are then run to estimate parameters for this nucleation model,

as well as the empirical fitted model. Once the initial set of experiments has been

run, a sequential experimental design approach is followed which uses an objective

function that chooses the next set of experiments to distinguish between the models

while also minimizing nucleation density.

The primary goal of the experiments is to compute the optimal settings of our

process to obtain a desired microstructure. The “best” microstructure for one use

may not necessarily be the best microstructure for another use. For example, yttria-

stabilized-zirconia (YSZ) is used as a thermal barrier coating (TBC) for turbine

blades. In this application, many grain boundaries are required to reduce the ther-

mal conductivity of the coating. On the other hand, YSZ used for solid oxide fuel

cells electrodes are needed that have large grains (i.e. few grain boundaries) as one

wants a high conductivity in that application. For different applications, different
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microstructures are needed. While doing an optimization of the process parameters

to pick the best settings for a particular application, it is important to include the

design objective in the selection of experiments.

Building upon the concepts presented earlier, we propose a discrimination function

of similar form as that described by Buzzi-Ferraris et al.:

D̄j,k(x) = (Pj ∗ (f(ŷj(x))) + Pk ∗ (f(ŷk(x))))
[ŷj(x) − ŷk(x)]2

2σ2(x) + σ2
j (x) + σ2

k(x)
(29)

where f(ŷj(x)) is the objective function for the process, as predicted by model j. The

objective function contains the properties of the material one would like to optimize.

This new discrimination function contains the original function in equation (26).

We modify (26) by multiplying by an additional term, which takes into account the

predicted performance of the system. When only two models are considered, this new

portion is simply the expected value of the objective function, f .

This D̄ selects new experiments to discriminate between candidate models, but

also to concentrate the experiments near the optimal performance point. As a result,

this sequential experimental design approach simultaneously builds models, validates

them, and finds the optimal settings. As opposed to previous work in this area,

we propose to update the “best fit” model parameters as more experimental data

is obtained. For this, if a model probability is initially very low, we still want the

discrimination portion of D̄ to predict a next experiment. It may be that the model’s

probability will increase with more experimental data (as can be the case with mech-

anistic models). If a model is predicting good performance in the desired range, then

that probability will be weighted in favor of the model. Depending on the application,

the form of the objective function f will change.

Simulations were run using this discrimination design and are described in Chapter

4. Given more than two models, we observe that the discrimination function tends

to choose the models which disagree most, usually the most probable model and the

least probable model. Designing the next experiment using the worst model was seen
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as undesirable. Also, just because two models disagree at a point does not mean that

the point will be useful in finding the optimal point of the process. The two models

may disagree at a point far away from the optimal point of the process. For these

reasons the work based on discrimination functions was halted and a new direction

was chosen.

3.4 Revised Experimental Design Methodology

The methodology shown in Figure 20 remains unchanged after the departure from the

discrimination function. The methodology was not the problem, but a different exper-

imental design was needed to achieve our goals. Now, after the first set of experiments

has been performed, we evaluate several types of experimental designs for the sequen-

tial portion. The three methods compared are D-optimal (Dopt = maxx |Xj
′Xj |)[84],

a random design of experiments, and our newly proposed P-optimal design, which

utilizes the prediction variance.

D-optimal and P-optimal are experimental designs with different objectives. D-

optimal designs are frequently used for experimental design and minimize the gener-

alized variance of the parameter estimates. In contrast, G-optimal designs attempt

to minimize the maximum variance of the predicted values y over the entire exper-

imental region [84], but are generally very computationally expensive and are less

commonly used. Our P-optimal design is a modification of G-optimal. Rather than

minimizing σ2
j (x) over the entire design region, P-optimal aims to minimize σ2

j (x)

at a single point x∗ (P=minxe
σ2

j (x
∗)), where xe is the experimental point. Thus,

P-optimal picks the experimental point which should most reduce σ2
j∗(x

∗).

In this work, x∗ = x̂j∗, the predicted optimal using the most probable model, j∗,

based on the Bayesian probability of Eqn. (7). Our rationale is that by focusing

on x̂j∗ , one can obtain a better prediction around that point. Specifically, the P-

optimal algorithm tries different experimental points by adding an additional row to
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Xj∗, and finds the experimental point where σ2
j∗(x̂j∗) is minimized. By performing

an experiment at the point that minimizes σ2
j∗(x̂j∗), the new experimental data will

add confidence to the prediction ŷj∗(x̂j∗). One could use all j models and weight

their predictions by Pj to compute the expected value of x̂ and ŷ(x̂), but if there are

multiple local minimum, the resulting intermediate points might lead to very poor

designs. Therefore, in the case study for this experimental design, the most probable

model is always used to design the next experiment.

As part of our methodology development we also consider another new feature,

which we call the grid algorithm. Its purpose is to further concentrate the experiments

near x̂j∗ . This is critical when partial models are being used, and is not necessarily

achieved by D-, G-, or P-optimal, depending on the model or models being considered.

The grid algorithm can be divided into five steps:

1. Define a set of grid points, xg, in the experimental domain, Z.

2. Calculate a threshold value, H(x̂j∗):

H(x̂j∗) = f(ŷj∗(x̂j∗)) + CIj∗(x̂j∗) (30)

3. Restrict consideration to grid points with outputs that may be below the thresh-

old value, f [ŷj∗(xg)]−CI(xg) < H(x̂j∗). (These are the potential optimal points,

at the α confidence level.)

4. Calculate the output of the experimental design function, fED(x), at these

remaining grid points and pick the best point, xe,o, from this set.

5. Find the optimal experimental point, xe, using xe,o as a starting point, con-

straining the search within a box centered at xe,o, with sides equal to twice the

grid spacing.

Eqn. (30) represents the case where the objective is to find the minimum value

of f(x). The lower bound of a prediction at point x is: LB(x) = f(ŷj∗(x)) − CI(x)
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Figure 21: Graphical representation of the grid algorithm. Filled circles are potential
minima, while open squares are not.

and the upper bound is: UB(x) = f(ŷj∗(x)) + CI(x). In this case the confidence

interval is added to the optimal value because one does not want to eliminate values

of x in which LB(x) < UB(x̂j∗). This is shown graphically in Figure 21, in which

all values of x having LB < H are potentially the minimum (marked by circles).

The points marked by squares are not potential minimum at a confidence level of

α. Similar calculations can be performed when the objective is to find the maximum

value. In this work, only two experimental parameters are explored, making the grid

method easy to implement. For higher dimensions of the experimental parameters,

a full gridding of the design space may not be practical. In such cases, a stochastic

sampling could alternatively be used to obtain a sampling of the system over the

experimental space in the regions of interest. To get parameters that fit better in the

region of interest, one may also use the grid algorithm to limit parameter fitting only

to points that are below H(x̂j∗).
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CHAPTER IV

SIMULATION STUDY OF BEST EXPERIMENTAL

DESIGN

Here we generate the “experimental” data using simulations of the process we are

trying to model. By using simulated data, we are able to assess the performance of

our experimental design methodology, and to quickly explore the effects of various

parameters on its performance, including: the number of repetitions, the noise level,

and the initial experiments performed. The insight gained here will be used when we

apply our methodology in our experimental CVD system.

4.1 Initial Experimental Design Case Study

This case study was developed to test the initial experimental design methodology

presented in Section 3.3. All model discriminations, graphs, and simulations were

performed using Matlab 7 (R14) Service Pack 2 on a Dell computer with a Pentium

III processor. Maximizing the grain size (minimizing nucleation density) is the “per-

formance measure” and implies picking a new experimental setting which minimizes

the grain size. In equation form

f(x) =
1

ŷ(x)
(31)

and the full equation

D̄m,n(x) =

(

Pm

ŷm(x)
+

Pn

ŷn(x)

)

[ŷm(x) − ŷn(x)]2

2σ2(x) + σ2
m(x) + σ2

n(x)
(32)

In this case study, we are trying to pick the best of four models that output

nucleation density, given simulated experimental data. The models are shown in

Table 6 The first model is a constant which fits the average of the experimental data.
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Table 6: Models used in initial experimental design case study

model model form

constant Nisl = a

polynomial Nisl = a + b × T + c × F

mechanistic 1 dN1

dt
= F (1 − κ) − (ρ + 1)Knuc(η, T, Ei, Ed, N1) − Kagg(η, T, Ei, Ed)

dNisl

dt
= Knuc(η, T, Ei, N1)

mechanistic 2 dN1

dt
= F (1 − κ) − (ρ + 1)Knuc(η, T, Ei, N1) − Kagg(η, T, Ei)

dNisl

dt
= Knuc(η, T, Ei, N1)

i[1ex]

The second model is a polynomial where Nisl is nucleation density, a, b, and c are

fitted parameters, T is deposition temperature, and F is the flux of atoms to the

surface of the substrate. The third model is mechanistic where N1 is the density of

isolated atoms on the surface. The fraction of the surface covered is represented by κ

and is set to 0.15 monolayers at which point no further nucleation is expected [43]. ρ is

the number of adatoms needed for a stable cluster and is set to the typical value of 2.

Knuc is the nucleation rate and Kagg is the aggregation rate [43]. In this mechanistic

model, Ei (binding energy), Ed (diffusion activation energy), and η (capture number)

are the fitted parameters.

The fourth model is the mechanistic model using a constant value for the Ed

parameter (two fitted parameters instead of three). The set of differential equations

are integrated by the Matlab function ode23t to predict the final value of the island

density, Nisl, at κ monolayers (ML) of deposition and depending on the value of the

flux, F .

The simulated experimental data are generated using the mechanistic model, using

parameters as in Table 7. The study will have Gaussian random noise added to the

data, of zero mean and with the magnitude given in Table 7. The purpose is to see how

well the discrimination function works with multiple models. The noise was chosen

to be 1 × 10−5 which is large enough to add variance to the data but small enough
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Table 7: Parameters for simulated experimental data for the discrimination case
study.

Parameter value units

Ei 0 eV

Ed 0.8 eV

ρ 0.2 –

repetitions of each data point 10 –

noise 1e-5 islands
adsorption site

T 873 K

1073 K

F 0.1 ML
min

100 ML
min

Table 8: Results of discrimination case study

models error D̄j,1 D̄j,2 D̄j,3 D̄j,4

1 2.0×10−7 – 9.2×10−9 1.0×10−4 1.5×10−4

2 2.6×10−8 – – 2.9×10−5 4.2×10−5

3 6.1×10−11 – – – 1.5×10−9

4 6.1×10−11 – – – –

whereas distinct model parameters could be distinguished. The initial simulated data

for the study came from a 22 factorial experiment using the high and low settings for

T and F given in Table 7.

The results for the study are shown in Table 8. The table shows the value of

the discrimination function between the respective models and the error between the

model and the experimental data. This was done as a pairwise comparison for all

combinations of the models realizing that D̄j,k = D̄k,j. The experimental design will

pick the largest D̄j,k value and pick that for the next experiment. From the table the

largest D̄ is D̄1,4, where Model 1 is the least probable (highest error) and model 4 is the

most probable. When the goal is to find the optimal operating point for a process, it

does not make much sense to use the worst process model when designing subsequent

experiments. Also, the experimental points where the two models disagreed the most,
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were not near the optimal point for the process.

4.2 Description of Revised Experimental Design Case Stud-

ies

In the previous section we learned that model discrimination was not designing ex-

periments to quickly find the optimal point of the process, but was finding the next

experiment to best determine which of the models was best. Since the goal was to

quickly find the optimal point of a process, a revised methodology was developed and

was presented in Section 3.4. To test the revised methodology two case studies are

presented.

In the following two case studies are performed. The first case study is used to

test the method on a simple system that is linear in the parameters. The second case

study is used to test the method on a system of technological interest and uses several

candidate models. Three models are purely empirical, and one model is mechanistic.

This case study was chosen to reflect the ongoing experiments in our research group

dealing with a chemical vapor deposition process [148, 150].

The grid algorithm was implemented using D-optimal, P-optimal, and a random

selection of experiments. First, the D-optimal method is used to sequentially design

the experiments, and parameter fits are made based on these experiments. At each

iteration, the most probable model is used to predict the next experimental point.

The entire methodology simulation is performed one hundred times at each noise

level and the results are averaged. This process is then repeated using P-optimal,

and then using a random selection of experiments. In the case of random selection

of experiments, the grid algorithm first creates the list of possible optimal points. A

point from this list is then selected randomly as the next experiment.
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Figure 22: Modified Himmelblau function over x1 ∈ [−5, 5] and x2 ∈ [−5, 5]

4.3 MHF case study

We first evaluate the method using the modified Himmelblau function (MHF)[32]:

yMHF (x) = x4
1 + x4

2 − 21x2
1 + 2x2

1x2 + 2x1x
2
2 − 13x2

2 − 13x1 − 19x2 + 227 (33)

We consider a range of [-5,5] for both x1 and x2. In this case study, f(x) is the same

as y(x). The minimum of Eqn. (33) is at the point x1 = −3.80 and x2 = −3.32, with

a corresponding function value of 43.3. The other local minima have function values

of 63.5, 54.9, and 65.9. A contour plot of this function is shown in Figure 22.

This function is chosen because it possesses desirable properties for evaluating the

experimental design method, including having a minimum in the interior and having

multiple local minima. Eqn. (33) is used here to generate the simulated data, while

a slightly different model is used to fit the sampled data:

ŷ1(x) = x4
1 + x4

2 − 21x2
1 + 2x2

1x2 + θ1x1x
2
2 − 13x2

2 + θ2x2 + θ3 (34)

Eqn. (34) is missing the linear x1 term from the original MHF function to create model

mismatch, such that no values of the three fitted parameters (θ1−3) will completely

match all points. No model is ever perfect, so in practice there will always be some

mismatch. Experimental design methods must be robust to these modeling errors.

The initial experiments for this case study are chosen to be a 22 factorial design

(1 experiment performed at each corner of the design space) plus an experiment at
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the center of the design space with two repetitions, for a total of six experiments

(22 +2× (0, 0)). The center point is needed due to the nonlinear nature of the system

being modeled, since there are quadratic terms in the MHF. The noise added (γ) to

yMHF (x) is Gaussian and zero-mean, with standard deviations of 3, 15, or 30. The

desired confidence interval (εCI) on the prediction is set to 5. The initial experiments

are run, θ̂j is calculated, and the initial Bayesian probability is calculated using Eqn.

(7), as done in existing methods.

The MHF case study is used to examine three of the main choices affecting the

D- and P-optimal and the grid method designs. First, the effect of the initial ex-

periments is compared using our original experimental design (22 + 2 × (0, 0)) and

the experimental design from the Latin Hypercube [40]. Second, the size of the grid

for the grid algorithm at three different levels is compared. Third, the effect of the

tolerance on the stopping criteria is investigated.

4.4 Film growth case study

This case study is based on a chemical vapor deposition process. In CVD, a thin film

is grown on a heated substrate by flowing an evaporated metalorganic precursor over

the substrate [34]. CVD experiments and film characterization can be time consuming

and costly, making CVD a good candidate for experimental design. Thin films grow

after an initial nucleation of clusters on the substrate surface, and the density of

nucleation sites on the substrate influences the film morphology and properties [43].

The purpose of this case study is to evaluate our experimental design method using

multiple partial models. In this case study, the method picks the best of four possible

models that predict the flux of atoms to the substrate surface, given the simulated

experimental data. The two experimental settings considered are x = [T, C]. T is the

deposition temperature, and C is the concentration of precursor in the reactor. The

flux of precursor to the substrate is F , and the true flux of the system is simulated
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Table 9: Constants for the film growth case study

Constant Value Units Description

κ 0.15 — Monolayers [43]

ρ 2 — Number of adatoms per stable cluster

R 8.3145e-3 kJ
mol∗K

Gas constant

Cmax 1.5 µmol
L

Maximum C

Tmax 1073 K Maximum T

u 5.061 L
min

Flow of inert gas

Asub 5.067e14 nm2 Area of substrate

Ω 4.488e22 nm3

mol
Molar volume

hML 0.2651 nm
ML

Thickness of a monolayer

Ea 19.25 kJ
mol

Activation energy for flux

Ei 0 eV Binding energy

Ed 0.8 eV Diffusion activation energy

η 0.2 — Capture number

using

F = F0e
−Ea
RT (35)

where F0 is the flux as T → ∞ and Ea is the activation energy for the flux. F0 is

calculated as

F0 =
CΩu

AsubhML

(36)

where C is the concentration, u is the flow of inert gas, Ω is the molar volume of yttria,

Asub is the area of the substrate, and hML is the height of a monolayer of atoms [151].

F0 is a function of C, making F a function of T and C. Ea was calculated assuming

a flux of 300 ML
min

[43], at the maximum temperature Tmax = 1073 K, and maximum

concentration Cmax = 1.5 µmol
L

. Inserting these quantities into Eqns. (35) and (36),

one obtains Ea = 19.25 kJ
mol

. The value of the constants in Eqns. (35) and (36) can

be found in Table 9. The flux is then used to calculate the growth time for a film.

This is calculated using a target film thickness of 150 nm divided by the flux in nm
min

.
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The four models we propose will calculate the flux of atoms to the substrate.

Gaussian noise with zero mean and standard deviation in Table 10 is added to the

flux simulated by Eqn (35) and (36). The first model is empirical with one fitted

parameter:

ŷ1(x) = θ1 (37)

which is the average of the data when doing a least squares fit. The second model is

also empirical but now with two fitted parameters

ŷ2(x) = θ1C + θ2 (38)

which assumes there is no temperature dependence on the flux going to the substrate.

The third model is empirical with three fitted parameters

ŷ3(x) = θ1 + θ2T + θ3C (39)

where the model does assume temperature and concentration dependence for flux.

The fourth model is mechanistic and is similar to Eqn. (35) but with Ea as the fitted

parameter and F0 = 10C, calculated as

ŷ4(x) = 10Ce
−θ1
RT (40)

thus creating model mismatch from the true system.

The nucleation density is given by

dN1

dt
= F (1 − κ) − (ρ + 1)Knuc(η, T, Ei, Ed, N1) − Kagg(η, T, Ei, Ed) (41)

dNisl

dt
= Knuc(η, T, Ei, N1) (42)

and is based on mechanistic principles [43]. The set of differential equations are

integrated by the Matlab function ode23t to predict the final value of the island

density, Nisl, at κ monolayers (ML) of deposition and depending on the value of the

flux, F , where N1 is the density of isolated atoms on the surface. The fraction of the
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Table 10: Parameters for the simulated experimental data for nucleation study in
Eqns. (41) and (42).

Parameter Value Description

νe 1 Repetitions

γ 5, 10, 20 ML
min

Gaussian standard deviation of flux

εCI 1 ML
min

Desired confidence interval for nucle-
ation study

εtol 0.1 Tolerance for change in MSE

tgoal 3 minutes Growth time objective

Ngoal 10−3 islands
adsorption site

Nucleation density objective

x

T
873 K Low T setting

1073 K High T setting

C
0.3 µmol

L
Low C setting

1.5 µmol
L

High C setting

surface covered is represented by κ and is set to 0.15 monolayers at which point no

further nucleation is expected [43]. ρ is the number of adatoms needed for a stable

cluster and is set to the typical value of 2. Knuc is the nucleation rate and Kagg is the

aggregation rate [43]. There is no mismatch in this portion of the model.

The objective function for the film growth study is

minx(fj∗(x)) = (t(ŷj∗(x)) − tgoal)
2 + (104(Nisl(x, ŷj∗(x)) − Ngoal))

2 (43)

Ngoal is the nucleation density desired for the film and tgoal is the desired growth time

for the film. Values for both are shown in Table 10. This objective is chosen since

chemical vapor deposition will usually be one of many steps in creating a product

and such specifications would be given at the factory level. Thus, Ngoal is a target

on the quality, while tgoal is a target for the process. The confidence interval for

the objective function is calculated using the confidence interval on the t(ŷj∗(x)) and

Nisl(ŷj∗(x)) predictions based on the confidence interval for F . This is accomplished

using absolute errors expanded to second order terms [30], due to the zero slope at

the optima. Figure 23 is a contour plot of the objective function calculated using
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Figure 23: Contour plot of f(x) for the film growth case study with no added noise.

Eqns. (35), (36), (41), (42), and (43).

The simulated experimental data are generated using Eqns. (35), (36), (41), and

(42) using the parameters in Table 10. The study has zero mean Gaussian random

noise (γ) added to the data, with the standard deviation given in Table 10. The initial

simulated data are generated from a 22 factorial experiment using the high and low

settings for T and C given in Table 10, with one repetition at each design point for

a total of four experiments.

4.5 Results

All simulations were performed using Matlab Release 2007a, and all optimizations

were carried out using Matlab’s function fmincon for constrained optimization, which

uses an SQP method.

4.5.1 MHF case study

The contour plot of the model with the best fit parameters of [1.48 -19.05 226.22] is

shown in Figure 24. The model mismatch had the effect of eliminating two of the local

optima from the experimental design space seen in Figure 22. However, the global

minima location remains unchanged, but the value at the global optima is different.

In this study equal importance has been put on finding the location of the optimal
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Figure 24: Contour plot of proposed model for MHF simulation study over x1 ∈ [−5, 5]
and x2 ∈ [−5, 5] with the best fit parameters after the first iteration.

point, as well as predicting the true value at that location. Another case would be

using a model which has a different global minimum than the true system.

Typical experimental design surfaces with respect to the parameters x1 and x2

are shown in Figures 25(a) and (b). The values on the vertical axis of the D-optimal

surface are negative due to a negative sign in front of the optimality calculation, so

that the function can be minimized instead of maximized. The D-optimal surface

shows that the corners of the design space are all local minima for this design func-

tion. When designing an experiment using D-optimal and without the grid algorithm,

experiments are designed only at these corner points, even though these points have

already been run, or the corner points are not near the optimal point, or both. The

P-optimal surface, on the other hand, has its minima not on the corners of the design

space, but along the x2 = −5 edge of the design space. Like D-optimal, P-optimal

also tends to prescribe experiments on the boundaries, but the direction is influenced

by the value of x̂. Recall that in this case study x̄ = [-3.80 -3.32].

The results are summarized in Tables 11–17. These tables are broken up into

three different columns for each level of noise. Each of these columns is further

split into three columns, one for each type of sequential experimental design function
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Figure 25: Values of optimality functions in the MHF case study (γ = 3, 1st iteration)
vs. parameters x1 and x2.

considered. The Rand columns are the results from sequential experiments sampled

from a uniform distribution over the design space. Each table has nine rows which

give the final values after the algorithm and experiments have terminated. The first

row is ŷj∗(x̂j∗), from the most probable model j∗ evaluated at x̂j∗ . The second row is

the prediction variance and the third row is the confidence interval, both at x̂j∗ . The

fourth row is the percentage error between ŷj∗(x̂j∗) and yMHF (x̄) which is represented

by ζ . The fifth row is the mean squared error as calculated in Eqn. (8). The sixth row

is the estimated model variance as calculated in Eqn. (28) and the seventh row is the

average number of iterations. The eighth and ninth row contain the percentage error

in x̂j∗ compared to x̄. For this case study, x̂ never matches x̄ =[-3.80 -3.32] exactly,

80



Table 11: MHF case study with 22 + 2 × (0, 0) initial experiments using no grid,
εtol = 0.1.

γ = 3 γ = 15 γ = 30
D P Rand D P Rand D P Rand

ŷj∗(x̂j∗) 14.7 14.7 16.4 15.1 15.4 16.5 15.2 15.5 12.0
σj∗(x̂j∗)

2 1.8 1.2 65.5 35.5 26.6 138 153 94.0 278
CI(x̂j∗) 2.9 2.4 16.5 12.2 10.7 24.0 25.4 20.0 34.3
ζ (%) 66 66 62 65 64 62 65 64 72
MSEj∗ 5.7 5.3 285 170 172 558 692 641 1080
σ̂2 8.9 8.3 375 234 244 741 963 894 1480
iter 2.3 2.1 6.1 5.3 4.7 6.1 5.2 4.8 5.3
x1, % error 0.8 0.8 0.7 0.8 0.7 0.3 0.1 0.6 0.8
x2, % error 4.1 4.1 4.4 4.1 4.0 4.3 9.6 5.7 17.0

which is the effect of the model mismatch. With some of the terms missing from the

model in Eqn. (34), compared to Eqn. (33), the model’s minima may not ever go

through the true optimal point, no matter what experiments are performed. This is

akin to the ideal gas law predicting a different state than the virial equation of state,

which includes intermolecular forces that the ideal gas law does not. Throughout this

case study, only designs at low noise are able to meet the goal of CI(x̂j∗) < 5, while

most stop because the MSE stopped changing within εtol = 10%.

In Table 11, each column is an average of 100 simulations. One can see that

without the grid algorithm, none of the experimental design methods leads to good

performance at any noise level. The error in ŷj∗(x̂j∗) is greater than 60% in all noise

levels. Another problem is at low γ, the CI for D- and P-optimal are extremely

misleading. With such a small CI, an experimenter may think his model prediction

is very good. This small CI can be traced back to the small MSE. Figure 26 shows

experiments from different experimental design methods after the initial experiments

have been run. Comparing Figures 22 and 26(a), D- and P-optimal sample along

the edges of the design space without the grid algorithm, where yMHF (x) has very

different values than yMHF (x̄). This leads to a poor fit at ŷj∗(x̂j∗), but a small MSE

based on the sampled points.
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Figure 26: Experiments from the different experimental design methods are marked:
D-optimal (5), P-optimal (◦), Random (�), and greedy (�). The greedy experimental
design samples at x̂j∗ only. × marks the true optimal point.

Table 12: MHF case study with 22+2×(0, 0) initial experiments using δ=15, εtol = 0.1.

γ = 3 γ = 15 γ = 30
D P Rand D P Rand D P Rand

ŷj∗(x̂j∗) 25.8 24.9 27.9 24.0 24.4 30.6 19.3 21.6 24.2
σj∗(x̂j∗)

2 19.9 14.2 50.6 46.3 31.1 83.3 151 112 235
CI(x̂j∗) 9.2 7.9 14.6 14.0 11.5 18.8 25.4 21.8 31.5
ζ (%) 40 42 36 45 44 29 55 50 44
MSEj∗ 113 77.7 250 231 205 376 727 736 955
σ̂2 154 113 337 322 287 519 1020 1030 1320
iter 5.3 3.8 5.8 4.9 4.8 5.2 4.7 4.8 5.2
x1, % error 0.6 0.6 0.6 0.6 0.6 0.6 0.0 0.2 1.1
x2, % error 4.6 4.8 4.8 4.5 4.8 4.7 9.7 8.1 19.1
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Wanting to sample closer to x̄, we implement the grid algorithm. In Figure 26(b),

one can see that the grid algorithm does cause sampling closer to x̄. The experiments

that are not near x̄ are instead close to another local minimum. A strength of the

grid algorithm is the ability to search other potential local optima to find the best

optimum in the experimental region. If the initial experiments lead to an incorrect

x̂, the method will not prohibit sampling at other potential optima.

In Table 12, one can see that the grid algorithm does lead to an improvement

(ζ ≈ 40% in the low noise case instead of ≈ 60%), although the results still are

not very good. Surprisingly, the random experiments with the grid method seem to

lead to the best predictions of ŷj∗(x̂j∗). In this case, the grid algorithm identifies the

potential optima, and the next experiment is chosen at random from these points. D-

and P-optimal, on the other hand, use the potential optima from the grid algorithm,

and then design the experiment at the point with the best respective value of the

design function. Experimental designs like D- and P-optimal tend to maximize the

variance of x, which becomes counterproductive when we are dealing with partial

models. Unless the experiments are designed to sample x̂, x̂ is usually not the point

chosen by the experimental design for the next experiment. The random method

also samples at a larger variety of experimental points around the optima, whereas

the D- and P-optimal methods converge to the same points in subsequent iterations.

Note we are not prohibiting any of the designs from repeating previous experiments,

and the figures do not explicitly indicate repeated experiments. If one designs the D-

and P-optimal algorithms to always pick different points, the predictions from those

optimalities might be improved.

Since the random experiments work better with the grid algorithm, and we would

like to improve the predictions of ŷj∗(x̂j∗) even further, we investigate whether chang-

ing our initial experiments to a more random design will improve the results. The

initial experiments are run using a Latin Hypercube design as the initial set of six
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Table 13: MHF case study with Latin Hypercube initial experiments using δ = 15,
εtol = 0.1.

γ = 3 γ = 15 γ = 30
D P Rand D P Rand D P Rand

ŷj∗(x̂j∗) 18.6 20.2 27.0 17.2 19.4 26.1 15.1 19.2 22.8
σj∗(x̂j∗)

2 106 69.2 219 153 108 382 220 201 488
CI(x̂j∗) 21.5 17.3 30.6 25.7 21.6 40.5 30.7 29.4 45.7
ζ (%) 57 53 37 60 55 40 65 56 47
MSEj∗ 429 382 572 623 577 799 962 1030 1130
σ̂2 622 549 820 908 836 1150 1370 1470 1590
iter 4.0 4.0 4.4 3.9 4.0 4.3 4.4 4.3 4.6
x1, % error 0.3 1.2 2.4 0.1 1.0 4.5 1.5 2.8 7.2
x2, % error 5.3 16.7 23.1 8.8 14.8 27.1 19.6 29.2 30.6

Table 14: MHF case study with 22+2×(0, 0) initial experiments using δ=5, εtol = 0.1.

γ = 3 γ = 15 γ = 30
D P Rand D P Rand D P Rand

ŷj∗(x̂j∗) 14.8 14.8 21.2 18.8 20.3 25.8 17.4 20.0 23.4
σj∗(x̂j∗)

2 2.4 2.2 69.5 42.8 50.8 84.3 136 111 225
CI(x̂j∗) 3.3 3.2 17.1 13.5 14.7 18.9 24.1 21.7 30.9
ζ (%) 66 66 51 57 53 40 60 54 46
MSEj∗ 5.5 5.1 271 186 333 343 666 712 819
σ̂2 8.4 7.8 372 263 457 471 929 1000 1140
iter 2.4 2.5 5.1 4.5 5.2 5.2 4.9 4.9 4.9
x1, % error 0.8 0.8 0.7 0.7 0.7 0.7 0.0 0.3 0.9
x2, % error 4.1 4.1 4.4 4.4 4.2 4.4 9.7 11.8 17.2

experiments. Comparing Tables 12 and 13 one can see that randomizing the initial

experiments does not have the desired effect of improving ŷj∗(x̂j∗), although one does

obtain results in fewer iterations. Randomizing the initial experiments has the effect

of being too space-filling. The CI are larger and more accuracte but this has the

effect of including too many potential optima in the grid, effectively expanding the

sampling area which the grid algorithm is designed to reduce. One also sees increased

x̄ error, especially in x2. If one refers to Eqn. (34), one sees that x1 and x2 are

not completely independent, which may be why the error is concentrated on x2, and

not distributed equally between both. Since the LHS method does not provide a

significant benefit, we proceed with our initial 22 + 2×(0,0) initial design.
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Table 15: MHF case study with 22+2×(0, 0) initial experiments using δ=30, εtol = 0.1.

γ = 3 γ = 15 γ = 30
D P Rand D P Rand D P Rand

ŷj∗(x̂j∗) 26.3 26.5 31.3 23.1 23.6 29.7 19.3 19.8 23.9
σj∗(x̂j∗)

2 21.1 13.7 38.0 49.2 32.8 79.9 127 110 214
CI(x̂j∗) 9.5 7.7 12.6 14.4 11.8 18.3 23.1 21.7 30.2
ζ (%) 39 39 28 47 45 31 55 54 45
MSEj∗ 115 84.1 198 246 212 385 690 664 864
σ̂2 157 119 268 344 297 524 947 938 1200
iter 5.2 4.5 5.7 5.0 4.8 5.5 5.4 4.6 4.9
x1, % error 0.6 0.5 0.6 0.6 0.6 0.6 0.4 0.8 1.3
x2, % error 4.6 5.0 4.8 4.5 4.8 4.6 6.3 15.8 19.4

Table 16: MHF case study with 22 + 2 × (0, 0) initial experiments using δ = 15 and
εtol = 0.05

γ = 3 γ = 15 γ = 30
D P Rand D P Rand D P Rand

ŷj∗(x̂j∗) 28.9 26.9 31.5 25.7 24.2 34.5 21.7 21.8 32.0
σj∗(x̂j∗)

2 11.9 9.1 39.0 30.5 21.0 55.6 93.1 68.4 161
CI(x̂j∗) 7.0 6.1 12.6 11.1 9.2 15.0 19.4 16.7 25.5
ζ (%) 33 38 27 41 44 20 50 50 26
MSEj∗ 110 76.5 253 267 222 378 774 723 996
σ̂2 137 101 324 330 280 475 951 911 1250
iter 10.1 7.5 8.3 10.5 9.8 10.0 10.9 9.7 9.7
x1, % error 0.6 0.6 0.5 0.5 0.5 0.3 0.3 0.1 1.2
x2, % error 4.8 4.8 4.9 4.7 4.9 6.8 6.5 10.2 17.9

One of the parameters of the grid algorithm is the number of points on the grid

of the design space, δ, which could be varied to improve ŷj∗(x̂j∗). In Table 14, the

results for δ = 5 are presented. In comparing this data with that of Table 12 where

δ = 15, one can see that too coarse a grid will lead to poorer model predictions, but

still better results than without the grid algorithm, especially at higher noise levels.

With a coarse grid and high noise, the constrained search area may also contain many

local optima, which hinders the search for the true optimal point. A fine grid, δ = 30,

leads to improved predictions, but takes significantly more computational time. For

this work, δ = 15 is deemed a good compromise.

A comparison of different εtol was performed without a grid as well as with δ = 15
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Table 17: MHF case study with 22 + 2 × (0, 0) initial experiments and “greedy”
experimental design, εtol = 0.1.

γ = 3 γ = 15 γ = 30
ŷj∗(x̂j∗) 33.6 37.0 35.7
σj∗(x̂j∗)

2 24.0 37.3 111
CI(x̂j∗) 10.0 12.3 21.2
ζ (%) 22.5 14.7 17.7
MSEj∗ 168 342 940
σ̂2 225 427 1180
iter 6.1 10.3 10.0
x1, % error 0.48 0.01 1.48
x2, % error 5.25 9.06 20.3

(Table 16). The lowered εtol leads to better predictions from the model and tighter

CI when comparing Tables 12 and 16, but also more iterations, as one might expect.

The better performance is due to the increased amount of data around the optimal

point, approximately two times as much as when εtol = 0.1. If the objective of the

experiments is to get an accurate model prediction, a smaller tolerance (i.e. willing-

ness to run more experiments) will cause a better fit. However, if the emphasis is on

quickly finding the optimal point, then a larger εtol may produce adequate results.

At any point during the design phase, one may choose to terminate the experiments,

before reaching the prespecified tolerance.

Since sampling near the optimum point seems to improve ŷj∗(x̂j∗), why not sample

at the predicted optimum point? We implemented this using a “greedy” method and

the results are shown in Table 17 and marked by a � in Figure 26(b). Rather than

minimize a separate experimental design function, this method chooses the estimated

optimal point of the model j∗ as the next experimental point to be sampled. This

leads to similar predictions and number of iterations to Table 15 for the random plus

grid algorithm for low noise, while for high noise the performance and iterations are

similar to random plus grid algorithm with Table 16. These similarities point to the

importance of the stopping criterion for the experimental design. The grid algorithm

can obtain similar results to the greedy method given the right stopping criterion, but
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Table 18: Film growth case study with 22 initial experiments using no grid, εtol = 0.1.

γ = 5 γ = 10 γ = 20

D P Rand D P Rand D P Rand

fj∗(x̂) 0.05 9×10−9 0.02 0.07 5×10−8 0.03 0.02 0.01 0.04

σj∗(x̂j∗)
2 221 10.8 26.8 304 141 108 754 637 515

CI(x̂j∗) 7.40 1.95 2.80 9.03 5.24 5.46 16.1 13.6 9.93

MSEj∗ 169 7.1 8.48 255 125 33.6 676 579 138

σ̂2 675 28.4 30.6 907 401 115 2190 1800 434

iter 8.1 6.7 8.8 8.4 7.2 9.0 7.7 7.4 9.4

T̂ , % error 1.54 0.47 0.02 2.91 0.46 0.2 1.43 0.05 0.03

Ĉ, % error 9.19 2.85 0.19 17.25 2.82 1.49 8.70 0.35 0.03

has the advantage of exploring more of the experimental region than if one were to

use the greedy method. The better model prediction of greedy makes sense as more

experiments are run and experiments are located at the optimal point. The least

squares method will then focus on minimizing the error from these points, making

the fit to y(x̄) better. This “greedy” case can be viewed as the limit of the grid

algorithm with δ → ∞ and α → 100%. Ultimately, the performance in this case

study is limited by the model mismatch between Eqns. (33) and (34). One could

probably increase the prediction accuracy more by leaving out the initial experiments

during the parameter fitting, which would cause the fit to be better around the more

recently sampled points.

4.5.2 Film growth case study

The film growth case study is different from the first case study because four candidate

models are now used. The first case study always underpredicted the optimum but

in this case study the models are able to predict the desired output of the process

(t = 3 min. and Nisl = 10−3); however x̂j∗ is not necessarily x̄. For this reason we

restricted the models to only fit data that falls below H(x̂), or at least enough data

to make X be full rank. This will increase the confidence interval on the prediction

due to fitting to fewer points, but ultimately should enable more accurate fits at the
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Table 19: Film growth case study with 22 initial experiments grid=15, εtol = 0.1.

γ = 5 γ = 10 γ = 20

D P Rand D P Rand D P Rand

fj∗(x̂) 0.12 2×10−5 2×10−8 0.03 2×10−3 2×10−8 0.03 6×10−4 2×10−3

σj∗(x̂j∗)
2 392 106 21.3 331 150 67.6 885 738 845

CI(x̂j∗) 16.1 3.98 2.64 11.9 6.11 4.45 18.0 15.4 10.4

MSEj∗ 227 65.8 12.5 248 130 37.3 774 677 133

σ̂2 933 223 43.1 894 436 120 2440 2110 396

iter 7.4 7.4 8.4 7.3 7.5 9.0 7.5 7.5 9.2

T̂ , % error 0.03 0.15 0.14 0.31 0.30 0.05 1.19 0.07 0.03

Ĉ, % error 0.36 0.88 1.53 2.13 1.81 0.77 7.47 0.70 0.41

optimal point. The true optimum in this case is at T̄ = 962 K and C̄ = 1.24 µmol
min

.

The tables in this section show the objective function for the most probable model,

instead of the output, y(x), since f(x) 6= y(x). The CI(x̂j∗) shown is also for f(x)

and not on y(x) for the same reason.

In Table 18, the third empirical model (Eqn. (39)) is the most probable in two

thirds of the simulations, the second empirical model (Eqn. (38)) or the mechanistic

model (Eqn. (40)) were the next most probable in equal proportion, and the first

empirical model is picked as most probable the least often of the four. Here, fj∗(x̂)

are quite small (fj∗(x̂) < 0.1) and the CI(x̂j∗) are quite large compared to size of the

objective function at the optimal point. In the no grid case, all three experimental

designs minimize fj∗(x̂) well at all noise levels. The random experimental design

has the smallest error for predicting T̂ and Ĉ. In Figure 27(a), one can see the

experiments for each experimental design. The experiments for D- and P-optimal are

on the corners of the design region, far away from the optimal point. The random

design samples all over the design region leading to the better x̂ prediction. In Table

19 the results of the film growth experiments using the grid algorithm are shown.

At first glance, one would say that the grid did not bring any improvement to the

experiments at all. In fact, the CI(x̂j∗) are not significantly different than without
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(a) Film growth case study experiments
without grid algorithm.
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(b) Film growth case study experiments with
grid algorithm.

Figure 27: Film growth study experiments from the different experimental design
methods are marked: D-optimal (5), P-optimal (◦), and Random (�), and greedy
(�). The greedy experimental design samples at x̂j∗ only. × marks the true optimal
point, with γ =10 s, εtol = 0.1, and δ = 15.

the grid. However, the % error in T̂ and Ĉ is improved with the grid for D- and

P-optimal. One can see the effect of the grid on the experiments in Figure 27(b)

where there are more experiments around the optimal point than without the grid.

In Figure 28 the possible optimal grid points are plotted for sequential experiments

1, 4, and 7 for one simulation of the random experimental design. At each successive

experiment, the range of possible optimal points shrinks. It is also worth noting that

in iterations 1 and 4, the grid retains the lower left corner of the experimental area.

Here, the confidence interval for these points is so large that they are included as

possible optima.
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Figure 28: Possible optimal points after grid algorithm using the random experimental
design. First sequential experiment marked by ‘+’, fourth sequential experiment
marked by ‘◦’, and seventh seqential experiment marked by ‘x’. The true optimal
point is [962 1.24] and is marked by ‘�’.

One interesting effect of the grid algorithm is in the resulting most probable model

for each experimental design. Using the grid algorithm, the most probable model is

still the third empirical model, but the mechanistic model is the second most likely,

and the first empirical model is never considered the most probable model as it

sometimes was without the grid. The grid had the effect of eliminating one of the

possible models, and clearly identified a temperature dependence in the data (most

probable models both included T ) that was not apparent without the grid. The

mechanistic model does well with better sampling of the experimental area around

the optimal point, but still not better than Eqn. (39). This indicates the mechanistic

model may need modification for improved prediction, but not necessarily that a

whole new model is needed to explain the data.

In Table 20 are the results of the film growth experiments using the greedy exper-

imental design where only the optimal point is used as the next experiment. In this

case study, the greedy experimental design does not yield significant improvements

to the objective function, CI, or finding the optimal point. However, the greedy

experimental design picks the mechanistic model as the most probable model rather

than any of the empirical models. Again, the greedy method does do quite well in
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Table 20: Film growth case study with 22 initial experiments and the “greedy” ex-
perimental design, εtol = 0.1.

γ = 5 γ = 10 γ = 20

fj∗(x̂) 1×10−8 2×10−4 6×10−3

σj∗(x̂j∗)
2 5.29 137 972

CI(x̂j∗) 0.58 4.59 11.3

MSEj∗ 17.8 40.7 226

σ̂2 21.6 102 458

iter 8.8 11.6 11.4

T̂ , % error 0.08 0.42 0.53

Ĉ, % error 0.07 2.92 3.89

most simulations, but in some simulations x̂ is incorrect and sampling at the same

incorrect point repeatedly does not improve x̂. Good performance is achieved using

the grid algorithm or the random sampling. Based on these case studies, combining

the two together will provide good estimates of the optimal point while still allowing

for some exploration and model building.

4.6 Conclusions

In conclusion, the P-optimal and grid methods of experimental design were intro-

duced. The grid method in the MHF case study used in conjunction with other

experimental designs result in enhanced performance of these designs, with better

model predictions (15-20% better than without the grid algorithm) and more accu-

rate confidence intervals which contain the true optimum of the MHF model (43.3).

The film growth case study achieved good results using random experimental design;

however the grid algorithm did lead to better sampling of the experimental region,

better x̂ prediction, and led the experimenter to a dependence on T that would have

been missed otherwise. As with any experimental design method, it is up to the ex-

perimenter to define the objective for the experiment. In this work the main objective

is to obtain good model predictions of x̄ of a process for use in process design. The

grid algorithm is a useful tool because it balances the trade-off between an optimal
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design such as D-optimal and a “greedy” experimental design. It also allows for ex-

ploring other regions with potential optima rather than focusing on one optima which

may be erroneous. The methodology presented here combines existing experimental

design approaches for empirical models with those for mechanistic models. Thus, the

experimenter does not have to decide ahead of time whether to use empirical only,

or mechanistic only, since both may be useful. As with many experimental design

techniques, there is not one setting for the grid algorithm or stopping criteria that

works for all experiments. The experimenter needs to combine his knowledge of the

system being studied and interpretation of the available data to come up with a viable

experimental design.
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CHAPTER V

EXPERIMENTAL STUDY USING CVD REACTOR

TESTBED

In Chapter 4 we showed how the experimental design would perform with various

parameters for the algorithm. In this way we could compare the results and select an

appropriate design to be used on our experimental system. We acquired information

from the simulation studies to select the size of the grid, and an idea of how our

desired confidence level influences the results of the experimental design algorithm.

We determined that a random experimental design used in conjunction with the grid

algorithm would help us more quickly find the optimal point for our experimental

chemical vapor deposition (CVD) system.

5.1 Initial Experiments

There are many experimental parameters that could be studied for this system. Sub-

strate type, O2 flow rate and/or its ratio to the argon flow rate, total gas flow rate

through the reactor, pressure, deposition temperature, and precursor molar flow rate

are just a few of the adjustable parameters for the system. From previous work on

this system, we determined that deposition temperature and precursor molar flow

rate would be the most influential to begin our study. The high and low settings for

deposition temperature and precursor molar flow rate are shown in Table 21.

The high temperature is limited by the button heater used to heat the substrate,

which has burned out several times in the past four years. The voltage limit for the

heater is 22 volts under vacuum, so we decided to limit ourselves to no higher than

19 volts. Since the wafer temperature reached by the heater given an applied voltage
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Table 21: Experimental high and low settings for the experimental study.

Setting High Low units
T 775 600 oC

ṅ 100 200 µmol
min

varies slightly from day to day, 775oC was chosen as the high temperature and 600oC

was chosen as the low temperature, which correspond to approximately 18.5 V and

13 V respectively. The low setting was determined by minimum temperatures used

to deposit yttria seen in other research [132].

The high precursor molar flow rate was chosen given the temperature of the oven

and the limit on the amount of precursor detectable by the UV system. If the oven

temperature is too high and the integration time on the UV detector is too low, there

will be too much precursor in the line such that the detector will saturate. One

may be able to use time-normalized experiments from the Ocean Optics OOIBASE32

software, but this feature is not incorporated into the LabVIEW program and would

therefore be incompatible with the PI controller for the precursor molar flow rate.

The lower limit for molar flow rate was selected as half the upper limit, since ṅ is

obviously required for film growth. It was desirable for the deposition rate to be fast

enough to complete a deposition in a day, so the process settings were chosen to still

enable a fast deposition rate. What was sacrificed in raising the deposition rate was

a loss in robustness for growth time repeatability as discussed in Chapter 6.

The goal of this study is to find the temperature and precursor molar flow rate

that minimize the following objective function

min
x

(fj∗(x)) = ((RMS(x, ŷj∗(x)) − RMSgoal))
2 (44)

The film roughness RMS is the experimentally measured quantity

RMS = σh (45)

where σh is the standard deviation of the height measurements from the AFM image.
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Figure 29: Reflectometer data for Sample 1.

The target roughness of RMSgoal = 7 nm is our desired property of the processed

film. The film roughness is measured using the atomic force microscope (AFM) over

a 2 × 2 µm area of the wafer surface. Three different locations on the wafer are

measured and one of the locations is measured twice to account for any scan-to-scan

variability. The RMS roughness is reported using the “statistical quantities” in the

Gwyddion program after the raw data has been flattened using a polynomial of degree

3. The roughness of a thin film is often measured by AFM [101, 96] and is a robust

metric from the AFM (see Chapter 6).

All of the films are grown to approximately the same thickness as measured by the

in situ reflectometer. The target thickness for the films is 120 nm and is measured

ex situ using ellipsometry. The reflectometer data for Sample 1 is shown in Figure

29. In particular we used the data from the 470 nm wavelength as a measure of the

film thickness since this wavelength oscillates more as the film grows. One can make

a qualitative comparison of growth rates by comparing the reflectometer data from

the different experiments. A fast growth rate will have a short period in the 470 nm

reflectance while a slower growth rate will have a much longer period, assuming the

refractive index of the film is constant [21].
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Table 22: Experimental measurements for the initial experiments.

Setting [units] 1 2 3 4 5 6
Pressure [torr] 1.6 1.6 1.6 1.6 1.6 1.6
Dummy argon [sccm] 200 200 200 200 200 200
Carrier argon [sccm] 148–160 32–104 95–117 117–137 79–122 82–103
Precursor argon [sccm] 40–48 89–160 81–95 63–78 81–113 97–118

Precursor molar flow[µmol
min

] 99 200 101 205 201 202
O2 [sccm] 50 50 50 50 50 50
Main oven T [oC] 155 155 155 155 155 155
Evaporator T [oC] 141 140 142 137 140 140
Voltage [V] 12.9 18.5 18.4 13.2 13.4 12.6
Current [A] 6.15 8.13 8.16 6.25 6.29 6.11
Heater T [oC] 697 976 965 717 718 680
Wafer T [oC] 610 770 782 607 605 610

Similar to the simulation study from Chapter 4, the initial experiments will be

a 22 factorial experiment, but each point is not repeated as in the simulation study.

Once the initial experiments are run some repetition experiments are performed,

but are typically not run for every experimental setting [12, 90]. The repetitions

are necessary to estimate the variability inherent in the process to differentiate the

variability caused by changing the process settings. Here the low T/high ṅ point

is chosen for the repeated experiments. The experimental settings for the initial

experiments are shown in Table 22, and the results of the initial experiments are

shown in Table 23. Experiments 5 and 6 are repetitions of Experiment 4.

In Table 22, one can also see the benefit of the PI controller on the molar flow

rate of the precursor. The flowrates for the carrier argon and precursor argon change

significantly throughout each experiment. This reflects the changing rate of evapora-

tion in the evaporator, which the PI controller corrects for by changing the flowrates

of the carrier and precursor argon, while maintaining a total flow rate of 200 sccm

throughout the experiment. With the changing gas flowrates, the precursor molar

flowrate as monitored by the UV sensor was kept very close to the setpoints of 100

and 200 µmol
min

. The total argon flow through the reactor was selected as 200 sccm to

96



ensure that there was enough argon to reach the required molar flow despite variations

in the absorbance from the UV sensor.

There are two pressure sensors on the equipment each with different ranges. The

first has a range of atomospheric pressure to 1 torr, while the second has a range of

10 torr to 10 mtorr. The second pressure sensor is more precise at lower pressures,

so the pressure recorded in Table 22 is from the second pressure sensor. The oxygen

flow was set to 50 sccm to ensure there was an excess of oxygen for the precursor to

react. An experiment with 150 sccm of oxygen was performed to make sure oxygen

was not the limiting reagent for deposition. The deposition rate and the roughness

of the resulting film with an increased flow of oxygen was unchanged from oxygen at

50 sccm, so 50 sccm was used for the rest of the experiments. The effect of oxygen

flow may have been hidden by another interaction between experimental settings. A

full screening experiment would be required to conclusively discount oxygen’s effect

on the thin film deposition.

In Table 24 one sees the thicknesses of the films as reported by ellipsometry, along

with the fitting parameters used in the model. The mean square error refers to the

error between the fitted model and the acquired optical data. An is a fitted parameter

in the Cauchy model used to fit the data and to calculate the refractive index of the

film, which for Y2O3 is nominally 1.9 [94]. The roughness layer was included in the

model to reduce the mean square error but was set at 20 nm instead of adding it

as an additional fitted parameter. This roughness does not correspond exactly with

the roughness reported from AFM data. AFM software calculates the roughness

using the root mean square of height irregularities. In spectroscopic ellipsometry, an

effective medium model (EMM) is used. In EMM, the roughness is modeled as the

thickness of an effective layer based on optical responses measured by the ellipsometer.

Some work has been done to quantify the difference between the two models. Some

have reported that the EMM is twice the AFM thickness [26, 71, 98] while others
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Table 23: Experimental results from initial experiments.

Experiment Scaled T Scaled ṅ Roughness T [oC] ṅ [µmol
min

]

1 -1 -1 10.3 ± 0.6 610 99

2 1 1 5.6 ± 0.5 770 200

3 1 -1 6.3 ± 0.5 782 101

4 -1 1 8.8 ± 1.2 607 205

5 -1 1 12.2 ± 1.5 605 201

6 -1 1 11.6 ± 0.5 610 202

Table 24: Thickness of films determined via ellipsometry averaged over six samples
and parameters used in the Cauchy model.

Experiment Thickness An roughness MSE
1 125 ± 2 1.71 20 40
2 119 ± 4 1.88 20 16
3 134 ± 3 1.88 20 15
4 136 ± 5 1.76 20 26
5 123 ± 2 1.77 20 29
6 128 ± 3 1.78 20 23

have come to the conclusion that it is impossible to predict the correlation [45].

Based on measurements of roughness in Table 23, the correlation between the two

measurements is approximately two. A fit of the model to experimental data is shown

in Chapter 2 as Figure 12. Also, 20 nm is extremely small to be measured optically

using a wavelength ¿ 400 nm with any accuracy.

All AFM images were processed by flattening the image using a polynomial of

degree three in the Gwyddion software and the RMS roughness was calculated from

the image. The roughness of the initial experiments are shown in Table 23 and are

averaged over four images at three different locations on the film. This was done to

estimate the variability of roughness due to location on the film and due to variability

from one scan to the next. One can see in the image the different grains on the

film surface. The grains are not of uniform size, but vary in size and shape from

the random deposition process. From Table 23 there are a few interesting points

to highlight. First, the deposition temperature seems to have a large effect on the
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Table 25: Estimated average main effects and interaction effects from the initial
experiments.

Effect Value
T -4.86
ṅ -0.02
T ṅ -0.58

roughness of the film. A lower deposition temperature leads to rougher films while

high deposition temperature films are much smoother. While the temperature has

a large effect, the molar flow rate does not appear to influence the roughness of the

films. Currently, the lowest standard deviation for a roughness measurement was

0.5 nm, which is large considering the process settings’ effect on roughness of 4 nm.

Optimizing the gain settings and other parameters of the AFM may improve this

variation in the measurements and improve the accuracy of a roughness model.

The main effects and the interaction effects were estimated roughly using the

equations (6-1), (6-2), and (6-3) from [84] using n = 1 (n in [84] is repetitions of

experiments) and averaging Experiments 4, 5, and 6 (mean = 10.86) and using the

mean as the result for the low T/high ṅ result. The results are shown in Table 25. The

estimated effects confirm the qualitative observations. The strongest effect is indeed

from T , and effect of ṅ is negligible. An interesting result is the T ṅ interaction effect,

which is small compared to the T effect but much larger than the ṅ effect alone.

5.2 Models of the experimental data

With the analysis of the initial experiments complete, potential models of the process

are needed for the experimental design methodology. Our goal is to predict the surface

roughness of the thin film which is important to such film properties such as dieletric

properties [5] and on the structure of multilayer films [29].

Seven potential roughness models are included in the experimental design. The
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empirical models are

RMS1 = φ11 + φ12T (46)

RMS2 = φ21 + φ22T + φ23ṅ (47)

RMS3 = φ31 + φ32T + φ33T ṅ (48)

RMS4 = φ41 + φ42T ṅ (49)

RMS5 = φ51 (50)

The roughness empirical models all use scaled T and ṅ.

The hybrid models will be similar to the model in Chapter 4, except instead of

using Nisl directly, it will be an input to Equations (51) and (52) to output film

roughness.

RMS6 = φ61 + φ62

√

Nisl (51)

RMS7 = φ71

√

Nisl (52)

Also, the flux, F for Equations (41) and (42) is calculated using Equation (53).

F = ωṅ (53)

where ω = 1mol
106µmol

Ω 1
hML

1
Asubstrate

= 3341.07 ML
µmol

. The constants used in Equations (41)

and (42) are in Table 26.

What the hybrid models are doing is drawing a relationship between nucleation

density and roughness. Figure 30(a) is a film deposited at low T and Figure 31(a)

is a film deposited at high T . These two films have very different roughnesses and

qualitatively look very different. Figure 31(a) is smoother, but also appears to have

a larger grain density than Figure 30(a). This makes sense when considering the

nucleation density equations in Chapter 1, especially Equation (15). As T increases,

β becomes smaller, causing Nρ in Equation (16) to increase, which increases Nisl on

the substrate surface. The many nuclei prohibit the atoms from congregating to only
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(a) AFM image of Experiment 1

(b) AFM image of Experiment 2

Figure 30: AFM images of Experiments 1 and 2 to compare the effect of T on the
thin film roughness.
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(a) AFM image of Experiment 3

(b) AFM image of Experiment 4

Figure 31: AFM images of Experiments 3 and 4 to compare the effect of T on the
thin film roughness.
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(a) AFM image of Experiment 5

(b) AFM image of Experiment 6

Figure 32: AFM images of Experiments 5 and 6 to compare the effect of T on the
thin film roughness.
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Table 26: Constants for the film growth case study

Constant Value Units Description

κ 0.15 — Monolayers [43]

ρ 2 — Number of adatoms per stable cluster

R 8.3145e-3 kJ
mol∗K

Gas constant

Ω 4.488e22 nm3

mol
Molar volume

hML 0.2651 nm
ML

Thickness of a monolayer

Asubstrate 5.07×1014 nm2 Area of substrate

Ei 0 eV Binding energy

Ed 0.8 eV Diffusion activation energy

η 0.2 — Capture number

Table 27: Results for roughness models after initial experiments

form MSE P φ1 φ2 φ3

(46) φ11 + φ12T 1.17 0.21 8.31 -2.41 –
(47) φ21 + φ22T + φ23ṅ 1.17 0.15 8.30 -2.40 0.05
(48) φ31 + φ32T + φ33T ṅ 1.10 0.15 8.24 -2.34 -0.29
(49) φ41 + φ42T ṅ 5.66 0.10 8.83 -0.88 –
(50) φ51 6.34 0.13 9.11 – –
(51) φ61 + φ62

√
Nisl 1.54 0.18 19.1 -104 –

(52) φ71

√
Nisl 18.3 0.08 85.9 – –

a few nuclei, causing the film to grow uniformly. The square root relationship between

Nisl and roughness comes from the distance between grains which is ≈ 1√
Nisl

.

In Table 27 are the parameter fits for the roughness models and their respective

mean squared error and probability. Equation (46) was the most probable model

after the initial experiments due to the strong dependence on T identified earlier,

even though it did not have the lowest error of the seven models. The added constant

in the hybrid model (51) made that model the second most probable and much more

probable than (52), which did not have a fitted constant. All of the proposed models

in Table 27 performed better than (50), which is simply the average of the available

data, except for (52) which lacked a fitted constant term.
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Equation (48) had the lowest error of all the models as expected from Table 25’s

result for the average effects from the initial experiments. Equation (48) includes

both T and the T ṅ interaction term in the model which are the terms with the

largest calculated effects. Equations (46) and (47) have equal error, but (47) has a

term for the ṅ effect, therefore (46) is more probable of the two equations.

The results in Table 27 highlight an advantage of the new experimental design

approach presented in Chapter 3. If one were doing a factorial design approach, after

estimating the main effects, Equations (46) or (47) would be picked as the model and

the rest of the experiments would be designed using one of these models. If a hybrid

model approach was being taken, either Equation (51) or (52) would be chosen and

further experiments would be designed to improve the estimates of the parameters

of one of these models if using D-optimal design. In the approach here, multiple

models are specifically included because no model is perfect. Additionally, Equation

(50) is considered as a reality check to the experimenter. When Equation (50) has a

probability greater than or comparable to the probabilities of the other models being

considered, then a new relationship between the settings should be considered either

for an improvement to the current models or for a new model altogether.

5.3 Sequential Experimental Design

After the initial experiments had been run, the results were put into the experimental

design algorithm to see where the next experiment should be run. The Matlab code

used for this can be found in Appendix D. The desired confidence interval for the

most probable model was 1 nm and the change of MSE was set to be 0.1 for the

stopping criterion. The scaled T , scaled ṅ, and roughness from Table 23 were given

as inputs to the function.

To design the next experiment, the random experimental design with the grid

algorithm was chosen since it was the best result from the simulation study. For
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Figure 33: Points left in the grid after the initial experiments are shown as (+) plus
the predicted optimal point (vertical line), the random experimental points (�), the
P-optimal points (◦), and the D-optimal points (5). Experiments designed with the
grid algorithm are shown in red.

comparison, the next experiment was also predicted using D- and P-optimal with

and without the grid, as well as the random experimental design with and without

the grid, and these different experimental points can be seen in Figure 33. The

predicted optimal point after the first iteration is shown as a vertical line at the

optimal temperature since the model shows no molar flow rate dependence, while the

experimental points without the grid are black shapes, and with the grid are indicated

by red shapes. Without the grid the D-optimal experiment is in the bottom right of

the experimental design region. The predicted optimal is located on the T axis at

T = 1008 K. The D-optimal design did not change with the grid and the experiment

is predicted for the lower right corner of the design space. The P-optimal design is

changed by the grid algorithm (GA) since the lower temperature settings are excluded

from the experimental design space. The random experimental design point without

the grid still occured within the grid space, which is not that unlikely since the grid

space is large after the first iteration. These points are all on Figure 33 for comparison

to the experiment that was actually run. Unlike the simulation study where nearly
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Table 28: Experimental settings for the sequential experiments.

Setting [units] 7 8
Pressure torr 1.6 1.6
Dummy Argon sccm 200 200
Carrier Argon sccm 0–61 119–137
Precursor Argon sccm 138–200 73–81

precursor molar flow µmol
min

200 173
O2 sccm 50 50
Main Oven Temperature oC 155 155
Evaporator Temperature oC 140 140
Voltage V 16.5 16.8
Current A 7.35 7.49
Heater Temperature oC 858 881
Wafer Temperature oC 718 741

unlimited “experiments” are possible, here these comparison points are not actually

run experimentally due to the cost of experiments. The random selection with the

grid algorithm was chosen as best from Chapter 4. The random experimental design

with the grid is at T = 720 K and ṅ = 200 µmol
min

and that is Experiment 7 in Table

29. Experimental settings for the sequential experiments can be found in Table 28.

Since the most probable model is (46) which is linear in T , the ṅ setting does

not factor into the new experimental setting. This is seen clearly in Figure 33 in

the grid space where the potential optimal points depend only on the T setting.

From the analysis in the previous section, T was the most important factor, but the

interaction between T and ṅ was not negligible. This highlights a weakness in the

optimal experimental designs where a lot of weight is put on the model for designing

the next experiment. Equation (46) is the most probable in Table 27, but (51) is also

quite probable, and should not be dismissed. By using a random experimental design

rather than a D-optimal design, one can still explore the experimental design space

to better define the relationships between the process settings and the process output

while not putting too much confidence in any one model. For example, after running

more experiments, Equation 47 could become the most probable model.
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Table 29: Experimental results after initial experiments.

Experiment Scaled T Scaled ṅ Roughness T [oC] ṅ [µmol
min

]
7 0.37 1 8.5 ± 0.5 720 200
8 0.6 0.46 8.8 ± 0.7 750 173
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Figure 34: Points left in the grid after the first sequential experiment are shown as
(+). The optimal point is a vertical line, the random experimental points are (�), the
P-optimal points are (◦), and the D-optimal points are (5). Experiments designed
with the grid algorithm are shown in red.

The results for the roughness models after the first sequential experiment are in

Table 29 as Experiment 7. The parameter fits and model probabilities in Table 30

are relatively unchanged which indicates the experiment confirmed the previously

observed trends but did not provide much additional insight into the process. Re-

member, however, that the goal of the study is not to find the best model (model

discrimination) nor to get the best parameter fits for the models (D-optimal), but

rather to find the optimal point of the process. Looking at Figure 34, information

has been added about the location of the optimal point, as the optimal line has

shifted.

The possible optimal points from the grid algorithm are displayed in Figure 34

as well as the predicted optimal point and the experimental design points from each

of the methods. The grid space is slightly smaller, reflecting a smaller confidence
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Table 30: Results for roughness models after first sequential experiment

form MSE P φ1 φ2 φ3

(46) φ11 + φ12T 1.13 0.21 8.49 -2.30 –
(47) φ21 + φ22T + φ23ṅ 1.11 0.15 8.42 -2.27 0.17
(48) φ31 + φ32T + φ33T ṅ 1.11 0.15 8.46 -2.24 -0.19
(49) φ41 + φ42T ṅ 4.85 0.10 8.82 -0.88 –
(50) φ51 5.48 0.13 9.03 – –
(51) φ61 + φ62

√
Nisl 1.47 0.18 18.7 -98.2 –

(52) φ71

√
Nisl 15.9 0.08 84 – –
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Figure 35: A contour plot of the objective function using Equation (46) based on
Experiments 1–7.

interval due to more experiments. It is also interesting that the predicted optimal

point has shifted with the new experiment. The contour plot of the objective function

is shown in Figure 35. The right side of the figure has a valley where the minimum

value of the objective function is located. With the added experiment the valley

shifted along with the predicted optimal point. The predicted optimal point did

move, but to a point that was another potential optima from the grid algorithm. The

experimental points without the grid algorithm are shown again in black shapes. The

next experiment from the random experimental design is T=1013 K and ṅ = 173µmol
min

and is Experiment 8 in Table 29.

After the second sequentially designed experiment, the results of the roughness
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Table 31: Results for roughness models after the second sequential experiment

form MSE P φ1 φ2 φ3

(46) φ11 + φ12T 1.27 0.20 8.73 -2.11 –
(47) φ21 + φ22T + φ23ṅ 1.24 0.14 8.64 -2.08 0.21
(48) φ31 + φ32T + φ33T ṅ 1.26 0.14 8.71 -2.06 -0.12
(49) φ41 + φ42T ṅ 4.25 0.11 8.85 -0.86 –
(50) φ51 4.80 0.15 9.00 – –
(51) φ61 + φ62

√
Nisl 1.61 0.18 17.9 -87.8 –

(52) φ71

√
Nisl 14.1 0.08 82.3 – –

Table 32: Confidence intervals at the predicted optimal point for three models in
the experimental study as well as the confidence interval on the objective function
(CIf(x)) for each model.

(46) (50) (52)
CIRMS1 CIf(x) CIRMS5 CIf(x) CIRMS6 CIf(x)

initial experiments 2.05 0.0004 2.89 5.956 2.39 0.0012
first iteration 1.71 0.0003 2.34 4.708 1.98 0.0019
second iteration 1.65 0.0003 1.96 3.917 1.91 0.0088

models in Table 31 are still relatively unchanged. Improvement has come in the form

of a tighter prediction on the optimal point as can be seen in Table 32 for (46), (50),

and (52). The CI for each of the models’ predicted optimal point is reduced, and

one becomes more certain where the true optimal point lies in the experimental space.

Equation (46 is most useful for design because the confidence interval on the objective

function is small. Equation (50) has a large CIf(x) because of its prediction at the

predicted optimal point being far from the target of 7 nm.

The experimental design was carried out using the second sequential experiment

and the grid points are shown in Figure 36. The predicted optimal point again moves

along the valley depicted in Figure 35, and is located at T = 1032 K and ṅ = 100 µmol
min

.

The next experiment from the random experimental design using GA is T = 1036 K

and ṅ = 153 µmol
min

.

The stopping criterion for the experimental design were quite simple. Since the

confidence interval on the measurements of roughness ranged between 0.5 and 1.5 nm,

a goal confidence interval of 1 nm may be unattainable and meaningless if it is lower
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Figure 36: Points left in the grid after the second experiment are shown as (+).
The optimal point is a vertical line, the random experimental points are (�), the
P-optimal points are (◦), and the D-optimal points are (5). Experiments designed
with the grid algorithm are shown in red.

than the measurement error. The change in MSE for each iteration was 0.03 and 0.12

respectively. The last experiment increased the MSE and the experimental design

would continue. The MSE, however, only measures the error of the model prediction

and does not indicate how well the model performs. For example, the MSE may be

low for a model, but the observed trend of the data may not be accurately captured

by the model.

The goal confidence interval is a nice guideline for when to stop experiments, but it

does not accurately reflect the decision of the researcher. When the goal is to find the

optimal point, the question is not how confident one is of the predicted optimal point,

but how the confidence interval compares to the other potential optimal points. This

is shown graphically in Figure 37. Point 2 is the predicted optimal point (assuming one

is trying to find the minimum), but Point 1 may still be the true optimal point based

on the overlap of the confidence intervals. It is still probable that the true value of

Point 1 is less than Point 2. Depending on the differences in process settings between

the two points, it may be profitable to run more experiments to distinguish between
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Figure 37: Four possible optimal points and their confidence intervals. Point 2 is the
predicted optimal point (minimum) currently. Here, Point 1 may still be the true
optimal point based on the overlap of confidence intervals, but Point 3 and Point 4
are probably not.

the two points. However, it is much less likely that Point 3 or 4 are the true optimal

point. While they are still potential optimal points since their confidence intervals

overlap Point 2’s, there is a small probability that their values are less than Point 2’s.

A better stopping criterion may be one where there is a direct comparison of CI’s of

potential optimal points or calculating the probability that another experiment would

signficantly change the location of the optimal point.

5.4 Conclusion

In this study we have evaluated the experimental design methodology using our CVD

reactor testbed. The initial experiments were performed and seven roughness models

were proposed and tested through sequential experimentation. The average T effect

was found to be the largest for affecting the film roughness and the interaction effect of

T ṅ was also found to be important in modeling the roughness. The empirical model of

Equation (46) was the most probable model throughout experimentation and the final

predicted optimal point was found to be T = 1032 K and ṅ = 100 µmol
min

. This point

is located in a valley of the objective function as depicted in Figure 35. With each

successive experiment, the grid space was reduced as shown in Figure 38 reflecting a
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Figure 38: Points left in the grid after each experimental iteration. The first iteration
points are marked by a ’+’, the second iteration points are marked by a (◦), and the
third iteration grid points are marked as ’*’.

smaller confidence interval on the predicted optimal point. Since the empirical model

of Equation (46) was most probable of the proposed models, the existing hybrid

models should probably be modified to include a stronger T dependence or another

form of a hybrid model which specifically addresses the strong dependence on T

should be proposed to predict roughness. Equation (51) in particular performed well,

but may need modification to improve its performance over the other models. To

further improve roughness models, an improvement in the AFM scans will be needed

to decrease the variation from one scan to the next.
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CHAPTER VI

LIMITATIONS OF EXPERIMENTAL DESIGN

In this chapter we will explore other aspects of experimental design that a researcher

should be concerned about. The adequacy of a model should not be overlooked

as one does not want to design experiments on the basis of a model that does not

fit the experimental data very well. In our experimental design methodology, we

explicitly define a worst-case model (a model that simply outputs the average of the

experimental data). This model is incorporated into the design methodology to make

sure the model we are fitting is useful for explaining the experimental data. This

aspect is studied by fitting models to the growth time of films made using the CVD

reactor testbed.

The second aspect of experimental design we are concerned with here is deter-

mining whether the measurement technique is appropriate to draw the necessary

conclusions using experimental design. The choice of what to model is dependent

on what can be deduced from the experiments. Trying to model a property which

cannot be accurately measured is another pitfall experimenters may face. This is

especially important when exploring on the nano scale where new techniques have

become available to measure properties of thin films. To explore this we will try to

model the grain size of thin films grown using the CVD reactor testbed.

6.1 Fitting the Growth Time of a Thin Film

The films for this section will be the same films used for the roughness study in

Chapter 5. The experimental settings for each film are in Table 22. Similar to

Chapter 5 we will be studying the effect of T and ṅ and the high and low settings for

each are shown in Table 21. The growth times for each of the initial six experiments
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Table 33: Experimental results from initial experiments for growth time.

Experiment Scaled T Scaled ṅ Growth time T [oC] ṅ [µmol
min

]
1 -1 -1 60.1 600 100
2 1 1 82.1 775 200
3 1 -1 51 775 100
4 -1 1 32.2 600 200
5 -1 1 65 600 200
6 -1 1 95 600 200

Table 34: Estimated average main effects and interaction effects on the growth time
from the initial experiments.

Effect value
T 4.55
ṅ 17.65
T ṅ 13.45

are shown in Table 33.

From Table 33, one can see that the data is very noisy. Experiments 4, 5, and 6

are the repetition experiments and have a high variability which will make modeling

the growth time very difficult if not impossible. However, for the purposes of this

illustration, we will assume that the experimenter overlooks this and proceeds with

his experimental design anyway. After running a factorial design the next step of a

typical factorial experimental design is to estimate the average main and interaction

effects of the process parameters being studied. Using the same method as in Chapter

5, the effects were estimated and are shown in Table 34. The values for each of the

effects are large and the largest effect is ṅ, with the T ṅ interaction effect also strongly

present, and the T effect being the smallest of the three effects and the value is small

relative to the observed growth times.

The estimated T effect is an interesting result since previous work has cited a

linear increase or flat rate of reaction with increasing temperature [59, 103, 132].

This relationship depends on whether the reactor is in the reaction limited or diffusion

limited regime. In the reaction limited regime, the surface deposition is limited by
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how quickly the surface reaction proceeds which is related to the substrate surface

temperature. In the diffusion limited regime, the surface deposition is limited by how

quickly the precursor can diffuse to the substrate surface. The temperature where it

transitions from a reaction limited to diffusion limited reaction varies slightly from

one CVD reactor to the next, but for Y2O3 is in the range of 580 to 600oC [59, 103].

These studies did not specify how the substrate temperature was obtained meaning

the temperatures reported were most likely recorded from a thermocouple on the

back of the heater (corresponding to the “Heater Temperature” in Table 22). Even if

we were to take the lower of the two reported temperatures (the wafer temperature),

then we are still operating in the diffusion limited regime.

6.1.1 Models for Growth Time

Six potential growth time models were used to fit the available data. These models

are all empirical in nature, unlike the mechanistic model that was used with the

roughness models. The models are

t = ξ11 + ξ12T (54)

t = ξ21 + ξ22T + ξ23ṅ (55)

t = ξ31T + ξ32ṅ + ξ33T ṅ (56)

t = ξ41 + ξ42T + ξ43T ṅ (57)

t = ξ51 + ξ52T ṅ (58)

t = ξ61 (59)

All the growth time models use the scaled T and ṅ. Model 6 in Equation (59) fits

the average of the experimental data and is the model when there is no correlation

between T , or ṅ, and the growth time. If Equation (59) is the most probable, then

the current set of models fail to describe a trend in the experimental data. The most

probable growth time model, according to Equation (7), will be chosen to find the
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Table 35: Results for growth time models after initial experiments

error P ξ1 ξ2 ξ3

(54) 412 0.16 64.8 1.76 –
(55) 365 0.17 62.9 3.63 7.47
(56) 376 0.17 62.0 6.56 –
(57) 391 0.17 66.0 0.52 4.97
(58) 391 0.17 65.9 5.10 –
(59) 414 0.16 64.2 – –

best next experimental point.

6.1.2 Results of Growth Time Analysis

The results of model fitting for the growth time models after the intial experiments

is shown in Table 35. The error for all of the models are all on the same order of

magnitude, and none of the models does much better than the others. The initial

probability for each of the models was 1
6

= 0.166, showing that the probabilities are

relatively unchanged from the experimental data. After including Experiment 7 and

8, the probabilities for each of the models remains unchanged. More experimental

data did not clarify which model was more probable, and none of the models fit the

data significantly better than (59). Moreover, using the grid algorithm with the initial

experiments results in a grid space that is the entire experimental design space.

6.1.3 Discussion of Growth Time Results

This study brings to light to main features of experimental design that must not

be ignored. First, the process property you want to model must be robust to noise

factors. Second, the methodology has a mechanism for alerting the experimenter

when the models proposed are not doing a good job of fitting the experimental data.

From Table 33, one can see that the process growth time was not repeatable.

Our initial focus with the CVD testbed was to produce thin films in a short time

for the analysis. With the focus on quick deposition time, the robustness of our thin

film growth time suffered. One thing that is lacking in this experimental design is
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a focus on process robustness. This was not a deficiency of the experimental design

methodology, but the fault of the objective function that was picked for this process.

The objective function for this growth time study is

min
x

(fj∗(x)) = (t(ŷj∗(x)) − tgoal)
2 (60)

one can see that the objective function does not consider the variability of the process.

The objective is to solely obtain the desired time, tgoal assuming no variability in the

process. Including process variability into the objective function could be as simple

as adding a term to the objective function

min
x

(fj∗(x)) = (t(ŷj∗(x)) − tgoal)
2 + λ(σt(x) − σgoal)

2 (61)

where σt(x) is the standard deviation of the growth time at an experimental setting

x, and σgoal is the desired standard deviation of the growth time. The factor λ is a

constant which is adjusted based on the researcher’s desired variance. As an additional

consequence of making the process more robust, repetitions of every experiment (at

least three) would be required to estimate the standard deviation and it would be

best to randomize the experiments to make sure process drift does not skew the

results. The size of λ can be changed reflecting the importance of robustness relative

to performance to the experimenter to better guide the choice of the next experiment.

If every experimental point is repeated, one could also use the F-statistic to determine

the lack of fit of their model [140].

The variation for every experimental point is needed for the F-statistic to be useful

as depicted in Figure 39 where the experimental points are indicated by circles, and

the standard deviation on the measurements is shown. In 39(a), the straight line fit

to the data is good since the line is drawn through the mean of the standard deviation

for each point. This indicates that the data is indeed showing a linear trend. The

other case is shown in 39(b). Here, the straight line is still the best fit through

the experimental points, but the line does not connect the mean of the standard

118



yText...

x

(a) Best fit of a line with no lack
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(b) Best fit of a line with lack of
fit

Figure 39: Two best fit lines. (a) shows a fitted line with no lack of fit while (b)
shows a line with lack of fit.

deviations for each point and indicates that a straight line does not actually fit the

experimental data very well. Without repetitions for every experimental setting, the

lack of fit component of the variation and the variation between experiments cannot

be separated.

The case study also brings to light the importance of not only identifying if a

model is good, but also identifying if a model is poor. An experimenter can often be

certain of their own model’s validity without checking it versus other models. Not

only does this experimental design include multiple models and their probabilities,

but also the grid algorithm can be used as a check of the model’s usefulness in the

experimental range of interest. If the grid space after the experimental design does

not exclude any of the experimental design space area, the model may not be fitting

the data very well or else the trend predicted by the model is less than the uncertainty

in the model prediction.

Another use of this experimental design methodology is identifying what type

of reaction is occurring on the substrate surface. One can operate in the diffusion

limited regime or the reaction limited regime of a CVD reactor which were described in

Section 6.1. By having a model which is designed for the growth rate in the reaction

limited regime and another model designed to predict growth rate in the diffusion

limited regime, one can determine which model predicts the growth rate best. The

best model will also determine for the researcher which regime they are operating in.
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6.2 Analyzing Grain Size with AFM

Here we attempt to analyze the grain size of a thin film using atomic force microscopy

(AFM). This has been done numerous times before, so grain size was believed to be

a robust measure attainable from AFM [13, 16, 68, 78, 134]. In this analysis we

examine Experiment 3 from Chapter 5, using AFM scans taken on different days,

and with different AFM tips. What was thought to be a routine analysis turned out

to be a very complex problem. When one is designing an experiment, extreme care

must be taken that the variability from the measurement device is minimized as well.

This is often neglected in literature explanation of scientific results but is critical in

a statistical approach or in design.

The AFM images were imported into the Gywddion program and the menu Data

Process>Grains>Mark by Threshold.. was used to mark the grains. Mark by

Threshold means that a height is chosen by the user. Anything above that height

is marked and used in calculating the average grain size in the image. To keep some

consistency from one image to the next, the height was chosen to include 30% of the

total image area for the grain size analysis. A marked image is shown in Figure 40.

We will examine the variability caused from taking AFM images from the PicoPlus

AFM machine described in Chapter 2. One can see qualitatively from Figures 41

and 42 that the grain sizes are going to be different. Both images were taken in

non-contact imaging mode. Figure 41 is a representative image from the first day’s

images, and Figure 42 is representative of the second day’s images. The settings used

for the AFM are in Table 36. The I and P gain on the AFM are very important,

especially if one is doing image analysis. A gain too high will cause the image to be

very noisy, and the threshold marking may mark this noise as a grain. This will cause

the number of grains to be artificially high, and cause the average grain size to be

erroneous as well. The results from the first day’s scans are shown in Table 37 while

the second day’s results are in Table 38. Looking at the average grain size for each
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Figure 40: An AFM image that has been marked using the Gwyddion software Mark

by Threshold function.

Figure 41: Representative AFM image of Experiment 3 from the first day’s imaging,
2×2 µm2 scan area.
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Figure 42: Representative AFM image of Experiment 3 from the second day’s imaging,
2×2 µm2 scan area.

Table 36: Settings used for the atomic force microscope on both days.

Setting First day Second day
tip 4 7
resonance frequency 324 325
scan speed lines

s
1.02 1.02

I gain 0.1 0.1
P gain 0.05 0.05

Table 37: Results from the first day’s AFM for grain size and roughness.

First day’s results
image numbers 2001 2002 2003 2004 average standard deviation
grains 50.6 48.1 54.5 59.0 53.1 4.1
% image area 30.1 30.0 30.1 30.9 30.3 0.4
average grain size 113 104 92 95 101 8.2
roughness 6.67 6.14 6.74 5.61 6.3 0.5
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Table 38: Results from the second day’s AFM for grain size and roughness.

Second day’s results
image numbers 3001 3002 3003 3004 average standard deviation
grains 48 54.3 44.5 46.9 48.4 3.6
% image area 30.2 30.9 30.6 29.8 30.4 0.4
average grain size 145 159 144 117 141 15.2
roughness 6.44 6.2 5.84 5.21 5.9 0.5

day, the grain sizes vary by 40

Besides the changing tip, there are a number of other possibilities for variation in

one day’s average grain size to the next. The imaging software may not be the best

for detecting grain size. There are many different AFM imaging software available

and therefore also many algorithms to find the average grain size. Gwyddion does not

specifically outline the grain boundaries of the grains, but rather uses the threshold

value in the calculation. Any point that is above this threshold value is considered

a grain. Some commercially available software such as the SPIP Grain Analysis

module by ImageMet, NIH IMAGE from the NIH website (available for free only

as a Macintosh version) [16], Nano Rule + from Pacific Nanotechnology Inc., and

other versions available from the various AFM manufacturers. By outlining the grain

boundaries in the image, one may be able to attain repeatable average grain sizes

from one day to the next.

Other variability from AFM image analysis is inherent to the process. The expe-

rience of the user in processing the images plays a role in correcting for artefacts in

the AFM image. For instance if a tip is dull, and the tip radius is larger than the

feature size one is trying to image, one may actually image the tip rather than the

surface.

Another possible path to grain size measurement would be to use the number of

grains and calculate the average grain size from this quantity. In Tables 37 and 38,

the number of grains from one day to the next is repeatable and does not seem to vary

too much from one measurement to the next. The coefficient of variation measures
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Table 39: AFM results for Experiment 1

Experiment 1
3001 3002 3003 3004 average standard deviation CV

grains 35 33 45 25 34.5 8.2 24
roughness 10.5 10.3 9.42 10.9 10.3 0.6 6

Table 40: AFM results for Experiment 2

Experiment 2
3011 3012 3013 3014 average standard deviation CV

grains 40 42 32 46 40 5.9 15
roughness 6.1 5.0 5.6 5.6 5.6 0.5 9

the variability of the data relative to the magnitude of the average of the data

CV =
σ

µ
(62)

where σ is the standard deviation and µ is the average. The CV for the number of

grains is 8 in Tables 37 and 38 which is equal to the CV for roughness. All the initial

experiments were then analyzed and the data for the remaining experiments can be

found in Tables 39-43. The number of grains and roughness are reported along with

the CV for each measure. The CV for the number of grains for the other initial

experiments are quite high, at one point varying by 25 percent. Since the number of

grains is also calculated from the threshold marking by Gwyddion, one has a similar

problem as with the average grain size calculation.

From Tables 37–43, one can see that the roughness from one day to the next

varies quite a bit less (6%) than the average grain size (40%), and also has a smaller

coefficient of variation than the number of grains measurement. For this reason

roughness was the metric of choice as there was less variability from day to day

Table 41: AFM results for Experiment 4

Experiment 4
3001 3002 3004 3007 average standard deviation CV

grains 56 36 38 35 41.3 9.9 24
roughness 7.77 10.6 8.23 8.63 8.8 1.2 14
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Table 42: AFM results for Experiment 5

Experiment 5
3001 3002 3003 3004 average standard deviation CV

grains 25 19 16 25 21.3 4.5 21
roughness 10.7 11.0 13.9 13.0 12.2 1.5 12

Table 43: AFM results for Experiment 6

Experiment 6
1001 1002 1003 1004 average standard deviation CV

grains 24 18 26 17 21.3 4.4 21
roughness 12.4 11.5 11.6 11.2 11.7 0.5 4

characterization using this metric.

6.3 Conclusions

In this chapter we have addressed a few important concerns in experimental design.

When using an experimental design method which makes use of a model, it is im-

portant to realize that “all models are wrong, some models are useful” [19], meaning

one should not rely too much on a model. To ensure that one does not put too much

confidence into the model, a model which outputs the average of the experimental

data was included among the viable models. The usefulness of this model checking

was shown in the growth time modeling. This section also highlighted the need for

robustness to be included into experimental design to make sure results are useful for

engineering a process. In the last section, we highlighted the importance of choosing

a good metric upon which to base the model and experimental design. In trying to

construct a model to predict grain size, the variance of the data from one day to the

next was too great, and a more robust metric (roughness) was chosen for the model.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

When this project began, there existed a chemical vapor deposition system that was

completely uncharacterized, and a desire to construct a microstructural model based

on processing conditions. The first step was to study the existing microstructural

models to see what had been and what would be useful for this project. In search-

ing through the existing models, there were two types of models present. The first

model type was purely empirical. After many experiments some conclusions were

drawn about the processing conditions of a process and parameters were fitted to the

experimental data. The parameters were sometimes assigned some physical meaning

and were sometimes explained using some insight into what occured in the process.

These models captured what was happening in the experiments that had been run,

but were not useful for explaining how the process works and were not appropriate

for extrapolation.

The other type of model found was mechanistic in nature and very computationally

intensive. These models were grounded in theory and derived from first principles.

Simulations could be run with these models that seemed to match what was actually

going on in experiments. The drawback of these models was the disconnect from

experimental data. The processing parameters for these models had no physical

meaning such as flux of atoms to a substrate or were immeasurable with the current

technology and technology typically found on equipment such as grain boundary

energies. Furthermore, the details of the models had to be understood well to transfer

it to another system or to use the model with a physical system.
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The overall purpose, then, was to bridge these two types of models. The empirical

models are useful for explaining what happens in experiments, but do not provide

insight into what is happening on the molecular level. The mechanistic models are

useful for explaining what happens at the molecular level, but does not always relate

well to actual experiments, especially when there is limited data available. What if

these two types of models could be blended? A model could be constructed which

was useful for explaining experimental data and used physical process parameters,

yet was also capable of predicting what was occuring on the molecular level and was

useful for extrapolating outside of the current experimental data.

The next question to answer was how to go about constructing such a model on

a system when there is very little prior knowledge. To this end experimental design

was explored. By planning the experiments well to get the most information out of

them, one could hopefully construct such a model quicker. In studying the types

of experimental design, another dichotomy similar to the model types was apparent.

There were experimental designs to construct empirical relationships between the

output and the processing conditions. The other experimental design type focuses

on the model for the process and more accurately determining the parameters of the

model. For this design to function, one had to have a process model which one was

confident in to direct the next experiments. But how does one design experiments to

construct such a process model when there are none available?

This work fills in the gaps between empirical and mechanistic models and exper-

imental design and is unique in that the work was guided by the experiments. The

experiments kept the experimental design simple. The procedure to run the exper-

imental design methodology is basically the same from one study to the next. One

needs to provide a functional form for the different models to be included in the pro-

cedure (number of parameters, initial guess for parameters, range of possible values

for parameters, etc), but this is work the researcher will be doing anyway if they are
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intersted in developing a process model.

The experimental component also guided us to develop a method that could be

used in practice. What were people doing in practice and how can we improve on

that? The methodology is versatile since there is not just one experimental design

that is best for all systems. Different researchers have different experimental design

preferences and different objectives for their experiments, so this methodology had

to be adaptable for many different situations, not just useful for the CVD process

used to test the theories. The result of this work is a unique view to experimental

design that bridges the empircal and model-based methods of experimental design.

The methodology developed is a tool to be used in constructing process models that

relate to the physical process while also providing insight into the phenomena occuring

in the process.

In Chapter 3 current experimental designs are explored and a new methodology is

developed. The gap between empirical and mechanistic experimental design methods

is explored and new methods are developed to find the optimal operating point of a

process. A model discrimination method was developed but it designed experiments

using the worst model and the best model of a given set of models. The experiments

are not necessarily near the optimal point of the process and do not provide informa-

tion about the optimal point. If two models disagree at a given point, this may help

in discriminating between models, but does not necessarily help to find the optimal

point of the process. For example, the two models may agree at the optimal point,

making this model discrimination method undesirable for this work. For this reason,

model discrimination was not included in further methodology development.

A revised methodology is developed to focus experiments near the predicted opti-

mal point of a process. The grid algorithm is developed which makes use of the confi-

dence interval around the optimal point to reduce the experimental design space. The

objective function for this experimental design will change depending on the goal of
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the experiments, but for this work the objective is to produce a system output close to

the target value for the process. The methodology also incorporates multiple models

as a way of checking the usefulness of the model. If your best model is still bad, the

methodology indicates one is in need of modifying the existing model, finding a new

model, or need for running more experiments. By incorporating traditional design

of experiments used by experimentalists, the method is straightforward and easily

adaptable to different experimental situations.

In Chapter 4 the revised methodology is shown to function on simulated data on

a modified Himmelblau function and how it functions on a nucleation model for thin

films. In both simulation studies, three different experimental designs are compared:

D-optimal, P-optimal which minimizes the prediction variance about the predicted

optimal point, and a random experimental design. The three designs are used with

and without the grid algorithm. In both studies, the random experimental design

plus the grid algorithm performs best for finding the optimal point of the process.

Some parameters for the grid algorithm are also explored in this section such as the

grid size, the desired level of confidence on the stopping criteria, and the effect of the

initial set of experiments. It is emphasized that this methodology does not replace the

good sense of the experimenter, but is merely a tool to help the experimenter meet

his goals. Depending on those research goals, one can choose different parameters for

the methodology. The methodology was also compared with a “greedy” experimental

design objective where instead of sampling near the optimal point, the greedy method

actually samples at the optimal point continually to make the model fit better to the

optimal point. Here, the grid algorithm performs similarly as the greedy method,

but has the advantage of exploring more of the experimental region. If the model is

incorrect, the greedy method would not explore other experimental parameters if the

predicted optimal point does not change and therefore may not identify if a model

performs poorly.
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In Chapter 5, this methodology is implemented on an actual chemical vapor depo-

sition system. The purpose is to find the optimal point of the process while building

a useful process model. Six initial experiments are performed and two experiments

are designed using the sequential methodology, while models for roughness are used

to find the optimal point of the process. Hybrid models are developed relating the

nucleation density to the resulting film roughness. The best fit model is an empirical

model relating T to the resulting film thickness which agrees with the analysis of

the intial experimental data findings. A hybrid model is also a probable fit to the

experimental data indicating that roughness is indeed related to the nucleation den-

sity. The sequential experiments reduce the confidence interval around the predicted

optimal point.

In Chapter 6 various aspects of experimental design are explored. The need for

model checking within the experimental design is highlighted by an attempt to fit

growth time of thin films grown in the experimental testbed. A statistical F-test could

also fix this problem, but the test requires experimental repetitions to be effective,

which a researcher does not always have the luxury to do. Many experimental design

methods assume that the model used for the design is correct, which is not necessarily

the case when one is constructing a new process model with mechanistic components.

Here, the method did not fail, but large confidence intervals and a large grid region

indicated uncertainty on the optimum from the equipment, not just from the models

being used. Also, the need for a robust metric upon which to build a model is explored.

Here, the grain size of the thin films measured by AFM is used as a case study. The

analysis showed that grain size via AFM shows potential, but is not robust in its

current form.

This work has unique contributions to the field of model building, process design,

and experimental design. This is the first experimental design methodology to our

knowledge with the specific aim of developing process models. Mechanistic models are
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often developed removed from experimentation, and the result is a model that does

not relate well to the actual process and cannot be applied to the process directly.

Alternatively, experimental data is used to develop empirical models, but these models

are only useful in the range where the data was collected and should not be used to

extrapolate into other regions. By anchoring the model in experiments while also

testing hypotheses for deeper understanding of the process, a practical model for

experimenters can be developed.

This work also demonstrates the need for researchers with a diverse skill set. While

many are either experimentalists or theorists, there is a definite need for researchers

capable of working in both realms or at least capable of working closely with another

researcher with a complementary skill set. Models developed without experiments will

be unlikely to have a practical application, while models developed without theory

will have limited predictive range.

7.2 Future Work

Due to the dual nature of this project-having an experimental and a theoretical

component-there are two general directions one could go in future work. These two

directions are not necessarily mutually exclusive, but working in a group would be

very beneficial. One part of the group could focus primarily on experimental work,

while the other part of the group could focus on furthering the theoretical work. For

this reason, the two directions with the associated possible projects will be described

in different sections.

7.2.1 Experimental Work

The CVD testbed shows promise for producing a wealth of experimental data for

experimental design and for in situ sensing, but still needs improvement on repro-

ducibility. After a robustness study which was described in an earlier chapter is run

and consistent growth rates are obtained, it would be interesting to explore dynamic
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settings on the system and their effect on growth rate. Currently, the temperature,

pressure, and gas flowrates remain constant throughout the deposition process. By

changing these settings during a deposition, one can gain greater insight into what

affects the growth rate of the film, and also observe the changes in microstructure.

This greater insight could lead to more descriptive models of the deposition process,

especially for the nucleation phase. Most of the current models for thin film nucle-

ation involve parameters that are not measurable during a routine deposition such

as flux of atoms to the surface, how many nucleation sites are present on the surface

(this may be determined for ex situ analysis, but would be difficult to find in situ),

and activation energies of the various surface processes. A more descriptive model of

the deposition process could open the door to further process optimization.

The in situ sensor was quite underutilized in this research. The capabilities of

the emissivity-correcting pyrometer (ECP) were demonstrated in [149] for state es-

timation. A controller developed using this model would enhance further studies of

thin film deposition and improve the repeatability of the process. The ECP was very

useful in this study to estimate the thin film thickness and further shows the need for

in situ sensor development for CVD processes. The drawback to the ECP is the need

for a nearly perpendicular line of sight to the substrate. This requirement prevents

the use of a typical showerhead in the CVD reactor and showerheads have been shown

to greatly enhance the film uniformity [131].

The reactor system is capable of depositing other thin films as well. The system

is equipped with two evaporators and two ovens, making depositing other thin films,

especially ones where the precursors sublimate at different temperatures, possible.

Other thin films such as In2O3 or GaN are useful for microelectronic applications,

and yttria-stabilized zirconia (YSZ) is still a possibility and was the thin film in

mind when the reactor was originally designed. The interesting aspect of YSZ is Y

composition control and the effect on the resulting microstructure. The composition
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can be monitored via x-ray photoelectron spectroscopy (XPS) and the processing

conditions on the resulting composition can be explored. XPS is an ultra high vacuum

technique that measures the electrons emitted from a thin film after exposing it

to x-ray. The kinetic energy of the electrons are measured and used to determine

the composition of the top 10 nm of a thin film. XPS can also be used to obtain

compositions at different depths of the thin film, but the sputtering process used to

reach those depths is destructive to the thin film.

The crystallographic structure of the thin films was largely unexplored, but could

be obtained through x-ray diffraction (XRD). XRD uses x-rays in a non-destructive

manner to find the crystal structure of solids. An x-ray beam is incident on the

surface at an angle θ and the diffraction of the beam is collected. Using Bragg’s law

nλ = 2d × sinθ, the distance d between the different planes is calculated. This is

a very useful method for identifying materials and determining the properties of the

thin film. For example the grain size can be estimated using the Scherrer method.

The crystal structure of a thin film also affects the properties of a thin film, making it

desirable to include these properties in a model for the microstructure of a thin film.

For this work there was too much uncertainty in identification of the microstructure

by XRD. However, given more time and more guidance and expertise in XRD these

properties could be included in a microstructural model.

Another analytical technique that should be further explored is atomic force mi-

croscopy (AFM). In this work it is shown that the method for acquiring grain sizes

from AFM data can be tedious and very user dependent. However, with software

capable of finding the grain boundaries on the surface of the thin film, better esti-

mates of the grain size can be obtained. The grain size is of particular interest for

the application in thermal barrier coatings where small grain sizes decrease the ther-

mal conductivity of a thin film [119]. Developing a model which can predict grain

size would be beneficial, especially if the analysis can be performed with an AFM
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which is generally a cheaper analytical technique per hour than other methods such

as scanning electron microscopy (SEM) and XRD. AFM is also non-destructive to

the sample, does not require further processing of the substrate for analysis, and is

very easy to set up.

Experimentally, the experimental design method designed in this work can be ap-

plied on any physical batch process. While it was developed with microelectronics in

mind, many other areas could also benefit from the experimental design. In partic-

ular bioprocesses which were mentioned in the introduction could benefit from this

work where the exact reaction mechanism is unknown. Here a part of the reaction is

modeled using neural networks, but could benefit from some more knowledge in how

the reaction actually works. By testing multiple hypotheses at once and observing the

performance of the different models, more insight into the system could be acquired.

7.2.2 Theoretical Work

The simulation studies in Chapter 4 were the first attempts to study this methodology,

but many possibilities for simulations still exist. The current MHF simulation used a

model to fit the experimental data where the model form predicted a similar global

optimum as the real system. By changing the model, one could obtain a model that

does not predict the same global optimum as the system. How would the experimental

design perform in this case? Would the methodology provide insight to the researcher

on how to correct their model?

Other simulation studies with the same systems as Chapter 4 would also be possi-

ble. One could study the effect of repetition on the experimental design performance,

particularly in trying to include process robustness as well as an optimal point for

the process. The effect of the initial guess for the model on the experimental design

was also untested. If the researcher has a bias towards an incorrect parameter guess,

would that affect the performance of the methodology?
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The experimental design methodology developed here is also not finished develop-

ing and there are many possibilities for the future of experimental design. In this work

the development of experimental design was influenced heavily by experimental work

being performed simulataneously. In doing this a shift in the way one looks at exper-

imental design has occurred and the unique perspective from performing experiments

should not be neglected in further experimental design research.

The objective function for the experimental design can also be modified. In this

work, the objective function was constructed to find the optimal point of the process,

but other objectives could also be incorporated. Model discrimination was not used

in this methodology, but that does not mean that it could not be incorporated into

the objective function as well. The model discrimination attempted here compared

models pairwise, but one could also incorporate all of the models at once [24]. As

mentioned in Chapter 6, the objective function could also be modified for process

robustness. The objective function is project specific and can be changed to fit the

particular needs of the experimenter. A good objective function is also essential to

successful experimental design, otherwise one is designing experiments which they do

not actually need!

An enhancement of the experimental design could be accomplished using measure-

ment uncertainty. In the current work, the uncertainty of the measurement technique

was not included or propagated to the final confidence interval of the model. Realisti-

cally, this measurement uncertainty should be included for more accurate confidence

intervals on the models. This could also draw attention to the need for better mea-

surements and identify which characteristics of a thin film or any material needs to

be measured with better precision.

Bayesian experimental design was not included in this work, but could be a valu-

able addition to the methodology. Bayesian experimental design is particularly helpful

when the uncertainty of the model is well defined and informative prior probabilities
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can be calculated. Unfortunately, the big hindrance of wide Bayesian experimen-

tal design lies in the mathematically intensive development of the prior probabilities

which is not straightforward. If a more simple method of calculating informative

priors could be found, use of Bayesian methodology would definitely grow.

The stopping criteria for the experimental design presented in this work is simple,

and improvements in deciding when to finish experiments are needed. There is a

surprising lack of research on the question of when is a model good enough or when

to decide to abandon the model altogether. For this reason there are a multitude of

questions one could answer in future experiments.

• One can continue running experiments to reduce the confidence interval, but is

the added information profitable given the objective of the experiments?

• Another operating point may be a potential optimal point, but is the current

operating point just as good?

• What is the risk of not doing more experiments? The expected information

from an experiment was quantified in [15] given an appropriate utility function

for the experiments.

• The probability of another experiment changing the end decision of the exper-

imenter is the quantity of interest.

– How sure is the researcher that his hypothesis is correct?

– Would he change his conclusion if another experiment was executed that

refuted his hypothesis, or would the new information be discarded as er-

roneous?

– How much information would the next experiment have to provide for the

final conclusions to change?
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APPENDIX A

RCA CLEANING PROCEDURE

1. Mix solutions

(a) Organic clean solution DI H2O:NH4OH:H2O2 (5:1:1) SAFETY: always add

acids/bases to water

i. 100mL DI H2O

ii. 20mL NH4OH

iii. 20mL H2O2

iv. Solution is put on a hot plate to 80oC

(b) Oxide strip solution DI H2O:HF (50:1) SAFETY: HF is very dangerous.

Use neoprene gloves when handling HF container. If HF is spilled, contact

emergency personel and take person to hospital. Flush region with water

and use HF spill kit to clean affected area.

i. 150mL DI H2O

ii. 3mL HF

(c) Ionic clean solution DI H2O:HCl:H2O2 (5:1:1)

i. 100mL DI H2O

ii. 20mL HCl

iii. 20mL H2O2

iv. Solution is put on a hot plate to 80oC

(d) DI H2O rinse containers Fill two beakers with 150mL DI H2O

2. Procedure
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(a) Once solution is 80oC, put wafer in wafer dipper and place in organic

solution for 10 minutes

(b) Take wafer out of organic and place in 1st H2O rinse beaker for 5 minutes.

(c) Place wafer in oxide strip solution for 15 seconds.

(d) Place wafer in 2nd H2O rinse beaker for 1 minute.

(e) Place wafer in ionic clean solution for 10 minutes.

(f) Place wafer in 2nd H2O rinse beaker for 10 minutes.

(g) Blow dry wafer with N2 gas.
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APPENDIX B

CVD PROCEDURE

1. Sign in to logbook!

2. OPEN Labview

3. TURN ON pump

4. OPEN Ar, O2 and N2 containers

5. RAISE the pressure in the reactor by flowing Dummy Ar into the reactor (Use

3000-4000 sccm)

6. PUT ON gloves

7. REMOVE heater from the reactor

8. PLACE previously grown film into a case, and date it

9. CLEAN new wafer

10. Follow RCA procedure on fume hood (see Appendix A

11. RINSE wafer with DI water

12. DRY wafer with N2

13. Remember to CLEAN and DISPOSE of waste properly

14. SAVE file

15. CLICK the Comm On and LEDs On under the Engine Tab in Labview

139



16. CLICK Calibrate Low under the Reflectance Tab

17. LOAD new wafer on the heater and PLACE it in the reactor

18. REMOVE gloves (optional)

19. TURN ON voltage device

20. REATTACH thermocouple and voltage wires

21. TURN ON the TV

22. PUMP down the reactor to ¡ 1 torr

23. ADJUST the camera so the spots appear in the center of the TV screen.

24. FLOW Dummy Ar at specified amount (Default: 100 sccm)

25. CALIBRATE high reflectance by clicking that button in the Reflectance Tab

(a) Put R470 at 0.45261

(b) Put R 950 at 0.3371

(c) Write down both Intensity Lows and both Intensity Highs in case computer

crashes

26. CALIBRATE UV Cell

(a) TURN ON UV Lamp. Flip switch on UV cell panel

(b) TURN ON Master, Slave 1, and Slave 2 under the Ocean Optics Tab

(c) Change integration time to maximize 280-300 range (about 160)

(d) TAKE out UV cord from the source

(e) COVER the cord end with your finger and click Store Dark

(f) SCREW cord back
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(g) STORE Reference

27. TURN ON main oven (Default: 400 F) MAKE COMMENT IN LABVIEW

WITH SETTING!

28. TURN ON fan (level 1) and blow it on the valve (side with N2 Trap)

29. SET voltage and ramp rate (Default: 15 V at 0.35 V/min)

(a) Take voltage halfway to desired voltage. Only bring heater up to desired

voltage when youre ready to run experiment

30. WAIT for system to heat up (Time: 90 min)

(a) Dispose of chemicals in hood in proper waste containers

(b) Cover HF solution with parafilm to use later.

31. After 60 minutes

(a) SET actuator temperature, the green numbers next to the low pressure

meter (Default: 150-200 C) MAKE COMMENT IN LABVIEW WITH

SETTING!

(b) Open O2 and N2 cylinders

(c) Once evaporator temperature is 30 degrees below desired T, reduce oven

T from 400 to desired level

32. FILL N2 trap 30 minutes before opening evaporator

(a) WEAR big blue gloves

(b) PLACE tank tube into the liquid N2 container

(c) SLOWLY open liquid N2 tank, then once gas has passed and it cools down

open it more
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(d) SLOWLY pour liquid N2 into the catcher on the left side of the oven

(e) MAKE COMMENT IN LABVIEW WITH SETTING!

33. FLOW O2 (Default: 50 sccm)

34. FLOW Carrier Ar (Default 20 sccm)

35. PUT ON white heat resistant gloves

36. OPEN precursor chamber exit valve

37. OPEN valve leading into the precursor chamber MAKE COMMENT IN LAB-

VIEW!

38. Calibrate Ratio Temperature by clicking Calibrate Ratio Temp under Temper-

ature Tab

39. FLOW Precursor Ar (Default: 20 sccm)

40. CHECK absorbance in the Ocean Optics Tab to ensure precursor is flowing

41. *If necessary, ADJUST Ar flow rates and valve openings to achieve desired

absorbance

42. SWITCH solenoid valve to Yes to start deposition (make sure N2 tank is open)

43. WAIT as film grows

(a) WATCH absorbance to make sure precursor doesnt run out

(b) WATCH Ar and O2 flow rates to make sure they are present

44. MONITOR Labview for any problems

Steps 45 and 46 should be carried out concurrently

45. SWITCH solenoid valve to No to stop precursor flow to the reactor
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(a) TURN OFF Precursor Ar flow

(b) PUT ON white heat resistant gloves

(c) CLOSE valve entering the precursor chamber

(d) CLOSE valve exiting the precursor chamber

(e) MAKE COMMENT IN LABVIEW!

(f) WAIT for Absorbance to go down to zero then TURN OFF Carrier Ar,

may need to pulse carrier Ar to remove precursor from line

(g) TURN OFF the main oven MAKE COMMENT IN LABVIEW!

(h) SET the actuator temperature to 25 C MAKE COMMENT IN LABVIEW!

(i) DISABLE the master and slaves under the Ocean Optics Tab

(j) TURN OFF the UV Lamp

46. WAIT for reflectance to stabilize indicating the end of deposition

(a) TURN OFF O2

(b) STEP the voltage to zero

47. Wait for voltage to reach zero

(a) DISABLE Comm and LEDs under the Engine Tab

(b) TURN OFF the TV

(c) TURN OFF the voltage source

48. OPEN the ovens and MOVE the fan to blow into oven (Fastest fan spd. is 3)

49. WAIT until heater temp ¡200 C (Time: 20-30 min)

50. TURN OFF Dummy Ar

51. CLOSE Ar, O2 and N2 tanks
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52. CLOSE Pump Valve on Labview

53. TURN OFF the Pump

54. QUIT Labview

55. TURN OFF the Fan

56. GO HOME. You deserve it!!
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APPENDIX C

FUTURE REACTOR OPERATION NOTES

If experiments were to continue on the CVD reactor, here are a few thoughts of how

to better operate it in the future.

1. General Notes

(a) Journal articles do not provide specific details about reactor operation.

In the future more theses should be explored for more information about

operating a CVD reactor. Theses are more likely to include failures as well

as successes which are very useful for one learning how to operate a new

piece of equipment.

(b) Run proof of reactor experiment before trying to run experiments. If pos-

sible, find a material to deposit other than yttria or zirconia since the

precursors are very expensive.

(c) When learning a new piece of equipment, start out simple. Too much

time was wasted trying to deposit yttria-stabilized zirconia when a proof

of reactor experiment had not yet been performed.

(d) A robustness study on deposition time would have been helpful to allow

modeling of deposition time.

2. Evaporator specific suggestions

(a) Load evaporator with 10 g instead of 0.5 g to allow for longer time between

changing evaporator. Some variability may have been reduced had the

evaporator not been replaced so often. Longer use of evaporator would
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also allow for more rapid experimentation as loading an evaporator was a

half-day process.

(b) With longer evaporator use each time, would allow for more regular clean-

ing of evaporator with procedure outlined in [131].

(c) Plan experiments to not allow precursor to decompose in evaporator. Ex-

cessive time in between experiments (due to their being only one operator)

could also explain some of the variability in reactor operation from one day

to the next.

3. Reactor operation notes

(a) Try to recreate diffusion vs. reaction-limited curve for this reactor for

positive identification of which region the reactor is operating in (citations).

(b) Try reducing argon flow through the evaporator. The molar flow rates set

in this thesis are higher than the setpoints in other research (citations).

(c) The growth rates seem to go down as total argon flow was increased. Try

also reducing total argon flow.
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APPENDIX D

MATLAB PROGRAM

D.1 Matlab code for MHF simulation study in Matlab

This is the file used for the MHF simulation study.

1 funct i on ni=t r i a l 2 3 ( err , f l ag2 , rep , s c to l , step1 ,num)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % This i s a s imu l a t i on t o see whether D, G opt imal , or f a c t o r i a l

4 % des i gn does b e s t when l o o k i n g a t p r e d i c t i o n var iance , parameter

5 % es t ima t i o n / c e r t a i n t y / accuracy , accuracy o f op t ima l point , goodness o f

6 % f i t / a b i l i t y t o p r e d i c t f u t u r e o b s e r v a t i o n s

7 % This s imu l a t i o n has a d i f f e r e n t form f o r t he models ( i . e . t h e # parameters

8 % i s t he same , bu t where t hey are in t he model has changed . Trying t o avo id

9 % inv ( J ’ J ) be in g rank d e f i c i e n t

10 %%%%%%%%%%%%%%%INPUTS

11 %mat f l a g= f l a g f o r Daugment matr ix ( depends on mod)−mat f l a g not used a t

12 %the moment (9/24/07)

13 %num=number o f t r i a l f o r sa v in g pu rpose s

14 %err=var iance o f n o i s e added

15 %d e f i n e s t o l e r an c e f o r s t o p p i ng c r i t e r i o n

16 %f l a g 2= v e c t o r o f l e n g t h 4 f o r each o p t ima l i t y , t e l l s whether or not t o run box a l g o r i t hm [P D G

Run ] ’Run ’ i s a f l a g t o say whether t o run s t o p p i n g c r i t e r i a or not , 1=yes . I n c l u de d w i t h SC i s

whether t o run op t ima l p o in t exper imen t or not .

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 %L i s t o f v a r i a b l e s

19 %a , auggie1 , auggie2 , b , c , c e l l s 1 , counter , d , D, data , f i r s t , f l a g , ,

20 %goal , i , i n i t , i t e r d , i t e r g , i t e r p , j , jp , J , J1 , Low1 ,LB,m, min , max ,

21 %mod , n , nD, ni , num, opt , optrange , out , ou tpu t , P , po , point , po int1 ,

22 %po in top t , po intp ,PV,

23 %range , second , source , s tep , s t ep 2

24 %Srhat , sum , t he t a h a t , t ime , Up1 , UB, wkdir , xnew , xd , xo , y , yd , yp , yg , z

25

26 %mod i s t he name o f t he model f u n c t i o n we are us ing , shou ld be in form ’@mod1 ’

27 %i f ’mod1 ’ i s t h e f un c t i o n name f o r t he model .

28 %% exp e r imen ta l s e t t i n g s

29 source=’ t r i a l 2 3 ’ ; %Keeping t r a c k o f what g ene ra t o r f i l e g enera t ed what data

30 xmin=−5; %lower bounds f o r e x pe r imen t a l s e t t i n g s x1 and x2

31 xmax=5; %upper bounds f o r ex p er imen ta l s e t t i n g s x1 and x2

32 optrange =[−5 5 ] ; %range f o r e xp e r imen t a l s e t t i n g s f o r g raph ing f un c t i o n

33 step2 =30; %f i n d i n g op t ima l point , needed more s p o t s on g r i d

34 step3 =15; %f o r p−op t ima l g r i d

35 ni =16; %max # of i t e r a t i o n s

36 c e l l s =[17 1 9 ] ; %d e f i n e s s i z e o f c e l l a r ray s f o r opt and model a r ray s

37 po=[−1 −1 −1]; %i n i t i a l gu e s s o f parameters f o r n ew f i t .m

38 LB=−70∗ones (1 , 3) ; %range f o r parameters

39 UB=250∗ ones (1 , 3) ;

40 xo=[0 0 ] ; %i n i t i a l gu e s s f o r nex t e xper imen t

41 pointopt =[−3.8 −3.32] ; %coo r d i n a t e s o f op t ima l p o i n t in MHF
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42 opt =43.3; %va l u e a t op t ima l po i n t

43 mM=5; %number o f models in s imu l a t i o n

44 output=198.7; %t h i s i s t h e s t a r t i n g avg . ou t pu t o f sys tem

45 time=1; %coun t e r f o r keep ing t r a c k o f op t ima l o u t p u t s

46 goal=s c t o l (1) ;

47 rand ( ’ s t a t e ’ ,sum(100∗ clock ) ) ; %need to i n i t i a l i z e s eed f o r random number g ene ra t o r

48 %c e l l a r ray s f o r data s t o r a g e are dopt , ropt , gopt , popt

49 %p r e a l l o c a t i n g space f o r each opt array

50 dopt=feval ( @cel l , c e l l s ( 1) , 1 ) ;

51 ropt=feval ( @cel l , c e l l s ( 1) , 1 ) ;

52 gopt=feval ( @cel l , c e l l s ( 1) , 1 ) ;

53 popt=feval ( @cel l , c e l l s ( 1) , 1 ) ;

54 i n i t=feval ( @cel l , c e l l s ( 1) , 1 ) ; %e x t r a c e l l array f o r i n i t a l c a l c s

55 %p r e a l l o c a t i n g memory f o r t he c e l l array f o r models

56 model=c e l l ( c e l l s ( 2) ,mM) ;

57 modelr=c e l l ( c e l l s ( 2) ,mM) ;

58 modeld=c e l l ( c e l l s ( 2) ,mM) ;

59 modelg=c e l l ( c e l l s ( 2) ,mM) ;

60 modelp=c e l l ( c e l l s ( 2) ,mM) ;

61

62 % Define model c e l l array f o r each model

63 model{1 ,1}=@mod7;

64 model{1 ,2}=@mod6;

65 model{1 ,3}=@mod9;

66 model{1 ,4}=@mod10 ;

67 model{1 ,5}=@mod11 ;

68 model{14 ,1}=3;

69 model{14 ,2}=3;

70 model{14 ,3}=3;

71 model{14 ,4}=3;

72 model{14 ,5}=3;

73 model{2 ,1}=po ; model{2 ,2}=po ; model{2 ,3}=po ; model{2 ,4}=po ; model{2 ,5}=po ;

74 point=zeros (5 , 2 ) ;

75 dout=c e l l ( 1 ) ; gout=c e l l ( 1 ) ; pout=c e l l ( 1 ) ; %i n i t i a l i z i n g pout , dout , and gou t

76 a l lP=zeros (mM, 1 ) ;

77 Pvalue=zeros ( ni , 1 ) ;

78 iprob=1/mM; %i n i t i a l p r o b a b i l i t y f o r a l l models so they ’ re

79 %e q u a l l y p ro b a b l e

80

81 %opt c e l l a r ray s s t o r e i n f o as f o l l o w s :

82 %{1}=d max va l u e o f e x pe r imen t a l data

83 %{2}=data s t o r e s t he s imu l a t ed data

84 %{3}=err s t o r e s e r ro r

85 %{4}= range range f o r v a l u e s o f parameters

86 %{5}= opt range range f o r ex pe r im en ta l p o i n t s ( upper and lower

87 %bounds )

88 %{6}=exp e r imen t a l p o i n t nex t e xp e r imen ta l p o i n t t o be run

89 %{7}= # r e p e t i t i o n s t o be run

90 %{8}= element t o pas s v a l u e o f ’ a ’ t o o t h e r f u n c t i o n s

91 %{9} s t o r e s number o f c o r r e c t model f o r each i t e r a t i o n

92 %{10} s t o r e s max va l u e a c c e p t a b l e f o r box c a l c

93 %{11}=box xrange range f o r box c a l c

94 %{12}=box yrange range f o r box c a l c

95 %{13}=system ou tpu t f o r s t o p p i n g c r i t e r i o n

96 %{14}= v e r d i c t t e l l s u se r why s imu l a t i o n was s t opped

148



97 %1= t h e t a and Srhat not changing

98 %2=CI < s q r t ( no i s e )

99 %3=CI < CI ( d e s i r e d )

100 %{15}= coun t e r coun t e r f o r s t o p p i ng c r i t e r i o n , s ee SC f o r a l l

101 %s t o p p i n g c r i t e r i o n qu e s t i o n s

102 %{16}= po in t o u tp u t t e d by box1 .m fu n c t i o n

103 %{17}= to l e r an c e f o r SC

104

105 %c e l l a r ray s f o r each model

106 %1=model hand l e

107 %2= t h e t a h a t

108 %3=s r h a t

109 %4=norma l i z ed p r o b a b i l i t y o f model

110 %5=e s t ima t e d op t ima l po i n t

111 %{6}=J Jacobian o f data w i t h r e s p e c t t o parameters

112 %{7}=D D−op t ima l va l u e o f model

113 %{8}=PVxnew p r e d i c t i o n var iance a t new ex pe r im en ta l po i n t

114 %{9}=PVxopt p r e d i c t i o n var iance a t e s t ima t ed optimum po in t

115 %{10}=PVopt PV o f r e a l op t ima l p o i n t ( f o r comparison )

116 %{11}= er r o r x o p t model e r r o r in p r e d i c t i n g op t ima l p o i n t

117 %f ( x1 , x2 )

118 %{12}=model p r e d i c t i o n a t e s t ima t e d op t ima l po i n t

119 %{13}=model p r e d i c t i o n a t t ru e op t ima l p o i n t

120 %{14}=# parameters in t he model

121 %{15}= d i s t a n c e from t ru e op t ima l p o i n t

122 %{16} ho l d s F s t a t i s t i c s f o r LOF

123 %{17}= exp er im en ta l e r r o r ( c a l c u l a t e d )

124 %{18}= con f i d enc e i n t e r v a l on p r e d i c t i o n s

125 %{19}= s t u d e n t i z e d r e s i d u a l s

126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

127 %% s t a r t w i t h 5 i n i t i a l p o i n t s

128 data1=MHF( [ 0 0 ] , rep+1, e r r ) ;

129 data2=MHF( [ xmax xmin ] , rep , e r r ) ;

130 data3=MHF( [ xmin xmax ] , rep , e r r ) ;

131 data4=MHF( [ xmax xmax ] , rep , e r r ) ;

132 data5=MHF( [ xmin xmin ] , rep , e r r ) ;

133 data=[data2 ; data3 ; data4 ; data1 ; data5 ] ;

134 [ n ,m]= size ( data ) ;

135 d=max(round( data ( : , 3 ) ) ) ; %c a l c u l a t e s maximum of ou tpu t f o r j ac o b i an

c a l c u l a t i o n

136 %p r e s e t t h e opt c e l l a r ray s t o t he c o r r e c t i n i t i a l v a l u e s

137 i n i t {2 ,1}=data ; i n i t {1 ,1}=d ; i n i t {3 ,1}= err ; i n i t {4 ,1}=[LB; UB ] ; i n i t {5 ,1}=optrange ; i n i t

{11 ,1}= optrange ; i n i t {12 ,1}= optrange ; ropt {13 ,1}= output ; ropt {15 ,1}=0; i n i t {7 ,1}=rep ;

i n i t {6 ,1}=[xmax xmax ] ;

138 i n i t {8 ,1}=1; i n i t {17 ,1}= s c t o l (2) ; %se t i n i t ’ a ’ t o 1 f o r i n i t i a l c a l c u l a t i o n s

139 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

140 %Parameter f i t

141 f o r i =1:mM

142 [ model {2 , i } ( 1 , : ) ,model {3 , i }(1) , model {5 , i } ( 1 , : ) ,model {6 , i } ,model {7 , i }(1) , model{8 , i

}(1) , model {9 , i }(1) , model{10 , i }(1) , model{11 , i }(1) ,model {12 , i }(1) ,model {15 , i }(1) ,

model {13 , i }(1) ,model {16 , i } ( 1 , : ) ,model {17 , i }(1) ,model {18 , i }(1) , r e s i d { i , 1} , i n i t

{1 ,1}(1) ]=metrix3 ({model { : , i }} ,{ i n i t { : , 1}} , step2 ) ; %This c a l c u l a t e s a l l

q u a n t i t i e s needed t o run the box a l g o r i t hm

143 %ca l c u l a t e i n i t i a l p r o b a b i l i t i e s o f each model

144 [ a l lP ( i ) ]=mprob( iprob ,{ model { : , i }} , { i n i t { : , 1}} ) ;
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145 end

146 %c a l c u l a t e i n i t i a l Bayes ian p r o b a b i l i t y f o r each model a f t e r

147 %i n i t i a l e xpe r imen t s and determine which model i s most p r o b a b l e

148 [P, i n i t {9 ,1}(1) ]=maxP( a l lP ) ;

149 %s t o r e i n i t i a l l y c o r r e c t number in each o p t im a l i t y array

150 popt=i n i t ; ropt=i n i t ; gopt=i n i t ; dopt=i n i t ;

151 f o r i =1:mM

152 model {4 , i }(1)=P( i ) ;

153 end

154 %as s i g n i n i t i a l v a l u e s t o each model array f o r each o p t ima l i t y

155 modelr=model ; modeld=model ; modelg=model ; modelp=model ;

156

157 %% For loop f o r random exper imen t s

158 out=0; %p r e s e t ’ out ’ t o z e ro

159 count=0; %p r e s e t t o ze ro

160 f o r a=1: n i

161 ropt {8 ,1}=a ; %s t o r e s a va l u e f o r use in o t h e r f u n c t i o n s

162 i t e r r=a ; %f o r graphs and ou tpu t .

163 i f f l a g 2 (2)==1

164 [ pointr ,XY4, Z4]=optgraph ( ropt {5 ,1} , ropt {5 ,1} , step1 , modelr {2 , ropt {9 ,1}( a ) }(a , : ) ,

{modelr { : , ropt {9 ,1}(a ) }} ,{ ropt { : , 1}} , modelr {17 , ropt {9 ,1}( a ) }( a ) , 3) ;

165 [ rout{a} , ropt {16 ,1}(a , : ) , ropt {10 ,1}( a ) ]=box1 ({XY4{ :}} , Z4 ,{ ropt { : , 1}} ,{ modelr { : ,

ropt {9 ,1}( a ) }} , 3) ;

166 [ o , q]= size ( rout{a}) ;

167 i f o>1

168 pop=round( un i f rnd (1 , o ) ) ;

169 ropt {6 ,1}(a , : )=rout{a }(pop , 3 : 4 ) ;

170 e l s e %i f p o i n t s can ’ t be found on the g r id , then make random

po in t s

171 ropt {6 ,1}(a , 1 ) = un i f rnd ( optrange (1) , optrange (2) ) ;

172 ropt {6 ,1}(a , 2 )= un i f rnd ( optrange (1) , optrange (2) ) ;

173 end

174 e l s e

175 %gene ra t e e x pe r imen t a l p o i n t s u s ing random number genera t o r , un i f rnd p i c k s random

number between op t range

176 ropt {6 ,1}(a , 1 ) = un i f rnd ( optrange (1) , optrange (2) ) ;

177 ropt {6 ,1}(a , 2 )= un i f rnd ( optrange (1) , optrange (2) ) ;

178 end

179 %gen er a t e new data po i n t

180 newdat=MHF( ropt {6 ,1}(a , : ) , rep , ropt {3 ,1}) ;

181 %add to e x i s t i n g d a t a s e t

182 ropt {2 ,1}=[ ropt {2 ,1} ; newdat ] ;

183 f o r i =1:mM

184 [ modelr {2 , i }(a +1 , : ) , modelr {3 , i }(a+1) , modelr {5 , i }(a +1 , : ) , modelr {6 , i } , modelr {7 , i }(a

+1) , modelr {8 , i }(a+1) , modelr {9 , i }(a+1) , modelr {10 , i }( a+1) , modelr {11 , i }(a+1) , modelr

{12 , i }(a+1) , modelr {15 , i }( a+1) , modelr {13 , i }(a+1) , modelr {16 , i }( a+1 , : ) , modelr {17 , i

}( a+1) , modelr {18 , i }(a+1) , res idR{ i , a} , ropt {1 ,1}(a+1)]=metrix3 ({modelr { : , i }} ,{ ropt

{ : , 1}} , step2 ) ;

185 a l lP ( i )=mprob( iprob ,{ modelr { : , i }} , { ropt { : , 1}} ) ;

186 end

187 %c a l c u l a t e norma l i z ed p r o b a b i l i t i e s f o r each model and f i n d most

188 %pro b a b l e model

189 [P, ropt {9 ,1}(a+1)]=maxP( a l lP ) ;

190 f o r i =1:mM

191 modelr {4 , i }(a+1)=P( i ) ;
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192 end

193 exper=size ( ropt {2 ,1}) ; %c a l c u l a t e s how many exper imen t s have been run

194 [ out , count , ropt {14 ,1}(a , : ) ]=SC2({modelr { : , ropt {9 ,1}( a+1)}} , ropt {8} , goal , count , exper (1) , rep

, ropt {17}) ;

195 i f out==2

196 i f f l a g2 (4)==1

197 break

198 e l s e

199 out=0; %i f SC i s not be in g run , change out t o ze ro so box

a l go r i t hm can be run

200 end

201 end

202 end

203 clear point

204 OPTIONS = optimset ( ’ DiffMinChange ’ ,1 e−6, ’ Di sp lay ’ , ’ i t e r ’ , ’ D i agnost i c s ’ , ’ON’ ) ;

205 %% For loop f o r d−op t ima l d e s i gn ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

206 out=0; %p r e s e t ’ out ’ t o z e ro

207 count=0; %p r e s e t t o ze ro

208 f o r a=1: n i

209 dopt{8 ,1}=a ; %s t o r e s a va l u e f o r use in o t h e r f u n c t i o n s

210 i t e r d=a ; %f o r graphs and ou tpu t .

211 i f f l a g 2 (2)==1

212 [ pointd ,XY4, Z4]=optgraph ( dopt {5 ,1} , dopt {5 ,1} , step1 , modeld{2 , dopt {9 ,1}( a ) }(a , : ) ,

{modeld { : , dopt {9 ,1}(a ) }} ,{dopt { : , 1}} , modeld{17 , dopt {9 ,1}( a ) }( a ) , 3) ;

213 [ dout{a} , dopt {16 ,1}(a , : ) , dopt {10 ,1}( a ) ]=box1 ({XY4{ :}} , Z4 ,{ dopt { : , 1}} ,{modeld { : ,

dopt {9 ,1}( a ) }} , 1) ;

214 [ LB1 ,UB1]= g r i d i n t ( dopt {16 ,1}(a , : ) , optrange , step1 ) ;

215 [ dopt {6 ,1}(a , : ) , fnew ] = fmincon(@(xd ) optfun ( xd , modeld{2 , dopt {9 ,1}(a ) }(a , : ) ,{model

{ : , dopt {9 ,1}(a ) }} ,{dopt { : , 1}} , modeld{17 , dopt {9 ,1}(a ) }(a ) , 1 ) , dopt {16 ,1}(a , : )

, [ ] , [ ] , [ ] , [ ] , LB1 ,UB1) ;

216 e l s e

217 %f i r s t , f i n d b e s t s t a r t i n g p o i n t f o r o p t im i z a t i o n u s ing op t g raph

218 [ point (a , : ) ,XY5, Z5 ( : , : , a ) ]=optgraph ( dopt {11 ,1} , dopt {12 ,1} , step1 , modeld{2 , dopt

{9 ,1}( a ) }(a , : ) ,{modeld { : , dopt {9 ,1}(a ) }} , {dopt { : , 1}} , modeld{17 , dopt {9 ,1}(a ) }(a )

, 1 ) ;

219 [ dopt {6 ,1}(a , : ) , fnew ] = fmincon(@(xd ) optfun ( xd , modeld{2 , dopt {9 ,1}(a ) }(a , : ) ,{modeld

{ : , dopt {9 ,1}(a ) }} ,{dopt { : , 1}} , modeld{17 , dopt {9 ,1}(a ) }(a ) , 1 ) , point (a , : )

, [ ] , [ ] , [ ] , [ ] , [ dopt {11 ,1}(1) dopt {12 ,1}(1) ] , [ dopt {11 ,1}(2) dopt {12 ,1}(2) ] ) ;

220 end

221 %gen er a t e new data po i n t

222 newdat=MHF( dopt {6 ,1}(a , : ) , rep , dopt {3 ,1}) ;

223 %add to e x i s t i n g d a t a s e t

224 dopt {2 ,1}=[dopt {2 ,1} ; newdat ] ;

225 f o r i =1:mM

226 %c a l c u l a t e me t r i c s f o r each model

227 [ modeld{2 , i }(a+1 , : ) , modeld{3 , i }(a+1) , modeld{5 , i }(a+1 , : ) , modeld{6 , i } ,modeld{7 , i }( a+1) , modeld

{8 , i }(a+1) , modeld{9 , i }(a+1) , modeld{10 , i }(a+1) ,modeld{11 , i }(a+1) , modeld{12 , i }(a+1) ,modeld

{15 , i }(a+1) ,modeld{13 , i }(a+1) , modeld{16 , i }(a+1 , : ) , modeld{17 , i }( a+1) , modeld{18 , i }(a+1) ,

res idD{ i , a} , dopt {1 ,1}(a+1)]=metrix3 ({modeld { : , i }} ,{dopt { : , 1}} , step2 ) ;

228 a l lP ( i )=mprob( iprob ,{modeld { : , i }} , {dopt { : , 1}} ) ; %c a l c u l a t e p r o b a b i l i t i e s f o r each model

229 end

230 %c a l c u l a t e norma l i z ed p r o b a b i l i t i e s f o r each model and f i n d most

231 %pro b a b l e model

232 [P, dopt {9 ,1}(a+1)]=maxP( a l lP ) ;

233 f o r i =1:mM
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234 %as s i g n p r o b a b i l i t i e s t o t he r e s p e c t i v e model a r ray s

235 modeld{4 , i }( a+1)=P( i ) ;

236 end

237 exper=size ( dopt {2 ,1}) ; %c a l c u l a t e s how many exper imen t s have been run

238 [ out , count , dopt {14 ,1}(a , : ) ]=SC2({modeld { : , dopt {9 ,1}( a+1)}} , dopt {8} , goal , count , exper (1) , rep ,

dopt {17}) ;

239 i f out==2

240 i f f l a g2 (4)==1

241 break

242 e l s e

243 out=0; %i f SC i s not be in g run , change out t o ze ro so box

a l go r i t hm can be run

244 end

245 end

246 end

247 clear point

248 %% For loop f o r G−op t ima l d e s i gn

249 out=0; %p r e s e t ’ out ’ t o z e ro

250 count=0; %p r e s e t t o ze ro

251 f o r a=1: n i

252 gopt{8 ,1}=a ; %s t o r e s a v a l u e f o r use in o t he r f u n c t i o n s

253 i t e r g=a ; %fo r graphs and ou tpu t .

254 i f f l a g 2 (3)==1

255 [ pointg ,XY4, Z4]=optgraph ( gopt {5 ,1} , gopt {5 ,1} , step1 , modelg {2 , gopt {9 ,1}(a ) }(a , : ) , {modelg

{ : , gopt {9 ,1}(a ) }} ,{ gopt { : , 1}} , modelg {17 , gopt {9 ,1}( a ) }(a ) , 3) ;

256 [ gout{a } , gopt {16 ,1}(a , : ) , gopt {10 ,1}(a ) ]=box1 ({XY4{ :}} , Z4 ,{ gopt { : , 1}} ,{ modelg { : , gopt {9 ,1}(a

) }} , 0) ;

257 [ LB1 ,UB1]= g r i d i n t ( gopt {16 ,1}(a , : ) , optrange , step1 ) ;

258 [ gopt {6 ,1}(a , : ) , fnew ] = fmincon (@(xd ) optfun (xd , modelg {2 , gopt {9 ,1}(a ) }(a , : ) ,{model { : , gopt

{9 ,1}(a ) }} ,{ gopt { : , 1}} , modelg {17 , gopt {9 ,1}(a ) }(a ) , 0 ) , gopt {16 ,1}(a , : ) , [ ] , [ ] , [ ] , [ ] , LB1 ,UB1

) ;

259 e l s e

260 %G−op t ima l d e s i g n s t he nex t exper imen t a t t he p o i n t o f maximum

261 %pr e d i c t i o n var iance

262 %f i r s t , f i n d b e s t s t a r t i n g p o in t f o r o p t im i z a t i o n u s ing op t g raph

263 [ point (a , : ) ,XY, Z ( : , : , a ) ]=optgraph ( gopt {11 ,1} , gopt {12 ,1} , step1 , modelg {2 , gopt

{9 ,1}( a ) }(a , : ) ,{modelg { : , gopt {9 ,1}(a ) }} , {gopt { : , 1}} , modelg {17 , gopt {9 ,1}(a ) }(a )

, 0 ) ;

264 %f i n i s h o p t im i z a t i o n u s ing fmincon

265 [ gopt {6 ,1}(a , : ) , fnew ] = fmincon(@(xd ) optfun ( xd , modelg {2 , gopt {9 ,1}(a ) }(a , : ) ,{model

{ : , gopt {9 ,1}(a ) }} ,{ gopt { : , 1}} , modelg {17 , gopt {9 ,1}(a ) }(a ) , 0 ) , point (a , : )

, [ ] , [ ] , [ ] , [ ] , [ gopt {11 ,1}(1) gopt {12 ,1}(1) ] , [ gopt {11 ,1}(2) gopt {12 ,1}(2) ] ) ;

266 end

267 %gen er a t e new data po i n t

268 newdat=MHF( gopt {6 ,1}(a , : ) , rep , gopt {3 ,1}) ;

269 %add to e x i s t i n g d a t a s e t

270 gopt {2 ,1}=[gopt {2 ,1} ; newdat ] ;

271 f o r i =1:mM

272 %c a l c u l a t e me t r i c s f o r each model

273 [ modelg {2 , i }(a+1 , : ) , modelg {3 , i }(a+1) , modelg {5 , i }(a+1 , : ) , modelg {6 , i } ,modelg {7 , i }( a+1) , modelg

{8 , i }(a+1) , modelg {9 , i }(a+1) , modelg {10 , i }(a+1) , modelg {11 , i }(a+1) , modelg {12 , i }(a+1) , modelg

{15 , i }(a+1) , modelg {13 , i }(a+1) , modelg {16 , i }(a+1 , : ) , modelg {17 , i }( a+1) , modelg {18 , i }(a+1) ,

res idG{ i , a} , gopt {1 ,1}(a+1)]=metrix3 ({modelg { : , i }} ,{ gopt { : , 1}} , step2 ) ;

274 a l lP ( i )=mprob( iprob ,{ modelg { : , i }} , {gopt { : , 1}} ) ; %c a l c u l a t e p r o b a b i l i t i e s f o r each model

275 end
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276 %c a l c u l a t e norma l i z ed p r o b a b i l i t i e s f o r each model and f i n d most

277 %pro b a b l e model

278 [P, gopt {9 ,1}(a+1)]=maxP( a l lP ) ;

279 f o r i =1:mM

280 %as s i g n p r o b a b i l i t i e s t o t he r e s p e c t i v e model a r ray s

281 modelg {4 , i }( a+1)=P( i ) ;

282 end

283 exper=size ( gopt {2 ,1}) ; %c a l c u l a t e s how many exper imen t s have been run

284 [ out , count , gopt {14 ,1}(a , : ) ]=SC2({modelg { : , gopt {9 ,1}( a+1)}} , gopt {8} , goal , count , exper (1) , rep ,

gopt {17}) ;

285 i f out==2

286 i f f l a g 2 (4)==1

287 break

288 e l s e

289 out=0; %i f SC i s not b e i ng run , change out t o ze ro so box a l go r i t hm can be run

290 end

291 end

292 end

293 clear point

294 %% For loop f o r p−op t ima l d e s i gn

295 out=0; %p r e s e t ’ out ’ t o z e ro

296 count=0; %p r e s e t t o ze ro

297 f o r a=1: n i

298 popt{8 ,1}=a ; %s t o r e s a va l u e f o r use in o t h e r f u n c t i o n s

299 i t e r p=a ; %f o r graphs and ou tpu t .

300 %P−op t ima l

301 i f f l a g 2 (1)==1

302 [ pointp ,XY4, Z4]=optgraph ( popt {5 ,1} , popt {5 ,1} , step1 , modelp{2 , popt {9 ,1}( a ) }(a , : ) ,

{modelp { : , popt {9 ,1}(a ) }} ,{popt { : , 1}} , modelp{17 , popt {9 ,1}( a ) }( a ) , 3) ;

303 [ pout{a} , popt {16 ,1}(a , : ) , popt {10 ,1}( a ) ]=box1 ({XY4{ :}} , Z4 ,{ popt { : , 1}} ,{modelp { : ,

popt {9 ,1}( a ) }} , 2) ;

304 [ LB1 ,UB1]= g r i d i n t ( popt {16 ,1}(a , : ) , optrange , step1 ) ;

305 [ popt {6 ,1}(a , : ) , fnew ] = fmincon(@(xd ) optfun ( xd , modelp{2 , popt {9 ,1}(a ) }(a , : ) ,{modelp

{ : , popt {9 ,1}(a ) }} ,{popt { : , 1}} , modelp{17 , popt {9 ,1}(a ) }(a ) , 2 ) , popt {16 ,1}(a , : )

, [ ] , [ ] , [ ] , [ ] , LB1 ,UB1) ;

306 e l s e

307 %f i r s t , f i n d b e s t s t a r t i n g p o i n t f o r o p t im i z a t i o n u s ing op t g raph

308 [ point (a , : ) ,XY3, Z3 ( : , : , a ) ]=optgraph ( popt {11 ,1} , popt {12 ,1} , step1 , modelp{2 , popt {9 ,1}( a ) }(

a , : ) ,{modelp { : , popt {9 ,1}( a ) }} , {popt { : , 1}} , modelp{17 , popt {9 ,1}( a ) }( a ) , 2 ) ;

309 %f i n i s h o p t im i z a t i o n u s ing fmincon

310 [ popt {6 ,1}(a , : ) , fnew ] = fmincon (@(xd ) optfun (xd , modelp{2 , popt {9 ,1}(a ) }(a , : ) ,{modelp { : , popt

{9 ,1}(a ) }} ,{popt { : , 1}} , modelp{17 , popt {9 ,1}(a ) }(a ) , 2 ) , point ( a , : ) , [ ] , [ ] , [ ] , [ ] , [ popt

{11 ,1}(1) popt {12 ,1}(1) ] , [ popt {11 ,1}(2) popt {12 ,1}(2) ] ) ;

311 end

312 %gen er a t e new data po i n t

313 newdat=MHF( popt {6 ,1}(a , : ) , rep , popt {3 ,1}) ;

314 %add to e x i s t i n g d a t a s e t

315 popt {2 ,1}=[popt {2 ,1} ; newdat ] ;

316 f o r i =1:mM

317 %c a l c u l a t e me t r i c s f o r each model

318 [ modelp{2 , i }(a+1 , : ) , modelp{3 , i }(a+1) , modelp{5 , i }(a+1 , : ) , modelp{6 , i } ,modelp{7 , i }( a+1) , modelp

{8 , i }(a+1) , modelp{9 , i }(a+1) , modelp{10 , i }(a+1) ,modelp{11 , i }(a+1) , modelp{12 , i }(a+1) ,modelp

{15 , i }(a+1) ,modelp{13 , i }(a+1) , modelp{16 , i }(a+1 , : ) , modelp{17 , i }( a+1) , modelp{18 , i }(a+1) ,

res idP { i , a} , popt {1 ,1}(a+1)]=metrix3 ({modelp { : , i }} ,{popt { : , 1}} , step2 ) ;

319 a l lP ( i )=mprob( iprob ,{modelp { : , i }} , {popt { : , 1}} ) ; %c a l c u l a t e p r o b a b i l i t i e s f o r each model
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320 end

321 %c a l c u l a t e norma l i z ed p r o b a b i l i t i e s f o r each model and f i n d most

322 %pro b a b l e model

323 [P, popt {9 ,1}(a+1)]=maxP( a l lP ) ;

324 f o r i =1:mM

325 %as s i g n p r o b a b i l i t i e s t o t he r e s p e c t i v e model a r ray s

326 modelp{4 , i }( a+1)=P( i ) ;

327 end

328 exper=size ( popt {2 ,1}) ; %c a l c u l a t e s how many exper imen t s have been run

329 [ out , count , popt {14 ,1}(a , : ) ]=SC2({modelp { : , popt {9 ,1}( a+1)}} , popt {8} , goal , count , exper (1) , rep ,

popt {17}) ;

330 i f out==2

331 i f f l a g 2 (4)==1

332 break

333 e l s e

334 out=0; %i f SC i s not b e i ng run , change out t o ze ro so box a l go r i t hm can be run

335 end

336 end

337 end

338 clear point

339 %save data t o f i l e

340 p=date s t r (now , ’mm dd yy ’ ) ;

341 % nwkdir=[wkdir , p , ’\ ’ , p ] ; %upda t e s d i r e c t o r y w i t h today ’ s da t e

342 ch7=[p , ’ rep ’ , num2str(num) , ’ . txt ’ ] ;

343 ch5=[p , ’ ’ ,num2str(num) ] ;

344 save ( ch5 )

345 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

346 %% Save a l l f i g u r e s

347 SaveAl lFigures ( ch5 , 1 ,num) ;

348 close a l l %t h i s command c l o s e s a l l g raphs

349 end

350

351 %% ex t r a f u n c t i o n s needed

352 %%%%%%%%%%%%%%%%%%%%%%%%%%box1%%%%%%%%%%%%%%%%

353 funct i on [ out , point , boxmax]=box1 (mat ,Z , opt , model8 , f lag )

354 %t h i s f un c t i o n t a k e s as i npu t t he matr ix o f x and y v a l u e s ’X’ , and the

355 %matr ix o f some f un c t i o n s e v a l u a t i o n s in t he ( x , y ) space , Z . ’ boxmax ’ i s t h e

356 %maximum a l l owed va l u e c a l c u l a t e d from avareage ou tpu t + CI

357 counter=0; %need something t o t r a c k how many po i n t s are be low boxmax

358 a=opt {8} ; %i t e r a t i o n

359 theta=model8 {2}(a , : ) ; %parameters

360 s i g s q=model8 {17}(a ) ; %exp er ro r

361 hand=model8 {1} ; %hande l f o r model f un c t i o n

362 d=opt {1}(a ) ; %max va l u e o f data f o r Jac .m

363 J=model8 {6} ; %X matr ix ( d e r i v a t i v e o f model wrt parameters )

364 o=length ( opt {2}) ; %c a l c u l a t e s how many exper imen t s have been per formed

365 p=model8 {14} ; %# parameters in model

366 CI=model8 {18}(a ) ; %t h i s i s t h e c on f i d en ce i n t e r v a l

367 value=model8 {12}(a ) ; %va l u e i s t h e va l u e a t t he e s t . opt p o i n t o f t h e most p r o b a b l e model

368 X=mat {1} ; Y=mat{2} ;

369 boxmax=value+CI ; %t h i s assumes t h a t one i s t r y i n g t o minimize , meaning one shou ld

t r y t o f i n d a v a l u e BELOW boxmax

370 f o r i =1: length (X)

371 f o r j =1: length (X)

372 point =[X( i , j ) Y( i , j ) ] ;
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373 %c a l c u l a t e p r e d i c t i o n var iance a t po i n t

374 Jopt=Jac ( theta , hand , point , d ) ;

375 PVopt1=PV(J , Jopt , s i g s q ) ;

376 %c a l c u l a t e con f i d en c e i n t e r v a l a t e s t ima t ed op t ima l p o i n t . Equat ion taken

377 %from pg 395 Montgomery . ∗∗ Jopt shou ld be a 3 x1 matrix , so t he t ran sp o se i s

378 %re v e r s e d ∗∗

379 CI2=t inv ( 0 . 9 75 , ( o (1)−p) )∗sqrt ( s i g s q ∗( Jopt∗ inv (J ’∗ J )∗Jopt ’ ) ) ;

380 i f Z( i , j ) < boxmax | | (Z( i , j )−CI2 ) < boxmax %want v a l u e t o be l e s s than boxmax s i n ce

t he p o i n t i s t o minimize ou tpu t

381 counter=counter+1;

382 out ( counter , : ) =[Z( i , j ) CI2 X( i , j ) Y( i , j ) ] ; %the column in d i c e o f Z i s t he x

ind i c e , row i s f o r y i n d i c e

383 end

384 end

385 end

386 i f counter==0 %i f no th ing was found t h a t met c o n t s t r a i n t s , end f u n c t i o n

387 out=1; %out r e tu rn s a dummy v a r i a b l e so no e r r o r

388 return

389 end

390 %out i s o f t h e form [ ou tpu t CI x y ] f o r as many rows as v a l u e s be low ’ boxmax ’

391 % par t 2 o f func t ion −p i c k i n g b e s t va l u e f o r o p t im a l i t y

392 [ n ,m]= size ( out ) ;

393 i f f lag==3

394 point =[out (1 , 3) out (1 , 4) ] ; %i f running random , don ’ t c a l c u l a t e op t ima l v a l u e

395 e l s e

396 f o r k=1: counter %ca l c va l u e o f o p t ima l i t y ( depends on f l a g ) a t t h e p o i n t s be low

Pva lue

397 out (k , 5 )=optfun ( [ out (k , 3 ) out (k , 4 ) ] , model8 {2}( opt {8} , : ) , model8 , opt , model8 {17}( opt

{8}) , f lag ) ;

398 end

399 %−−−−−−−−−−FINDING MINIMUM−−−−−−−−−−−−−−−−−−

400 [ val , I ]=min( out ( : , 5 ) ) ; %f i n d s minimum of each column in ’ b ’ and i t s i n d i c e

401 x f i n=out ( I , 3 ) ;

402 y f i n=out ( I , 4 ) ;

403 point =[ x f i n y f i n ] ; %index o f minimum po in t

404 end

405 end

406 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Euc l id%%%%%%%%%%%%%%

407 funct i on d i s t=Eucl id (X,Y)

408 %This i s a f u n c t i o n t h a t f i n d s t he e u c l i d i a n d i s t a n c e between two po i n t s

409 %X=[x1 y1 ] i s f i r s t po i n t

410 %Y=[x2 y2 ] i s second po i n t

411 f i r s t =(X(1)−Y(1) ) ˆ2 ;

412 second=(X(2)−Y(2) ) ˆ2 ;

413 d i s t=sqrt ( f i r s t+second ) ;

414 end

415 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Grid in t%%%%%%%%%%%%%

416 funct i on [ LB1 , UB1]= g r i d i n t ( point , range , step1 )

417 %fun c t i o n c a l c u l a t e s t he range s t o use t o op t im i z e around the p o i n t from g r i d a l g o r i t hm

418 perc =0.80; %r ep r e s en t s t he p er c en tag e o f i n t e r v a l one wants

t o use f o r bounds

419 i n t e r v a l =(range (2)−range (1) ) / step1 ; %c a l c u l a t e s s t e p between g r i d p o i n t s

420 point1=point (1) ; point2=point (2) ; %s t o r e s components

421 LB1(1)=point1−perc∗ i n t e r v a l ;
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422 i f LB1(1)<range (1) , LB1(1)=range (1) ; end %i f LB i s o u t s i d e o f e xp e r imen ta l bound , than make

lower bound the ex pe r imen ta l boundary

423 UB1(1)=point1+perc∗ i n t e r v a l ;

424 i f UB1(1)>range (2) , UB1(1)=range (2) ; end %i f UB i s o u t s i d e o f e xp e r imen ta l bound , than make

upper bound the ex pe r imen ta l boundary

425 LB1(2)=point2−perc∗ i n t e r v a l ;

426 i f LB1(2)<range (1) , LB1(2)=range (1) ; end %i f LB i s o u t s i d e o f e xp e r imen ta l bound , than make

lower bound the ex pe r imen ta l boundary

427 UB1(2)=point2+perc∗ i n t e r v a l ;

428 i f UB1(2)>range (2) , UB1(2)=range (2) ; end %i f UB i s o u t s i d e o f e xp e r imen ta l bound , than make

upper bound the ex pe r imen ta l boundary

429 end

430 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Jac%%%%%%%%%%%%

431 funct i on z=Jac ( theta , model1 , data , d)

432 %This f un c t i o n c a l c u l a t e s t he j ac o b i an f o r each model w . r . t . t h e parameter

433 %and g i v en the i nput data . I t c a l c u l a t e s t he d e r i v a t i v e by changing one o f

434 %the parameters by a sma l l amount , and s e e i n g how t h a t changes t he v a l u e o f

435 %the ou tpu t . ( i . e . F i n i t e D i f f e r e n c e Method )

436 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

437 %l i s t o f v a r i a b l e s

438 %th e t a= b e s t f i t parameters

439 %c e l l=c e l l array w i t h model data

440 %data=exp er im en ta l data matr ix

441 %d=maximum va l u e o f y ( exp ) ( in nuc l e a t i o n study , t h i s i s data ( : , 3 ) from run simxx f o r c a l c u l a t i o n

o f an app r o pr i a t e d s i g

442 %n , m, p , r , s , S , t , t h e t ah a t , x , z

443 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

444 ds i g = 0.001∗d ; %d e l t a t h e t a ( f o r d e r i v a t i v e c a l c u l a t i o n )

445 [ n ,nC]= size ( data ) ; % n i s t he number o f rows con ta ined in data

446 f o r s=1: length ( theta )

447 dtheta=theta ; %s t o r i n g t h e t a v a l u e s t o be changed

448 dtheta ( s )=dtheta ( s )+ds i g ; %adds d e l t a t h e t a t o a p p ro p r i a t e parameter #

449 f o r p=1:n

450 x=[data (p , 1 ) data (p , 2 ) ] ; %sav es data in v e c t o r ’ x ’

451 r=feval (model1 , x , theta ) ; %c a l c u l a t i n g f un c t i o n v a l u e w i t h ou t d s i g

452 t=feval (model1 , x , dtheta ) ; %c a l c u l a t e s f u n c t i o n w i t h d s i g

453 z (p , s ) = ( t−r ) / d s i g ; %ca l c u l a t e s d e r i v a t i v e ( change in f un c t i o n va l u e ) /(

change in parameter )

454 end

455 end

456 end

457 %%%%%%%%%%%%%%%%%%%%%%%%maxP%%%%%%%%%%%%%%%%%%%

458 funct i on [ Pnorm, I ]=maxP(P)

459 m=size (P) ;

460 Pnorm=zeros (m, 1 ) ;

461 psum=0;

462 %norma l i z e p r o b a b i l i t i e s

463 f o r j =1:m

464 psum=psum+P( j ) ;

465 end

466 f o r k=1:m

467 Pnorm(k)=P(k ) /psum ; %norma l i z e s and ou tp u t s p r o b a b i l i t y t o sc r een

468 end

469 %f i n d model w i t h l a r g e s t p r o b a b i l i t y

470 [Pmax, I ]=max(Pnorm) ;
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471 end

472 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%met r i x3%%%%%%%%%%

473 funct i on [ theta , Sr , point , J , Dopt ,PVx1 , PVopt1 , PVopt2 , err1 , pred , d i s t , pred2 ,F , sigmasq , CI , r , d]=metrix3 (

model2 , opt , step1 )

474 %This f un c t i o n w i l l reduce t he c l u t t e r in t he main f u n c t i o n . This f un c t i o n

475 %w i l l c a l c u l a t e t he D−op t ima l v a l u e

476 %%%%INPUT De f i n i t i o n s

477 %model2=array pas sed w i t h needed in fo rmat ion f o r o p t ima l i t y

478 %err=e xp e r imen t a l e r ro r

479 %range=lower and upper bounds f o r c a l c u l a t i n g new t h e t a s

480 %opt range=range f o r f i n d i n g optimum po in t

481 %s te p 1=how many s t e p s one wants op t g raph to per form

482 %con s t an t s f o r MHF

483 %%%%OUTPUT De f i n i t i o n s

484 %th e t a=p r e d i c t e d t h e t a h a t f o r t h i s i t e r a t i o n

485 %Sr=p r e d i c t e d Srhat f o r t h i s i t e r a t i o n

486 %d=pr e d i c t e d max va l u e o f y from data

487 %J=pr e d i c t e d j ac o b i an f o r t h i s i t e r a t i o n

488 %data=data matr ix p l u s new exper imen t from t h i s i t e r a t i o n

489 %Dopt=D−op t ima l v a l u e f o r t h i s i t e r a t i o n

490 %PVx1=p r e d i c t i o n var iance f o r e x pe r imen t a l p o in t

491 %pred=p r e d i c t e d v a l u e a t e s t ima t ed op t ima l p o in t

492 %err1=er ror o f p r e d i c t e d v a l u e t o a c t u a l v a l u e a t r e a l op t ima l p o i n t

493 %PVopt1=PV at i n i t i a l e s t ima t e d op t ima l po i n t

494 %PVopt2=PV at r e a l op t ima l po i n t

495 %pred2=ou tpu t from system

496 %F= F s t a t i s t i c a l v a l u e s f o r LOF (1) i s f o r model (2 ) i s F f o r comparison

497 %to (1)

498 %sigmasq=e xpe r imen t a l va r iance c a l c u l a t e d from expe r imen t a l data

499 %op tp o i n t=es t ima t e d op t ima l p o i n t f o r t h i s i t e r a t i o n ( a f t e r new exper imen t

500 %i s genera t ed ( used in c a l c u l a t i o n s f o r nex t round

501 pointopt =[−3.8 −3.32] ; %coo r d i n a t e s o f op t ima l p o i n t in MHF

502 optpt =43.3; %va l u e a t op t ima l po i n t

503 %c a l c u l a t e new t h e t a h a t and Srhat

504 i f model2{14}<3 %t h i s was added f o r any model t h a t has l e s s than 3 parameters

505 LBguess=opt {4} (1 , 1 : 2 ) ; UBguess=opt {4} (2 , 1 : 2 ) ;

506 e l s e LBguess=opt {4} (1 , : ) ; UBguess=opt { 4} (2 , : ) ;

507 end

508 [ theta , Sr , G] = newf i t ( opt {2} , model2 {1} , model2 {2}( opt {8} , : ) , [ LBguess ; UBguess ] ) ;

509 n=size ( opt {2}) ;

510 sigmasq=Sr /(n (1)−model2 {14}) ; %c a l c u l a t i n g ex pe r im en ta l va r iance

511 d=max(round( opt { 2} ( : , 3 ) ) ) ; %c a l c u l a t e s maximum of ou tpu t f o r j a c o b i an c a l c u l a t i o n

512 J=Jac ( theta , model2 {1} , opt {2} ,d) ; %c a l c u l a t e s Jacobian o f ALL the data t o use in D−op t ima l .

513 %f i n d op t ima l p o i n t p r e d i c t e d by t he o p t i ma l i t y

514 %f i r s t , use op t g raph to s t a r t o p t im i z a t i o n

515 [ pointp ,XY4, Z4]=optgraph ( opt {5} , opt {5} , step1 , theta , model2 , opt , sigmasq , 3) ;

516 [ point ]= fmincon(@( point ) feval (model2 {1} , point , theta ) , pointp , [ ] , [ ] , [ ] , [ ] , [ opt {5}(1) opt {5}(1) ] , [ opt

{5}(2) opt {5}(2) ] ) ;

517 %Pred i c t i o n Variance a t new po i n t

518 Jnew=Jac ( theta , model2 {1} , opt {6}( opt {8} , : ) , d) ;

519 PVx1=PV(J , Jnew , sigmasq ) ;

520 %Ca l c u l a t e p r e d i c t i o n a t e s t ima t ed op t ima l p o in t

521 pred=feval (model2 {1} , point , theta ) ; %from model

522 sysout=feval (@MHF, point , 1 ) ; %from system

523 pred2=sysout (3) ;
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524 er r1=(pred−pred2 ) ˆ2 ; %err or c a l c u l a t i o n a t e s t ima t ed op t ima l

525 %po in t

526 %c a l c u l a t e p r e d i c t i o n var iance a t e s t ima t ed op t ima l p o i n t

527 Jopt=Jac ( theta , model2 {1} , point , d) ;

528 PVopt1=PV(J , Jopt , sigmasq ) ;

529 %c a l c u l a t e c on f i d en ce i n t e r v a l a t e s t ima t ed op t ima l p o i n t . Equat ion taken

530 %from pg 395 Montgomery . ∗∗ Jopt shou ld be a 3 x1 matrix , so t he t rans p os e i s

531 %re v e r s e d ∗∗

532 CI=t inv ( 0 . 975 , ( n (1)−model2 {14}) )∗sqrt ( sigmasq ∗( Jopt∗ inv (J ’∗ J )∗Jopt ’ ) ) ;

533 %c a l c u l a t e p r e d i c t i o n var iance a t r e a l op t ima l p o i n t

534 Jopt=Jac ( theta , model2 {1} , pointopt , d ) ;

535 PVopt2=PV(J , Jopt , sigmasq ) ;

536 %c a l c u l a t e f i n a l D−op t ima l v a l u e u s ing f u n c t i o n ’ dfun ’

537 Dopt=optfun ( opt {6}( opt {8} , : ) , theta , model2 , opt , sigmasq , 1 ) ;

538 %c a l c u l a t e d i s t a n c e between r e a l optimum po in t and e s t ima t ed optimum po in t

539 d i s t=Eucl id ( pointopt , point ) ;

540 %c a l c u l a t e t he l a c k o f f i t F s t a t i s t i c s

541 F=50;%

542 %c a l c u l a t e s t u d e n t i z e d r e s i d u a l s

543 [ Sr2 , r e s i d ]=newerr ( theta , opt {2} ,model2 {1}) ; %f i n d s r e s i d u a l s from newerr

544 Hat=J∗(J ’∗ J ) ˆ(−1)∗J ’ ; %c a l c u l a t e s hat matr ix

545 f o r i =1:n (1)

546 r ( i )=r e s i d ( i ) /sqrt ( Sr∗(1−Hat ( i , i ) ) ) ;

547 end

548 end

549 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%MHF%%%%%%%%%%%%

550 funct i on data=MHF(X, rep2 , e r r )

551 data=zeros ( rep2 , 3 ) ;

552 %This i s t h e Mod i f i ed Himmelblau f un c t i o n as a t e s t s u r f a c e

553 X1=X(1) ;

554 X2=X(2) ;

555 p=[−11 −7 1 3 5 7 ] ; %th e s e are t he parameters t o be changed

556 i f nargin==2

557 e r r =0;

558 end

559 f o r kj =1: rep2

560 y=(X1.ˆ2+X2+p (1) ) .ˆ2+(X1+X2.ˆ2+p (2) ) .ˆ2+p (3) .∗X1+p (4) .∗X2+p (5)+normrnd (0 , e r r ) ;

561 data ( kj , : ) =[X1 X2 y ] ; %S to re s t he data and ex p er imen ta l s e t t i n g s t o g e t h e r

562 end

563 end

564 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%mprob%%%%%%%%%%

565 funct i on [P]=mprob( iprob , model3 , opt )

566 %This f un c t i o n c a l c u l a t e s t he Bayes ian p r o b a b i l i t y f o r a p a r t i c u l a r model

567 %gi ven the i n i t i a l p r o b a b i l i t y , # parameters , Srhat , and # r e p e t i t i o n s

568 P=iprob ∗2ˆ(−model3 {14}/2)∗model3 {3}( opt {8})ˆ(−opt {7}/2) ;

569 end

570 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%newerr%%%%%%%%%

571 funct i on [ Sr , Perr ] = newerr ( theta , data , fmodel )

572 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

573 %l i s t o f v a r i a b l e s

574 %th e t a i s model parameters

575 % data in [ x y ] form

576 %fmode l i s hand l e t o model f un c t i o n

577 %n , nc , Perror , yexp , y , Sr , i

578 %Perr=r e s i d u a l s f o r each d a ta p o i n t
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579 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

580 [ n , nc ] = size ( data ) ; %g e t s s i z e o f data matr ix

581 Perror = zeros (n , 1 ) ; %i n i t i a l i z e s Perror t o ze ro

582 f o r i = 1 : n

583 yexp=data ( i , 3 ) ; %g e t s ex pe r imen ta l r e s u l t

584 y=feval ( fmodel , [ data ( i , 1 ) data ( i , 2 ) ] , theta ) ; %c a l c u l a t e s r e s u l t from model

585 Perr ( i )=yexp−y ; %t h i s i s t h e r e s i d u a l

586 Perror ( i ) = ( Perr ( i ) ) ˆ2 ; %c a l c u l a t e s e r ro r o f model p r e d i c t i o n

587 end

588 Sr = sum( Perror ) ; %sums up Perror t o g e t mean square e r r o r ( Sr )

589 end

590 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%new f i t%%%%%%%%%

591 funct i on [ theta , Sr ,G] = newf i t ( data , fmodel , po , range )

592 %fun c t i o n c a l c u l a t e s t he b e s t f i t parameters t o t he data , t h e t a , as w e l l as t he

593 %model error , Sr

594 % data in [ y x ] form

595 %model i s t h e f un c t i o n hand l e

596 %po i s t he parameter gu e s s

597 %range c on ta i n s t he bounds f o r t he o p t im i z a t i o n

598 %Sr0 i s i n i t i a l e r ro r

599 %the ta , Sr , G, ou tpu t are ou t pu t s o f fmincon

600 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

601 Sr=0; Sr0=0;

602 Sr0 = newerr ( po , data , fmodel ) ; % I n i t i a l e r ro r in p r e d i c t i o n

603 % Minimize over t he f i t

604 %s e t t i n g t o l e r an c e f o r fmincon

605 OPTIONS = optimset ( ’ DiffMinChange ’ ,1 e−6, ’ Di sp lay ’ , ’ i t e r ’ , ’ D i agnost i c s ’ , ’ on ’ , ’ LargeScale ’ , ’ o f f ’

) ;%’TolX ’ , s e t t (1 ,1 ) , ’ TolFun ’ , s e t t (1 ,1 ) , ’ TolCon ’ , s e t t (1 ,1 ) , ’MaxFunEvals ’ , s e t t (2 ,1 ) , ’

D iagnos t i c s ’ , ’ on ’ , ’ LargeSca le ’ , ’ o f f ’ ) ;

606 %’ Disp lay ’ , ’ i t e r ’ , −− t h i s cou ld go back in l a t e r

607 [ theta , Sr ,G, output ] = fmincon (@( theta ) newerr ( theta , data , fmodel ) , po , . . .

608 [ ] , [ ] , [ ] , [ ] , range ( 1 , : ) , range ( 2 , : ) ) ;

609 Sr ;

610 %G i s e x i t f l a g o f fmincon

611 %ou tpu t g i v e s in fo rmat ion on o p t im i z a t i o n

612 %G, ou tpu t used f o r debu gg ing

613 end

614 %%%%%%%%%%%%%%%%%%%%%%%%%%%opt fun%%%%%%%%%%%%%%%

615 funct i on z=optfun (xd , theta , model4 , opt , sigmasq2 , f lag )

616 %%%This i s a f u n c t i o n f o r op t ima l d e s i g n . Depending on the number o f

617 %inpu t s , t h e f u n c t i o n w i l l do e i t h e r d−, g−, or p− op t ima l de s i g n .

618 %−−−−−−−−−−−−−−−−−L i s t o f v a r i a b l e s −−−−−−−−−−−−−

619 %model4=c e l l array f o r model b e in g i n v e s t i g a t e d

620 %opt=c e l l array f o r o p t i ma l i t y be in g run

621 %f l a g= t e l l s f un c t i o n t o run e i t h e r

622 %0 = gfun

623 %1=dfun

624 %2=pfun

625 %f i r s t , need t o f i n d j a co b i a n f o r new ex pe r im en ta l po i n t

626 J1=Jac ( theta , model4 {1} , xd , opt {1}(1) ) ;

627 X=[model4 {6} ; J1 ] ;

628 i f f lag ==0

629 %do gfun−t r i e s t o reduce PV over e n t i r e ex p er imen ta l range by p i c k i n g

630 %po in t w i t h maximum PV and running nex t exper imen t a t t h a t p o i n t

631 z = −J1∗ inv ( model4 {6} ’∗model4 {6})∗J1 ’∗ sigmasq2 ;
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632 e l s e i f f lag ==1

633 %c a l c u l a t e s D−o p t i ma l i t y ( maximizes de t (X’∗X) )

634 z = −det (X’∗X) ;

635 e l s e i f f lag==2

636 %do pfun −pfun u se s op t ima l p o i n t and e x pe r imen t a l p o i n t t o f i n d t he

637 %p r e d i c t i o n var iance a t t he op t ima l p o i n t .

638 %w i l l f i n d t he e xp e r imen ta l p o i n t w i t h t he l a r g e s t p r e d i c t i o n var iance

639 %and run more exper imen t s a t t h a t p o i n t when run w i t h fmincon

640 %compute j ac o b i an f o r op t ima l po i n t ’ xp ’

641 Jnew=Jac ( theta , model4 {1} , model4 {5}( opt {8} , : ) , opt {1}(1) ) ;

642 %compute p r e d i c t i o n var iance

643 z = Jnew∗ inv (X’∗X)∗Jnew ’∗ sigmasq2 ;

644 end

645 end

646 %%%%%%%%%%%%%%%%%%%%%%%%%%%%opt g raph%%%%%%%%%%

647 funct i on [ point , coord in , Z]=optgraph ( xrange , yrange , num, theta , model5 , opt , sigmasq3 , f lag )

648 %the purpose o f f un c t i o n i s t o q u i c k l y graph p r e d i c t i o n var i ance t o

649 %f i n d s t a r t i n g po i n t f o r fmincon op t im i z a t i o n

650 %−−−−−−−−−−−−−−−−−−−−−−−−LIST OF VARIABLES−−−−−−−−

651 %xrange=range o f v a r i a b l e x [ min max ]

652 %yrange=range o f v a r i a b l e y [ min max ]

653 %num=number o f p o i n t s d e s i r e d in t a b l e

654 %data=raw data

655 %po in t i s ou t pu t t h a t c on ta i n s i n d i c e s o f minimum po in t [ x ind i c e , y i n d i c e ]

656 %d , I , m1,m2, score , s i g , va l , va r i , xd ,X, x f in , y f in , yd ,Y, z , Z

657 %−−−−−−−−−−−−−−−−− SETTING UP GRID−−−−−−−−−−−−−−

658 xd=(xrange (2)−xrange (1) ) /num; %c a l c u l a t e s s t e p between x−v a l u e s

659 yd=(yrange (2)−yrange (1) ) /num; %c a l c u l a t e s s t e p between y−v a l u e s

660 x=xrange (1) : xd : xrange (2) ;

661 y=yrange (1) : yd : yrange (2) ;

662 [X,Y]=meshgrid (x , y ) ; %makes g r i d f o r c a l c u l a t i o n ( used f o r g raph ing )

663 % Ca l c u l a t i n g v a l u e s

664 Z=zeros ( length (X) , length (Y) ) ;

665 f o r i =1: length (X)

666 f o r j =1: length (Y)

667 i f f lag==3

668 %t h i s i s t h e f u n c t i o n a l form to run the model t o f i n d t he

669 %opt ima l po i n t . Note when t h i s i s used , ’ fun1 ’ i s j u s t a

670 %p l a c e h o l d e r and not used in ’ op t g raph .m’

671 Z( i , j )=feval ( model5 {1} , [X( i , j ) Y( i , j ) ] , theta ) ;

672 e l s e

673 Z( i , j )=optfun ( [X( i , j ) Y( i , j ) ] , theta ,{model5 { :}} ,{ opt { :}} , sigmasq3 , f lag ) ;

674 end

675 end

676 end

677 coord in={X,Y} ;

678 %−−−−−−−−−−FINDING MINIMUM−−−−−−−−−−−−−−−

679 [ val , I ]=min(Z) ; %f i n d s minimum of each column in ’ b ’ and i t s i n d i c e

680 [ score , I2 ]=min( val ) ; %f i n d s minimum of v e c t o r v a l and i t s i n d i c e

681 x f i n=x( I2 ) ;

682 y f i n=y( I ( I2 ) ) ;

683 point =[ x f i n y f i n ] ; %index o f minimum po in t

684 %%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

685 end

686 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PV%%%%%%%%%%%

160



687 funct i on z=PV(J , J1 , e r r )

688 %This f un c t i o n c a l c u l a t e s t he p r e d i c t i o n var iance g i v e n a Jacobian , ’J ’ ,

689 %the e xp e r imen t a l p o i n t var iance , ’ J1 ’ , and the e xp er imen t a l error , ’ err ’

690 z=J1∗ inv (J ’∗ J )∗J1 ’∗ e r r ;

691 end

692 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%Sav eA l lF i g u r e s%%%%%%

693 funct i on SaveAl lFigures ( dir , z ,num, f i l e t y p e )

694 %i f one doesn ’ t s p e c i f y f i l e t y p e , a u t o s e t t o f i g

695 i f nargin < 4 , f i l e t y p e = ’ f i g ’ ; end

696 %g e t t i n g i n f o f o r each f i g u r e −t a ken from i n t e r n e t

697 Ch i l dL i s t = sort (get (0 , ’ Chi ldren ’ ) ) ;

698 f o r cnum = 1 : length ( Ch i l dL i s t )

699 i f strncmp (get ( Ch i l dL i s t (cnum) , ’Type ’ ) , ’ f i g u r e ’ , 6 )

700 saveas ( Ch i l dL i s t (cnum) , [ dir , ’ ’ , num2str( z ) , ’ ’ ,num2str(num) , ’ ’ , num2str( Ch i l dL i s t (cnum) ) , ’ . ’

f i l e t y p e ] ) ;

701 end

702 end

703 end

704 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%SC2%%%%%%%%%%%%%%

705 funct i on [ out , count , f l a g 3 ]=SC2(model9 , opt , goal , count ,N, rep , t o l )

706 %This i s a f u n c t i o n f o r t he s t o p p i n g c r i t e r i o n f o r s imu l a t i o n s . The v a l u e s

707 %fo r ’ model9 ’ shou ld be coming from MOST PROBABLE model

708 %’ goa l ’ i s t h e d e s i r e d con f i d enc e i n t e r v a l on p r e d i c t i o n

709 %’N’ i s # exper imen t s

710 %ni i s # r e p i t i t i o n s

711 %t o l=t o l e r a n c e f o r change in parameters

712 f lag =1; %f l a g f o r t h e t a s shou ld be i n i t i a l l y s e t t o 1

713 f l a g1 =1; %f l a g f o r s r h a t vs t o l (2 )

714 f l a g2 =1; %f l a g f o r CI vs go a l

715 out=0; %i n i t i a l i z e ’ out ’ 0== con t inue exper imen t s

716 %−−−−−−−−−−−−a s s i g n i n g v a l u e s from inpu t arrays−−−−

717 mark=opt+1; %opt {8} i s t h e number o f r e p i t i t i o n s , need t o add one

718 %s in c e o r i g i n a l e xpe r imen t s not counted in t h i s #

719 thetanew=model9 {2}(mark , : ) ; %s t o r e s v a l u e s o f new t h e t a s

720 thetao ld=model9 {2}(mark−1 , :) ; %s t o r e s o l d t h e t a s

721 Srnew=model9 {3}(mark ) /N; %new Srhat ( norma l i z ed by # exper imen t s )

722 Srold=model9 {3}(mark−1)/(N−rep ) ; %o l d Srhat ( norma l i z ed by # exper imen t s )

723 no i se=model9 {17}(mark) ; %es t ima t e o f e x pe r imen ta l e r r o r ( no i s e )

724 CI=model9 {18}(mark ) ; %con f . i n t e r v a l s f o r model

725 n=length ( thetanew ) ; %f i n d # parameters

726 compa=zeros (n , 1 ) ; %p r e a l l o c a t i n g memory f o r ’ compa ’

727 %−−−−−−−−−−−−−−−−−−−−−−−−−t h e t a comparison−−−−−−−−−

728 f o r i =1:n

729 %f i r s t , c a l c u l a t e each comparison f o r t h e t a s

730 compa( i )=abs ( ( thetao ld ( i )−thetanew ( i ) ) / thetao ld ( i ) ) ;

731 i f compa( i ) > t o l

732 f lag =0; %i f parameters are changing , s e t f l a g =0

733 %i f a t l e a s t one parameter i s changing , e xpe r imen t s

734 %shou ld con t inu e . I f none are changing , then nex t

735 %s t e p and f l a g =1

736 end

737 end

738 %−−−−−−−−−−−−−−−−−−−−−−−−−Srhat comparison−−−−−−−−−−−−

739 compa1=abs ( ( Srold−Srnew ) /Srold ) ;

740 i f compa1 > to l , f l a g1 =0; %i f Srhat i s changing , con t inu e exper imen t s ( i . e . f l a g =0)
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741 end

742 %−−−−−−−−−−−c on f i d enc e i n t e r v a l comparison−−−−−−−−−−−−−−

743 i f CI > goal , f l a g 2 =0; %i f CI has not reached goa l , keep doing exper imen t s ;

744 end

745 %−−−−−−−−−−−−−−−−−−−−−−−−−end comparison−−−−−−−−−−−−−−

746 %s t o p p i n g c r i t e r i o n are ’ t h e t a s AND Srhat not changing ’ OR ’CI < no i s e

747 %l e v e l ’ OR ’CI < d e s i r e d CI ’

748 i f f l a g 1==1 | | f l a g 2==1, out=1; count=count+1; e l s e count=0; %i f con t i nu i n g exper iments , ’

count ’ shou ld e qua l 0

749 end

750 f l a g3 =[ f lag f l a g1 f l a g 2 ] ; %f l a g 3 t e l l s u se r r e s u l t o f each comparison

751 i f count==2 %i f count=2, then op t ima l p o i n t was j u s t run tw i ce in a row . I f i t ’ s not

changing much

752 %no need to con t inu e exper imen t s

753 out=2; %out=2 means t o s t o p exper imen t s

754 end

755 end

756 %% model 2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

757 funct i on y=mod2(X, p)

758 %This i s t h e f i r s t model , a l l c o r r e c t

759 %X i s t he ex p er imen ta l s e t t i n g

760 %p i s a v e c t o r o f t h e model parameters ( c u r r e n t l y 3 parameters )

761

762

763 X1=X(1) ;

764 X2=X(2) ;

765

766 y=p (1) ∗X1ˆ4+X2ˆ4−21∗X1ˆ2 +2∗X1ˆ2∗X2+p (2) ∗X1∗X2ˆ2−13∗X2ˆ2−13∗X1−19∗X2+p (3) ;

767 end

768 %% model 6

769 funct i on y=mod6(X, p)

770 %X i s t he ex p er imen ta l s e t t i n g

771 %p i s a v e c t o r o f t h e model parameters ( c u r r e n t l y 3 parameters )

772

773 X1=X(1) ;

774 X2=X(2) ;

775 %X1ˆ2 term i n c o r r e c t

776 y=X1ˆ4+X2ˆ4−10∗X1ˆ2 +2∗X1ˆ2∗X2+p (1) ∗X1∗X2ˆ2−13∗X2ˆ2−13∗X1+p (2) ∗X2+p (3) ;

777 end

778

779 %% model 7

780 funct i on y=mod7(X, p)

781 %X i s t he ex p er imen ta l s e t t i n g

782 %p i s a v e c t o r o f t h e model parameters ( c u r r e n t l y 3 parameters )

783

784

785 X1=X(1) ;

786 X2=X(2) ;

787 %x1 ˆ2 term i n c o r r e c t %x2 ˆ2 term i n c o r r e c t

788 y=X1ˆ4+X2ˆ4−10∗X1ˆ2 +2∗X1ˆ2∗X2+p (1) ∗X1∗X2ˆ2−1∗X2ˆ2−13∗X1+p (2) ∗X2+p (3) ;

789 end

790

791 %% model 8

792 funct i on y=mod8(X, p)

793 %X i s t he ex p er imen ta l s e t t i n g
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794 %p i s a v e c t o r o f t h e model parameters ( c u r r e n t l y 3 parameters )

795

796

797 X1=X(1) ;

798 X2=X(2) ;

799 %X2 term

800 %miss ing

801 y=X1ˆ4+X2ˆ4−21∗X1ˆ2 +2∗X1ˆ2∗X2+p (1) ∗X1∗X2ˆ2−13∗X2ˆ2−13∗X1+p (2) ;

802 end

803

804 %% model 9

805 funct i on y=mod9(X, p)

806 %X i s t he ex p er imen ta l s e t t i n g

807 %p i s a v e c t o r o f t h e model parameters ( c u r r e n t l y 3 parameters )

808

809

810 X1=X(1) ;

811 X2=X(2) ;

812 %X1 term mis s ing

813 y=X1ˆ4+X2ˆ4−21∗X1ˆ2 +2∗X1ˆ2∗X2+p (1) ∗X1∗X2ˆ2−13∗X2ˆ2+p (2) ∗X2+p (3) ;

814 end

815 %% model 10

816 funct i on y=mod10 (X, p )

817 %X i s t he ex p er imen ta l s e t t i n g

818 %p i s a v e c t o r o f t h e model parameters ( c u r r e n t l y 3 parameters )

819

820

821 X1=X(1) ;

822 X2=X(2) ;

823 %X1 and X2 terms mis s ing

824 y=p (1) ∗X1ˆ4+X2ˆ4−21∗X1ˆ2 +2∗X1ˆ2∗X2+p (2) ∗X1∗X2ˆ2−13∗X2ˆ2+p (3) ;

825 end

826 %% model 11

827 funct i on y=mod11 (X, p )

828 %X i s t he ex p er imen ta l s e t t i n g

829 %p i s a v e c t o r o f t h e model parameters ( c u r r e n t l y 3 parameters )

830

831

832 X1=X(1) ;

833 X2=X(2) ;

834 %X1 , X2 , X1ˆ2 , and X2ˆ2 terms mis s ing

835 y=p (1) ∗X1ˆ4+X2ˆ4+2∗X1ˆ2∗X2+p (2) ∗X1∗X2ˆ2+p (3) ;

836 end

Listing D.1: trial23.m in Matlab

D.2 Matlab code for film growth simulation study in Matlab

This is the file used for the film growth simulation study.

1 funct i on ni=Dsim29 (nameout , err , f l ag2 , rep , s c to l ,num)

2 %5/8/2008 keeps changes to Dsim27 , but mod mech and mod mech2 are modi f i ed to make them

better , to make models more compet i t i ve

3 %This funct i on i s c or r e c t ed to inc l ude CI in box c a l cu l a t i o n
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4 %This i s a funct i on to run the s imu lat i on code , and takes the names o f the

5 %output f i l e and number o f r e p i t i t i o n s . This i s the f i r s t attempt to use the

6 %op t ima l i t i e s with the nuc l eat i on models . Also i n c o rpo r a te s F(T,C)

7 %∗∗∗∗∗∗∗L i s t o f inputs and outputs ∗∗∗∗∗∗∗∗∗∗∗∗

8 %nameout= name of output f i l e f o r r epo r t s

9 %e r r= de s i r ed l e v e l o f no i s e to be added to system

10 %f l ag 2= vector o f l ength 4 f o r each opt imal i ty , t e l l s whether or not to run box algor i thm [P D G

Run] ’Run’ i s a f l a g to say whether to run D and G or not , 1=yes

11 %rep= # r e p i t i t i o n s to perform f o r each simulated experiment

12 %num= # to help d i f f e r e n t i a t e between d i f f e r e n t s imu lat i on s

13 %Srnorm= value o f normal Sr ( kind o f a dummy output )

14 %L i s t o f v a r i ab l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

15 %a , avg , b , c e l l s , ch2 , ch4 , col1 , col2 , count , d , data , der iv , d i s c r , emp , err ,

16 %err1 , exp , F , f l ag , f l ag2 ,FVAL, G, guess , h , i , I , I2 , i t e r , ik , j , k , K, kk , L , Low1 , m, mC, mech ,

mod , model ,

17 %n , namein , nameout , nC, ni , num, Options , other , output , p , pM, pMcond , psum , P,

18 %q , Q, r , R, raw , rep , s , sc , simdata , Srhat , SrLS , SrLSnorm

19 %sca l , s ca l 2 , set , s e t t , step , step2 , thetahat , T, to l , u , Up1 , v , ve , x , XO, Xset , Xsetnew , z

20 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

21 %Check Va l id i t y o f inputs

22 i f i s c h a r ( nameout )==0

23 e r r o r ( ’ nameout needs to be a charact e r s t r i ng , use s i n g l e quotes ’ )

24 end

25 %−−−−−−−−−−−−−−−−−−−−−USER INPUTS−−−−−−−−−−−−−−

26 source =’Dsim29 ’ ; %Keeping track o f what generator f i l e generated what data

27 goal =5; %de f i n e s d es i r ed magnitude o f con f i d ence i n t e r v a l (1 second )

28 f l a g =0; %f l a g==1 enab l e s graphs at end

29 ni =16; %max # of i t e r a t i o n s

30 Low1=[873; 0 . 3 ] ; %lower bounds f o r exper imental s e t t i n g s

31 Low2=s ca l e (Low1 , 0 ) ; %s c a l e s lower bounds

32 Up1=[1073; 1 . 5 ] ; %upper bounds f o r exper imental s e t t i n g s

33 Up2=s c a l e (Up1 , 0 ) ; %s c a l e s upper bounds

34 step1 =15; %number o f s t ep s to take when making gr i d o f des ign space f o r 1 s t

part o f d i s c r im funct i on

35 step2 =20; %f in d in g opt imal point , needed more spot s on gr i d

36 c e l l s =[19 1 7 ] ; %d e f i n e s s i z e o f c e l l a r rays f o r opt and model array

37 XO=[971 0 . 5 ] ; %XO=i n i t i a l exper imental s e t t i n g s f o r fmincon d i sc r im func ;

38 Xset ( 1 , : )=s c a l e (XO, 0 ) ; %s c a l e s XO ( se t o f exper imental s e t t i ng s , [T C]

39 %e r r=1e−4; %var i ance o f gauss ian no i se added to data dur ing s imu lat i on

40 t o l=1e−18; %Tolerance f o r fmincon

41 to l 2=1e−10; %Tolerance f o r TolX

42 i t e r a t e =100; %i t e r a t i o n s f o r fmincon

43 s e t t =[ t o l t o l 2 ; i t e r a t e 0 ] ; %puts t o l e r an c e s and s c a l i n g in a vector f o r fmincon

44 sc=1e6 ; %s c a l i n g f a c t o r f o r e r r o r c a l cu l a t i o n

45 i f sc==0 %s c a l cannot be =0, or e r r o r c a l c won ’ t work

46 e r r o r ( ’ s c a l must be > 0 ’ ) ;

47 end

48 sc2=1%e17 ; %t h i s i s a s c a l i n g f a c t o r f o r fmincon search on optfun

49 Pvalue=zeros ( ni , 1 ) ;

50 rand ( ’ s tat e ’ , sum(100∗ c l ock ) ) ; %need to i n i t i a l i z e seed f o r random number generator

51 repeat=1; %determines how many t imes to do s imu lat i on s

52 %−−−−−−−−−−−−−−−−−−−−−−−−−Make model arrays−−−−−−−−−

53 %th i s makes the model ar rays with in format i on about each model

54 %models are organized by column

55 % model ( 1 , : )=name of model
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56 % model ( 2 , : )=%# of parameters in the model

57 % model ( 3 , : )=model {3 ,1}=[ .7 . 1 . 7 ] ; %i n i t i a l guess f o r emp model parameters

58 %i n i t i a l guess f o r model parameters

59 % model ( 4 , : )=Lower bound f o r model parameters

60 % model ( 5 , : )=Upper bound f o r model parameters

61 % model{6 ,:}= Flag (==0, no d e r i v a t i v e ==1 d e r i v a t i v e in model {8 , :}

62 % model{7 ,:}= Flag f o r Compfit (==0, normal ==1, f o r mod avg )

63 % av a i l ab l e data po in t s

64

65 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗% Empir i cal model∗∗∗∗∗∗∗∗∗

66 model{1 ,1}=@mod emp ; %name of model to be loaded

67 model {3 ,1}=[ .7 . 1 . 3 ] ; %i n i t i a l guess f o r emp model parameters

68 model{2 ,1}= length ( model {3 ,1}) ; %# of parameters in the model

69 model{4,1}=−300∗ ones (1 , 3) ; %Lower bound f o r emp model

70 model{5 ,1}=300∗ ones (1 , 3) ; %Upper bound f o r emp model

71 model{6 ,1}=0;

72 model{7 ,1}=0;

73 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%Mechani st i c model∗∗∗∗∗∗∗

74 model{1 ,2}=@mod mech ; %name of model to be loaded

75 model {3 , 2}=[0 ] ; %i n i t i a l guess f o r model parameters

76 model{2 ,2}= length ( model {3 ,2}) ; %# of parameters in the model

77 model {4 ,2}=[ −30] ; %Lower bound f o r model

78 model {5 , 2}=[20 ] ; %Upper bound f o r model

79 model{6 ,2}=0;

80 model{7 ,2}=0;

81 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Average model∗∗∗∗∗∗∗∗∗∗∗∗

82 model{1 ,4}=@mod avg ; %name of model to be loaded

83 model{3 ,4}=1; %i n i t i a l guess f o r model parameters

84 model{2 ,4}= length (model {3 ,4}) ; %# of parameters in the model

85 model{4 ,4}=−50; %Lower bound f o r model

86 model{5 ,4}=50; %Upper bound f o r model

87 model{6 ,4}=1;

88 model{7 ,4}=1;

89 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗SECOND Mechani st i c model∗∗∗

90 model{1 ,3}=@mod mech2 ; %name of model to be loaded

91 model{3 ,3}=[50 5 0 ] ; %i n i t i a l guess f o r model parameters

92 model{2 ,3}= length ( model {3 ,3}) ; %# of parameters in the model

93 model{4 ,3}=[−20 −20] ; %Lower bound f o r model

94 model{5 ,3}=[200 1 00 ] ; %Upper bound f o r model

95 model{6 ,3}=0;

96 model{7 ,3}=0;

97 [m,mC]= s i z e (model ) ; % mC i s the number o f models contained in models . mat

98 %−−−−−−−−−−−−−−−−−−−−−−−make opt arrays−−−−−−−−−−

99 %opt c e l l a r rays s t o r e i n f o as f o l l ow s :

100 %{1}=d max value o f exper imental data

101 %{2}=data s t o r e s the s imulated data

102 %{3}=er r s t o r e s e r r o r

103 %{4}= optrange range f o r exper imental po in t s ( upper and lower

104 %bounds )

105 %{5}=exper imental point next exper imental point to be run

106 %{6}= # r ep e t i t i o n s to be run

107 %{7}= element to pass value o f ’ a ’ to other fu nc t i on s

108 %{8} s t o r e s number o f c o r r e c t model f o r each i t e r a t i o n

109 %{9} s t o r e s max value accep tab l e f o r box ca l c

110 %{10}=system output f o r stopping c r i t e r i o n
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111 %{11}=ve rd i c t t e l l s user why s imu lat i on was stopped

112 %1=theta and Srhat not changing

113 %2=CI < s q r t ( no i s e )

114 %3=CI < CI ( des i r ed )

115 %{12}=counter counter f o r stopping c r i t e r i o n , s ee SC f o r a l l

116 %stopping c r i t e r i o n ques t i on s

117 %{13}=se t t %th i s has the s e t t i n g s f o r fmincon

118 %{14}=sc a l %th i s c a r r i e s the s c a l i n g s to be used f o r newf i t .m and newerr .m

119 %{15}= s to r e s the po in t s found using box1 and va lues o f funct i on at those po in t s [ x1 x2 ]

120 %{16}= to l e r an c e f o r SC (may not be used in growth time s imu lat i on s . . )

121 %{17}= exper imental po in t s desca l ed

122 i n i t=f ev a l ( @cel l , c e l l s ( 2) , 1 ) ; %extra c e l l array f o r i n i t a l c a l c s

123 %−−−−−−−−−−−−−−−−−−−−−−−−−− r e s u l t arrays−−−−−−−−−

124 %r e s u l t ar rays f o r each model and opt imal i ty

125 %1=thetahat

126 %2=srhat

127 %3=normal i zed p r ob ab i l i t y o f model

128 %4=est imated opt imal point

129 %{5}=J Jacobian o f data with re spe c t to parameters

130 %{6}=D D−opt imal value o f model

131 %{7}=PVxnew pr ed i c t i o n var i ance at new exper imental point

132 %{8}=PVxopt p r ed i c t i o n var i ance at est imated optimum point

133 %{9}=model p r ed i c t i o n at est imated opt imal point

134 %{10} holds F s t a t i s t i c s f o r LOF when i t i s c a l c u l a t ed

135 %{11}=exper imental e r r o r ( c a l cu l a t ed )

136 %{12}=con f i d ence i n t e r v a l on p r ed i c t i on s

137 %{13}=empty

138 %{14}=model p red i c t i on e r r o r

139 %{15}= output from system at opt imal point

140 %{16}=ob j e c t i v e funct i on output

141 %{17}=unscaled est imated opt imal point

142 %{18}=n i s l from model

143 %{19}=n i s l from true system

144 r e s u l t=f ev a l ( @cel l , c e l l s ( 1) ,mC) ; %extra c e l l array f o r i n i t a l c a l c s

145 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

146 %%−−−−−−−−−−−−−−−−−−−−MAIN CODE−−−−−−−−−−−−−−−−−

147 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

148 a l lP=zeros (mC, 1 ) ;

149 iprob=1/mC; %i n i t i a l p r ob ab i l i t y f o r a l l models so they ’ re equal

150 f o r z=1: r epeat ; %run experiment d i f f e r e n t t imes with a d i f f e r e n t i n i t i a l parameter

guess

151 er r1=e r r ∗ones (1 , r epeat ) ; %var i ance o f gauss ian no i se added to data dur ing

s imu lat i on

152 % fo r h=1:mC

153 % model {3 ,h}=guess {h}( z , : ) ; % %rea s s i g n s i n i t i a l parameter e s t imates

154 % end

155 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−%GENERATING DATA−−−−−−−−

156 % %I n i t i a l exper iments determined using T, C as p roces s v a r i a b l e s and s e t t i n g

157 % %up a 2ˆ2 f a c t o r i a l experiment

158 %simdata needs 5 inputs %x1=T [K] %x2=C [ micromol/L ]

159 %x3=# fo r saving f i l e s / housekeep ing ( used in ’ simdata .m’ )

160 %x4=var i ance o f gauss ian no i se added to generated data

161 %T and C are normalized , s ee va lues below

162 %simdata outputs two th ings matrix ’ data#’ and ’param ’

163 %data i s a 5 column matrix with [ x1 x2 n3 l a s t t f max n1 ]
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164 %n3 l a s t = f i n a l N i s l generated from simdata

165 %t f =f i n a l time ( generated data always goes to c e r t a i n l e v e l o f

coverage

166 %c a l l e d ’ theta ’− see notat i on on simdata .m−not used in r e s t o f

167 %s imu lat i on

168 %max n1= max number o f N 1 from s imu lat i on . kept in case we need to

169 %study simdata .m more , not used in r e s t o f s imu l at i on

170 %param are the parameters used in simdata to generat e the data , at t h i s

171 %point , i t i s always [ 0 0 . 8 0 . 2 ] corresponding to [ E i E d

172 %\sigma ]

173 s t a r t 1=da t e s t r (now)

174 [ data1 ]=Simdata(Low2 , rep , e r r1 ( z ) ) ; % inputs are T=873K, C=0.01

175 [ data2 ]=Simdata ( [ Up2(1) ; Low2(2) ] , rep , e r r1 ( z ) ) ; % inputs are T=1073K, C

=0.01

176 [ data3 ]=Simdata ( [ Low2(1) ;Up2(2) ] , rep , e r r1 ( z ) ) ; % inputs are T=873K, C=1.5

177 [ data4 ]=Simdata(Up2 , rep , e r r1 ( z ) ) ; % inputs are T=1073K, C=1.5

178 %saves a l l generated data in to one data matrix

179 data=[data1 ( : , 1 : 3 ) ; data2 ( : , 1 : 3 ) ; data3 ( : , 1 : 3 ) ; data4 ( : , 1 : 3 ) ] ;

180 %raw keeps a l l columns o f the o r i g i n a l data f o r fu tu re r e f e r e n c e

181 raw=[data1 ; data2 ; data3 ; data4 ] ;

182 d=max( round ( data ( : , 3 ) ∗100) ) /100; %ca l cu l a t e s maximum of output f o r

jacob i an ca l cu l a t i o n . 100 i s a f a c t o r used to make sure ’d ’ has enough decimal

p l a ce s and i s not rounded to zero

183 %pr es e t the opt c e l l a r rays to the c o r r e c t i n i t i a l va lues

184 i n i t {2}=data ; i n i t {1}=d ; i n i t {3}=er r ; i n i t {4}=[Low2 Up2 ] ; i n i t {5}=Xset ; i n i t {6}=rep ; i n i t

{7}=1; i n i t {11}= zeros (1 , 3) ; i n i t {13}= se t t ;

185 i n i t {14}=sc ; i n i t {16}= s c t o l ;

186 %−−−−−−−−−−−−%PARAMETER FIT AND PROBABILITY CALCULATION−−−−−

187 [ n ,nC]= s i z e ( data ) ; % n i s the number o f rows contained in data

188 % Compute the l e a s t squares f i t parameters ( theta1hat ) and

189 %e r r o r f o r parameters ( Sr1hat ) f o r each model

190 %l a s t number in input f o r compf i t c e l l array f o r model

191 f o r j =1:mC

192 [ r e s u l t {1 , j } ( 1 , : ) , r e s u l t {2 , j }(1) , r e s u l t {4 , j } ( 1 , : ) , r e s u l t {5 , j } , r e s u l t {6 , j }(1) ,

r e s u l t {7 , j }(1) , r e s u l t {8 , j }(1) , r e s u l t {14 , j }(1) , r e s u l t {9 , j }(1) , r e s u l t {15 , j }(1)

, r e s u l t {10 , j } ( 1 , : ) , r e s u l t {11 , j }(1) , r e s u l t {12 , j }(1) , r e s i d {1} , i n i t {1}(1) ,

r e s u l t {16 , j }(1) , r e s u l t {18 , j }(1) , r e s u l t {19 , j }(1) , r e s u l t {20 , j }(1) , data10{ j , 1} ,

ndata{ j , 1} , r e s u l t {21 , j } ( 1 , : ) , r e s u l t {22 , j }(1) , r e s u l t {23 , j }(1) ]=metrix3 ({model

{ : , j }} ,{ i n i t { :}} ,{ r e s u l t { : , j }} , step2 ) ; %metrix3 c a l c u l a t e s parameter f i t s

and other measures o f qu a l i ty f o r each model−see de s c r i p t i o n o f ’ metrix3 .m’

193 r e s u l t {17 , j } ( : , 1 )=s c a l e ( r e s u l t {4 , j } ( 1 , : ) , 1 ) ; %de s c a l e s T and C

194 model{3 , j}=r e s u l t {1 , j } ( 1 , : ) ; %r ep l a c e s i n i t i a l guess with new theta

f o r next i t e r a t i o n

195 pMcond( j ) = mprob( iprob , model {2 , j } , i n i t {6} , r e s u l t {2 , j }) ; % Compute the

c o nd i t i on a l p r o b a b i l i t i e s o f the models

196 end

197 % normal i ze p r o b ab i l i t i e s and f i nd most probable

198 [P, i n i t {8}]=maxP(pMcond ’ ) ; %normal i z e s and outputs p r ob ab i l i ty to sc r een

199 f o r zz=1:mC

200 r e s u l t {3 , zz}=P( zz ) ; %s t o r e s norm . prob . f o r each model

201 end

202 %−−−−−−−−−a s s i gn i ng ar rays f o r each opt imal i ty −−−−−−−−

203 popt=i n i t ; p r e su l t=r e s u l t ; dopt=i n i t ; gopt=i n i t ; d r e su l t=r e s u l t ; g r e s u l t=r e s u l t ; praw=raw ; draw=

raw ; graw=raw;%ass i gn c e l l a r rays to c o r r e c t op t imal i ty f o r s torage%%

204 %% loop f o r pfun ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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205 f p r i n t f ( ’ s t a r t i n g p−opt imal exper imental loop \n ’ ) ;

206 count=0; %pr es e t to zero

207 OPTIONS=optimset ( ’ Display ’ , ’ i t e r ’ , ’ LargeScale ’ , ’ o f f ’ ) ;

208 f o r i =1: n i

209 popt{7}= i ; %value o f i t e r a t i o n needs to be passed to some of the f unc t i on s

210 i t e r p=i %th i s i s used to determine how many i t e r a t i o n s o f each exp . des ign

was performed

211 best=popt {8}( i ) ; %s t o r e s the number o f most probable model f o r t h i s i t e r a t i o n

212 i f f l a g 2 (2)==1 %f l a g2 t e l l s whether or not to run box algor i thm (1=yes )

213 [ pointp ,XY4, Z4 , Z1]=optgraph ( popt {4} ( 1 , : ) , popt {4} ( 2 , : ) , step1 , p r e su l t {1 , best }( i , : ) ,

{model { : , best }} ,{popt { :}} ,{ pr e s u l t { : , best }} , p r e s u l t {11 , best }( i ) , 4) ; %This i s

used to generat e XY and Z f o r box1 .m inputs

214 %box1 determines the reduced exper imental area based on the CI o f e s t . opt imal

point

215 [ pout{ i } , popt {15}( i , : ) , popt{9}( i ) ]=box1 ({XY4{ :}} , Z4 , Z1 ,{ popt { :}} ,{ p r e su l t { : , best

}} ,{model { : , best }} , 2) ;

216 %g r id i n t .m determines the area around the opt imal point f o r the op t imal i ty

funct i on ca l cu l a t i o n

217 [ LB1 ,UB1]= g r i d i n t ( popt {15}( i , : ) ,Low2 ,Up2 , step1 ) ;

218 [ popt {5 ,1}( i , : ) , fnew ] = fmincon(@(xd ) optfun ( xd , p r e su l t {1 , best }( i , : ) ,{model { : , best

}} ,{popt { :}} ,{ pr e s u l t { : , best }} , p r e s u l t {11 , best }( i ) ,2 , sc2 ) , popt {15}( i , : )

, [ ] , [ ] , [ ] , [ ] , LB1 ,UB1) ; %f i nd s best exper imental point by minimizing optfun .m

219 e l s e %

220 %f i r s t , f i nd best s t a r t i n g point f o r op t im i zat i on using optgraph

221 [ pointp2 ( i , : ) ,XY5, Z5 ( : , : , i ) , Z6]=optgraph ( popt { 4} (1 , : ) , popt {4} (2 , : ) , step1 , p r e su l t

{1 , best }( i , : ) ,{model { : , best }} , {popt { :}} ,{ pr e s u l t { : , best }} , p r e s u l t {11 , best }( i )

, 2 ) ;

222 [ popt {5}( i , : ) , fnew ,Gp] = fmincon (@(xd ) optfun (xd , p r e s u l t {1 , best }( i , : ) ,{model { : , best

}} ,{popt { :}} ,{ pr e s u l t { : , best }} , p r e s u l t {11 , best }( i ) ,2 , sc2 ) , pointp2 ( i , : )

, [ ] , [ ] , [ ] , [ ] , popt {4} ( : , 1 ) , popt {4} ( : , 2 ) , [ ] ,OPTIONS) ;

223 end

224 popt {17} ( : , i )=s c a l e ( popt {5}( i , : ) , 1 ) ; %s t o r e s desca l ed va lues o f exper imental po in t s

225 %generate new data point

226 [ data5 ]=Simdata( popt{5}( i , : ) , rep , e r r1 ( z ) ) ;

227 praw=[praw ; data5 ] ; %s t o r e s raw data

228 popt{2}=[popt {2} ; data5 ( : , 1 : 3 ) ] ; %adds new data to e x i s t i n g data s e t

229 f o r j =1:mC %goes through each o f ’mC’ models

230 %c a l c u l a t e met r i c s f o r each model

231 [ p r e s u l t {1 , j }( i +1 , : ) , p r e su l t {2 , j }( i +1) , p r e su l t {4 , j }( i +1 , : ) , p r e su l t {5 , j } , p r e su l t {6 , j }( i

+1) , p r e su l t {7 , j }( i +1) , p r e su l t {8 , j }( i +1) , p r e su l t {14 , j }( i +1) , p r e su l t {9 , j }( i +1) , p r e su l t

{15 , j }( i +1) , p r e s u l t {10 , j }( i +1 , : ) , p r e s u l t {11 , j }( i +1) , p r e s u l t {12 , j }( i +1) , p r e s i d { i } ,

popt {1 ,1}( i +1) , p r e su l t {16 , j }( i +1) , p r e su l t {18 , j }( i +1) , p r e su l t {19 , j }( i +1) , p r e su l t {20 , j

}( i +1) , pdata{ j , i +1} , pndata{ j , i +1} , p r e su l t {21 , j }( i +1 , : ) , p r e su l t {22 , j }( i +1) , p r e su l t

{23 , j }( i +1)]=metrix3 ({model { : , j }} ,{popt { : , 1}} ,{ p r e su l t { : , j }} , step2 ) ;

232 p r e su l t {17 , j } ( : , i +1)=s c a l e ( p r e su l t {4 , j }( i +1 , : ) , 1 ) ; %d e s c a l e s T and C

233 a l lP ( j )=mprob( iprob , model {2 , j } , popt {6} , p r e su l t {2 , j }( i +1) ) ; %ca l cu l a t e

p r o b a b i l i t i e s f o r each model

234 end

235 %c a l c u l a t e normal i zed p r o b ab i l i t i e s f o r each model and f i nd most

236 %probable model

237 [P, popt {8 ,1}( i +1)]=maxP( a l lP ) ;

238 f o r j =1:mC

239 %as s i gn p r o b ab i l i t i e s to the r e s p e c t i v e model ar rays

240 p r e su l t {3 , j }( i +1)=P( j ) ;

241 end
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242 exper=s i z e ( popt {2}) ; %c a l c u l a t e s how many exper iments have been run

243 [ pout1 ( i +1 , : ) , count , popt {11}( i +1 , : ) ]=SC2( popt {7} ,{ pr e su l t { : , popt {8}( i +1)}} , goal , count , exper (1)

, rep , popt {16}) ;

244 i f pout1 ( i +1)==2 %i f stopping c r i t e r i o n funct i on SC2 .m are met twice in a row , pout

=2 and s imu lat i on should end

245 i f f l a g 2 (4)==1 %s imu lat i on ends i f f l a g 2 (4) =1, which means to stop

246 break

247 e l s e

248 pout1 ( i +1)=0; %i f SC i s not being run , change out to zero so box

algor i thm can be run

249 end

250 end

251 end

252 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−Saving Data−−−−−−−−−−−

253 p=date s t r (now , ’ mm dd yy ’ ) ;

254 ch5=[p , ’ ’ , num2str ( z ) , ’ ’ , num2str (num) ] ;

255 save ( ch5 ) ;

256 c l e a r point

257 count=0; %pr es e t to zero

258 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗D−opt imal∗∗∗∗∗∗∗∗∗

259 f p r i n t f ( ’ s t a r t i n g d−opt imal exper imental loop \n ’ ) ;

260 f o r i =1: n i

261 dopt{7}= i ;

262 i t e r d=i

263 best=dopt {8}( i ) ; %s t o r e s the number o f most probable model f o r t h i s

i t e r a t i o n

264 i f f l a g 2 (2)==1 %f l a g 2 t e l l s whether or not to run box algor i thm (1=yes )

265 [ pointd ,XY4, Z4 , Z1]=optgraph ( dopt {4} ( 1 , : ) , dopt {4} (2 , : ) , step1 , d re su l t {1 ,

best }( i , : ) , {model { : , best }} ,{dopt { :}} ,{ dr e s u l t { : , best }} , d r e s u l t {11 , best

}( i ) , 4) ; %This i s used to generat e XY and Z f o r box1 .m inputs

266 [ dout{ i } , dopt {15}( i , : ) , dopt {9}( i ) ]=box1 ({XY4{ :}} , Z4 , Z1 ,{ dopt { :}} ,{ d r e su l t

{ : , best }} ,{model { : , best }} , 1) ;

267 [ LB1 ,UB1]= g r i d i n t ( dopt {15}( i , : ) ,Low2 ,Up2 , step1 ) ;

268 [ dopt {5 ,1}( i , : ) , fnew ] = fmincon (@(xd ) optfun (xd , d r e su l t {1 , best }( i , : ) ,{

model { : , best }} ,{ dopt { :}} ,{ d re su l t { : , best }} , d r e su l t {11 , best }( i ) ,1 , sc2 ) ,

dopt {15}( i , : ) , [ ] , [ ] , [ ] , [ ] , LB1 ,UB1) ;

269 e l s e %run normal opt imazat ion rou t i n e

270 %f i r s t , f i nd best s t a r t i n g point f o r op t im i zat i on using optgraph

271 [ pointd2 ( i , : ) ,XY5, Z5 ( : , : , i ) , Z6]=optgraph ( dopt {4} (1 , : ) , dopt { 4} (2 , : ) , step1 ,

d r e su l t {1 , best }( i , : ) ,{model { : , best }} , {dopt { :}} ,{ d r e su l t { : , best }} ,

d r e s u l t {11 , best }( i ) , 1 ) ;

272 [ dopt {5}( i , : ) , fnew ] = fmincon(@(xd ) optfun ( xd , d r e su l t {1 , best }( i , : ) ,{model

{ : , best }} ,{dopt { :}} ,{ dr e s u l t { : , best }} , d r e s u l t {11 , best }( i ) ,1 , sc2 ) , pointd2

( i , : ) , [ ] , [ ] , [ ] , [ ] , dopt {4} ( : , 1 ) , dopt {4} ( : , 2 ) , [ ] ,OPTIONS) ;

273 end

274 dopt {17} ( : , i )=s c a l e ( dopt {5}( i , : ) , 1 ) ; %s t o r e s desca l ed va lues o f exper imental

po in t s

275 %generate new data point

276 [ data5 ]=Simdata( dopt {5}( i , : ) , rep , e r r1 ( z ) ) ;

277 draw=[draw ; data5 ] ;

278 dopt{2}=[dopt {2} ; data5 ( : , 1 : 3 ) ] ;

279 f o r j =1:mC

280 %ca l c u l a t e met r i c s f o r each model
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281 [ d r e su l t {1 , j }( i +1 , : ) , d r e su l t {2 , j }( i +1) , d r e su l t {4 , j }( i +1 , : ) , d r e su l t {5 , j } , d r e su l t

{6 , j }( i +1) , d r e s u l t {7 , j }( i +1) , d r e su l t {8 , j }( i +1) , d r e s u l t {14 , j }( i +1) , d r e su l t {9 , j }(

i +1) , d r e su l t {15 , j }( i +1) , d r e s u l t {10 , j }( i +1 , : ) , d r e s u l t {11 , j }( i +1) , d r e s u l t {12 , j }( i

+1) , d r e s i d { i } , dopt {1}( i +1) , d r e su l t {16 , j }( i +1) , d r e su l t {18 , j }( i +1) , d r e su l t {19 , j }(

i +1) , d r e su l t {20 , j }( i +1) , ddata{ j , i +1} ,dndata{ j , i +1} , d r e su l t {21 , j }( i +1 , : ) , d r e su l t

{22 , j }( i +1) , d r e su l t {23 , j }( i +1)]=metrix3 ({model { : , j }} ,{dopt { : , 1}} ,{ dr e su l t { : , j

}} , step2 ) ;

282 d r e su l t {17 , j } ( : , i +1)=s ca l e ( d r e s u l t {4 , j }( i +1 , : ) , 1 ) ; %de s c a l e s T and C

283 a l lP ( j )=mprob( iprob , model{2 , j } , dopt {6} , d r e su l t {2 , j }( i +1) ) ; %c a l cu l a t e

p r o b a b i l i t i e s f o r each model

284 end

285 %c a l c u l a t e normal i zed p r o b a b i l i t i e s f o r each model and f i nd most

286 %probable model

287 [P, dopt {8 ,1}( i +1)]=maxP( a l lP ) ;

288 f o r j =1:mC

289 %ass i gn p r o b a b i l i t i e s to the r e s pe c t i v e model ar rays

290 d re su l t {3 , j }( i +1)=P( j ) ;

291 end

292 exper=s i z e ( dopt {2}) ; %c a l c u l a t e s how many exper iments have been run

293 [ dout1 ( i +1 , : ) , count , dopt {11}( i , : ) ]=SC2( dopt {7} ,{ dr e su l t { : , dopt {8}( i +1)}} , goal , count , exper

(1) , rep , dopt {16}) ;

294 i f dout1 ( i +1)==2

295 i f f l a g2 (4)==1

296 break

297 e l s e

298 dout1 ( i +1)=0; %i f SC i s not being run , change out to zero so box

algor i thm can be run

299 end

300 end

301 end

302 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−Saving Data−−−−−−−−

303 p=date s t r (now , ’ mm dd yy ’ ) ;

304 ch5=[p , ’ ’ , num2str ( z ) , ’ ’ , num2str (num) ] ;

305 save ( ch5 ) ;

306 c l e a r point

307 count=0; %pr es e t to zero

308 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗RANDOM∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

309 f p r i n t f ( ’ s t a r t i n g random exper imental loop \n ’ ) ;

310 f o r i =1: n i

311 gopt{7}= i ;

312 i t e r g=i

313 best=gopt {8}( i ) ; %s t o r e s the number o f most probable model f o r t h i s i t e r a t i o n

314 i f f l a g 2 (2)==1 %f l a g2 t e l l s whether or not to run box algor i thm (1=yes )

315 [ pointg ,XY4, Z4 , Z1]=optgraph ( gopt {4} ( 1 , : ) , gopt {4} ( 2 , : ) , step1 , g r e s u l t {1 , best }( i , : ) ,

{model { : , best }} ,{ gopt { :}} ,{ g r e su l t { : , best }} , g r e su l t {11 , best }( i ) , 4) ; %This i s

used to generat e XY and Z f o r box1 .m inputs

316 [ gout{ i } , gopt {15}( i , : ) , gopt {9}( i ) ]=box1 ({XY4{ :}} , Z4 , Z1 ,{ gopt { :}} ,{ g r e s u l t { : , best

}} ,{model { : , best }} , 4) ;

317 [ o , q]= s i z e ( gout{ i }) ;

318 i f q==8 %i f t h i s i s true , then there i s at l e a s t one point that i s

wi th in boxmax , and po in t s are chosen randomly from ava i l a b l e l i s t o f po in t s f o r

next experiment . I f q=1, then an experiment i s generated randomly from en t i r e

exper imental space

319 pop=round ( un i f rnd (1 , o ) ) ;

320 gopt {5 ,1}( i , : )=gout{ i }(pop , 3 : 4 ) ;
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321 e l s e %i f po in t s can ’ t be found on the gr id , then make random

poin t s

322 gopt {5 ,1}( i , 1 ) = un i f rnd ( gopt {4}(1 ,1) , gopt {4}(1 ,2) ) ;

323 gopt {5 ,1}( i , 2 )= un i f rnd ( gopt {4}(2 ,1) , gopt {4}(2 ,2) ) ;

324 end

325 e l s e

326 %generate exper imental po in t s us ing random number generator , un i f rnd p i cks random

number between optrange

327 gopt {5 ,1}( i , 1 ) = un i f rnd ( gopt {4}(1 ,1) , gopt {4}(1 ,2) ) ;

328 gopt {5 ,1}( i , 2 )= un i f rnd ( gopt {4}(2 ,1) , gopt {4}(2 ,2) ) ;

329 end

330 gopt {17} ( : , i )=s c a l e ( gopt {5}( i , : ) , 1 ) ; %s t o r e s desca l ed va lues o f exper imental po in t s

331 %generate new data point

332 [ data5 ]=Simdata( gopt {5}( i , : ) , rep , e r r1 ( z ) ) ;

333 graw=[graw ; data5 ] ;

334 gopt{2}=[ gopt {2} ; data5 ( : , 1 : 3 ) ] ;

335 f o r j =1:mC

336 %ca l c u l a t e met r i c s f o r each model

337 [ g r e s u l t {1 , j }( i +1 , : ) , g r e s u l t {2 , j }( i +1) , g r e su l t {4 , j }( i +1 , : ) , g r e s u l t {5 , j } , g r e s u l t

{6 , j }( i +1) , g r e su l t {7 , j }( i +1) , g r e s u l t {8 , j }( i +1) , g r e su l t {14 , j }( i +1) , g r e s u l t {9 , j }(

i +1) , g r e su l t {15 , j }( i +1) , g r e su l t {10 , j }( i +1 , : ) , g r e su l t {11 , j }( i +1) , g r e su l t {12 , j }( i

+1) , g r e s i d { i } , gopt {1 ,1}( i +1) , g r e s u l t {16 , j }( i +1) , g r e s u l t {18 , j }( i +1) , g r e s u l t {19 , j

}( i +1) , g r e su l t {20 , j }( i +1) , gdata{ j , i +1} , gndata{ j , i +1} , g r e s u l t {21 , j }( i +1 , : ) ,

g r e s u l t {22 , j }( i +1) , g r e s u l t {23 , j }( i +1)]=metrix3 ({model { : , j }} ,{ gopt { : , 1}} ,{

g r e s u l t { : , j }} , step2 ) ;

338 g r e su l t {17 , j } ( : , i +1)=s ca l e ( g r e su l t {4 , j }( i +1 , : ) , 1 ) ; %de s c a l e s T and C

339 a l lP ( j )=mprob( iprob , model{2 , j } , gopt {6} , g r e su l t {2 , j }( i +1) ) ; %c a l cu l a t e

p r o b a b i l i t i e s f o r each model

340 end

341 %c a l c u l a t e normal i zed p r o b a b i l i t i e s f o r each model and f i nd most

342 %probable model

343 [P, gopt {8 ,1}( i +1)]=maxP( a l lP ) ;

344 f o r j =1:mC

345 %ass i gn p r o b a b i l i t i e s to the r e s pe c t i v e model ar rays

346 g r e s u l t {3 , j }( i +1)=P( j ) ;

347 end

348 exper=s i z e ( gopt {2}) ; %c a l c u l a t e s how many exper iments have been run

349 [ gout1 ( i +1 , : ) , count , gopt {11}( i +1 , : ) ]=SC2( gopt {7} ,{ g r e s u l t { : , gopt {8}( i +1)}} , goal , count ,

exper (1) , rep , gopt {16}) ;

350 i f gout1 ( i +1 ,1)==2

351 i f f l a g 2 (4)==1

352 break

353 e l s e

354 gout1 ( i +1 ,1)=0; %i f SC i s not being run , change out to

zero so box algor i thm can be run

355 end

356 end

357 end

358 c l e a r point

359 f i n i s h=da t e s t r (now) %outputs time when s imu lat i on i s f i n i s h ed

360 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−Saving Data−−−−−−−−−−−

361 p=date s t r (now , ’ mm dd yy ’ ) ;

362 ch5=[p , ’ ’ , num2str ( z ) , ’ ’ , num2str (num) ] ;

363 save ( ch5 ) ;

364
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365 %% Save a l l f i g u r e s

366 SaveAl lFigures (p , z ,num) ;

367 c l o s e a l l %t h i s command c l o s e s a l l graphs

368 end

369 end

370 %% extra f unc t i on s needed f o r code to run are a l l i n c l uded in the f o l l ow i ng s e c t i on

371 %%%%%%%%%%%%%%%%%%%%%%%%%%box1%%%%%%%%%%%%%%%%%%

372 funct i on [ out , point , boxmax]=box1 (mat ,Z , Zal l , opt , r e su l t , model8 , f l a g )

373 %∗∗∗∗∗∗∗∗∗∗modi f i ed f o r nuc l eat i on study∗∗∗∗∗∗∗∗

374 %th i s funct i on takes as input the array o f x and y va lues ’X’ , and the

375 %matrix o f some func t i on s eva lua t i on s in the (x , y ) space , Z . ’boxmax ’ i s the

376 %maximum al lowed value c a l cu l a t ed from avareage output + CI

377 %Z1 i s the model e va lua t i on s at (X,Y) where Z i s the o b j e c t i v e funct i on eva lua t i on s at (X,Y)

378

379 %th i s funct i on ca l cu l a t e s whether po in t s outputed from optgraph (mat , Z , and Za l l ) are p o t e n t i a l

opt imal po in t s o f the p roces s based on the ’boxmax ’

380 %−−−−−−−−Constraints−−−−−−−−−−−−−−−−−−−−−−−−−−−−

381 ntarge t =0.001; %sma l l e s t value o f n { i s l } des i r ed

382 t t a r g e t =3; %want f i lm to grow in 3 minutes

383 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

384 a=opt {7} ; %i t e r a t i o n

385 counter=0; %need something to track how many po in t s are below boxmax

386 theta=r e s u l t {1}(a , : ) ; %parameters

387 s i g s q=r e s u l t {11}(a ) ; %exp e r r o r

388 hand=model8 {1} ; %handel f o r model funct i on

389 d=opt {1}(a ) ; %max value o f data f o r Jac .m

390 J=r e s u l t {5} ; %X matrix ( de r i v a t i v e o f model wrt parameters )

391 n=l ength ( opt {2}) ; %c a l c u l a t e s how many exper iments have been performed

392 de l ta=r e s u l t {12}(a ) ; %con f i d ence i n t e r v a l on F

393 p=model8 {2} ; %# parameters in model

394 pred=r e s u l t {9}(a ) ; %f l u x pr ed i c t i on from model

395 t=r e s u l t {22}(a ) ; %value o f t from model at e s t . opt . point

396 n i s l=r e s u l t {18}(a ) ;

397 value=r e s u l t {16}(a ) ; %value o f obj . func . at e s t . opt . point o f most probable model

398 %Cal cu l at i on o f var i ance on ob j e c t i v e funct i on

399 CI=r e s u l t {21}(a , 3 ) ; %con f i d ence i n t e r v a l c a l cu l a t ed in metrix3 f o r opt imal point

400 boxmax=value+CI ; %

401 X=mat {1} ; Y=mat{2} ; %X and Y matr i ce s generated from optgraph .m

402 Z1=Za l l {1} ; Z2=Za l l {2} ; Z3=Za l l {3} ; Z4=Za l l {4} ; %taking Za l l apart to be used by

box .m funct i on (Z1=time , Z2=n i s l , Z3=F, Z4=dn i s l )

403 f o r i =1: l ength (X)

404 f o r j =1: l ength (X)

405 point=[X( i , j ) Y( i , j ) ] ;

406 %c a l cu l a t e p r ed i c t i on var i ance at point

407 i f model8{6}==0, Jopt=Jac ( theta , hand , [X( i , j ) Y( i , j ) ] , d) ;

408 e l s e i f model8{6}==1 && model8{7}==1, Jopt=ones (1 , 1) ;

409 e l s e Jopt=[ones (1 , 1) X( i , j ) Y( i , j ) ] ; end

410 PVopt1=PV(J , Jopt , s i g s q ) ;

411 %c a l cu l a t e con f i d ence i n t e r v a l at est imated opt imal point . Equation taken

412 %from pg 395 Montgomery . ∗∗Jopt should be a 3x1 matrix , so the t ran spose i s

413 %rever sed ∗∗

414 de l ta2=t inv ( 0 . 97 5 , ( n (1)−p) )∗ sq r t ( s i g s q ∗( Jopt∗ inv (J ’∗ J )∗Jopt ’ ) ) ;

415 CI2=abs (−150∗(Z3( i , j ) ∗0.2651) ˆ(−2) )∗ de l ta2 ; %e r r o r propagat ion f o r

time c a l cu l a t i o n
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416 CI3=abs (Z4( i , j ) )∗ de l ta2 ; %e r r o r propagat ion f o r

n i s l c a l c u l a t i on

417 CI4=sqr t ( abs (2∗( Z1( i , j )−t t a r g e t ) ) )∗CI2+sq r t ( abs (2∗(1 e4 ∗(Z2( i , j )−ntarge t ) ) ) )∗CI3 ;

%c a l c u l a t e s the uncer ta i n ty in each point

418 i f (Z( i , j ) < boxmax) | | ( (Z( i , j )−CI4 ) < boxmax) %want value to be g re a te r than

boxmax s in c e the point i s to maximize N i s l

419 counter=counter+1;

420 out ( counter , : ) =[Z1 ( i , j ) CI4 X( i , j ) Y( i , j ) Z( i , j ) Z2( i , j ) CI boxmax ] ;

%the column ind i c e o f Z i s the x ind i ce , row i s f o r y i nd i c e

421 end

422 end

423 end

424 i f counter==0 %i f noth ing was found that met c on t s t r a i n t s , end funct i on

425 out=1; %out re tu rn s a dummy va r i ab l e so no e r r o r

426 re tu rn

427 end

428 %out i s o f the form [ output x y ] f o r as many rows as va lues below ’boxmax ’

429 % part 2 o f funct ion−−−−p i ck ing best value f o r pfun

430 [ n ,m]= s i z e ( out ) ; %c a l c u l a t e s how many po in t s were found

431 i f f l a g==4 %i f f l a g ==4, doing random and want to sk ip t h i s se t o f c a l c u l a t i o n s

432 point =[out (1 , 3) out (1 , 4) ] ; %i f f l a g ==4, t h i s point i s meaningless

433 e l s e

434 f o r k=1: counter %ca l c value o f op t imal i ty ( depends on f l a g ) at the po in t s below

Pvalue

435 out (k , 9 )=optfun ( [ out (k , 3 ) out (k , 4 ) ] , theta , model8 , opt , r e su l t , s i g sq , f l a g ) ;

436 end

437 %−−−−−−−−−−FINDING MINIMUM−−−−−−−−−−−−−−

438 [ val , I ]=min( out ( : , 9 ) ) ; %f i n d s minimum of each column in ’b ’ and i t s i nd i c e

439 x f i n=out ( I , 3 ) ;

440 y f i n=out ( I , 4 ) ;

441 point =[ x f i n y f i n ] ; %index o f minimum point

442 end

443 end

444 %%%%%%%%%%%%%%%%%%%%%%%%%%%%Flux%%%%%%%%%%%%%%%

445 funct i on [F , t ]= f l ux (u , e r r )

446 %This funct i on outputs f l ux [=]ML/min

447 %th i s funct i on assumes 300 ML/min i s maximum f l ux po s s i b l e

448 %h ighes t T i s 1073K (700C)

449 % gas f low=20 sccm

450 %C i s concen t rat i on and should be [=] micromol/L

451 %T i s temperature and should be [=]K

452 %−−−−−−−−−−−−−−−−−−constan t s used−−−−−−−−−−−−−−−

453 R=0.00831447; %kJ /(mol∗K)

454 Avo=6.022 e23 ; %Avogadro ’ s number [=] atoms/mol

455 f low =5.061; %[=]L/min = 20 sccm ( taken from Ca l cu l a t i on s f o l d e r )

456 MW=88; %molecu lar weight o f Y [=] g/mol

457 D=2.54; %diameter o f c i r c u l a r subs t r at e [=]cm

458 conv=1e7 ; %conver s i on [=]nm/cm

459 av=0.0745; %atomic volume [=]nmˆ3/atom

460 Ea=19.25; %a c t i v a t i on energy f o r f l ux ( c a l c u l a t i on on pg 47 o f notebook )

461 conv2 =0.2651; %conver s i on f o r nm to monolayers (ML) [=]nm/ML

462 %−−−−−−−−−−−−−Area o f wafer calc−−−−−−−−−−−−−−−−

463 Area=pi ∗(D∗conv /2) ˆ2 ; %assumes c i r c u l a r subs t ra t e

464 %des c a l i ng va r i ab l e s

465 z=s c a l e (u , 1 ) ;
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466 T = z (1) ; %temperature [K]

467 C = z (2) ; %Concentrat ion [ micromoles /L ]

468 %−−−−−−−−−−−−−−−Fo ca l cu l a t i on−−−−−−−−−−−−−−−−−−−−

469 Fo=C∗1e−6∗ f l ow ∗Avo∗av/Area/conv2 ;

470 %−−−−−−−−−−−−−−−Flux ca l cu l a t i on−−−−−−−−−−−−−−−−−

471 F=Fo∗exp(−Ea/(R∗T) )+normrnd (0 , e r r ) ;

472 t=150/(F∗conv2 ) ; %ta rg e t o f 150nm th i ck f i lm

473 end

474 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%metrix3%%%%%%%%%

475 funct i on [ theta , Sr , point , J , Dopt ,PVx1 , PVopt1 , err1 , pred , pred2 ,F , sigmasq , CI , r , d , val , n i s l , truen ,

counter , data1 , ndata1 , CI5 , tm , dn i s l ]=metrix3 ( model2 , opt , r e su l t , step )

476 %∗∗∗∗∗∗∗∗∗∗Modi f i ed f o r nuc l eat i on s imu lat i on ∗∗∗∗∗∗∗∗∗

477 %This funct i on w i l l reduce the c l u t t e r in the main funct i on and does c a l c u l a t i o n s that would ’ ve

been r e p e t i t i v e anyway .

478 %%%%INPUT De f i n i t i o n s

479 %model2=array passed with needed in format i on f o r op t imal i ty

480 %e r r=exper imental e r r o r

481 %range=lower and upper bounds f o r c a l cu l a t i n g new thetas

482 %optrange=range f o r f i nd i ng optimum point

483 %step=how many step s one wants optgraph to perform

484 %constan t s f o r MHF

485 %%%%OUTPUT De f i n i t i o n s

486 %theta=pred i c t ed thetahat f o r t h i s i t e r a t i o n

487 %Sr=pred i c t ed Srhat f o r t h i s i t e r a t i o n

488 %d=pred i c t ed max value o f y from data

489 %J=pred i c t ed jacob i an f o r t h i s i t e r a t i o n

490 %data=data matrix p lus new experiment from th i s i t e r a t i o n

491 %Dopt=D−opt imal value f o r t h i s i t e r a t i o n

492 %PVx1=pr ed i c t i on var i ance f o r exper imental point

493 %pred=pred i c t ed value at est imated opt imal point

494 %er r1=e r r o r o f p red i c t ed value to actua l value at p red i c t ed opt imal point

495 %PVopt1=PV at i n i t i a l est imated opt imal point

496 %PVopt2=PV at r e a l opt imal point

497 %pred2=output from system

498 %F= F s t a t i s t i c a l va lues f o r LOF (1) i s f o r model (2) i s F f o r comparison

499 %to (1)

500 %sigmasq=exper imental var i ance c a l cu l a t ed from exper imental data

501 %optpoint=est imated opt imal point f o r t h i s i t e r a t i o n ( a f t e r new experiment

502 %i s generated ( used in c a l cu l a t i o n s f o r next round

503 %−−−−−−−−−−−−pu l l i ng in format i on from ar rays

504 a=opt {7} ; %passe s # of i t e r a t i o n to f i n d co r r e c t value

505 data=opt {2} ; %exper imental data

506 hand=model2 {1} ; %model funct i on handle

507 exppt=opt {5}(a , : ) ; %next exper imental point

508 xLB=opt {4} ( : , 1 ) ; %range f o r x1

509 xUB=opt {4} ( : , 2 ) ; %range f o r x2

510 p=model2 {2} ; % # parameters in model

511 sc=opt {14} ; %s c a l i n g f o r the e r r o r

512 rep=opt {6} ; %number r e p i t i t i o n s

513 %−−−−−−−−Constraints−−−−−−−−−−−−−−−−−−−−−−−−−−−−

514 ntarge t =0.001; %sma l l e s t value o f n { i s l } des i r ed

515 t t a r g e t =3; %want f i lm to grow in 3 minutes

516 ndata1=data ;

517 %ca l c u l a t e new thetahat and Srhat

518 counter=0;
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519 zoink=0;

520 ndata2=data ( 1 , : ) ; %i n i t i a l i z e d to 1 , ndata2 used to check i f ndata1 has changed from

one i t e r a t i o n to the next

521 whi l e zoink==0 && counter < 5 %only want to run pinky f i v e t imes to make sure no

i n f i n i t e loop .

522 %a l l th ese c a l cu l a t i o n s are nece s sary to run be for e pinky

523 hand

524 [ theta , Sr , G] = newf i t ( ndata1 , model2 , opt {13} , sc ) ;

525 hand

526 n=s i z e ( ndata1 ) ;

527 sigmasq=Sr /(n (1)−p) ; %ca l cu l a t i n g exper imental var i ance

528 d=max( round( ndata1 ( : , 3 ) ∗100) ) /100; %c a l c u l a t e s maximum of output f o r

jacob i an c a l cu l a t i o n

529 %∗1000 i s used so d i s a number other than 0

530 i f model2{6}==0,

531 J=Jac ( theta , hand , ndata1 , d) ; %ca l cu l a t e s Jacobian o f ALL the data to use in D−

opt imal .

532 e l s e i f model2{6}==1 && model2{7}==1, J=ones (n , 1 ) ;

533 e l s e J=[ ones (n , 1 ) ndata1 ( : , 1 ) ndata1 ( : , 2 ) ] ;

534 end

535 hand

536 %f ind opt imal point p red i c t ed by the opt imal i ty

537 %f i r s t , use optgraph to s t a r t op t im i zat i on

538 [ pointp ,XY4, Z4 , Z1]=optgraph ( opt {4} (1 , : ) , opt { 4} (2 , : ) , step , theta , {model2 { :}} ,{ opt { :}} ,{

r e s u l t { :}} , sigmasq , 4) ;

539 hand

540 OPTIONS = optimset ( ’ Display ’ , ’ i t e r ’ , ’ LargeScale ’ , ’ o f f ’ ) ;

541 [ point , val ]=fmincon (@( point ) obj fun ( point , theta , hand , d ) , pointp , [ ] , [ ] , [ ] , [ ] , xLB,xUB) ;

542 [ val , s t u f f , d n i s l ]=obj fun ( point , theta , hand , d) ; %need to r e c a l c obj fun .m now that opt .

point i s found f o r other parameters needed f o r e r r o r propagat ion

543 tm=s t u f f (2) ; n i s l=s t u f f ( 3) ; pred=s t u f f ( 1) ;

544 hand

545 i f model2{6}==0, Jopt=Jac ( theta , hand , point , d ) ;

546 e l s e i f model2{6}==1 && model2{7}==1, Jopt=ones (1 , 1) ;

547 e l s e Jopt=[ones (1 , 1) point (1) point (2) ] ; end

548 %c a l c u l a t e con f i d ence i n t e r v a l at est imated opt imal point . Equation taken

549 %from pg 395 Montgomery . ∗∗Jopt should be a 3x1 matrix , so the t ran spose i s

550 %rever sed ∗∗

551 CI=t inv (0 . 975 , ( n (1)−p) )∗ s q r t ( sigmasq ∗( Jopt∗ inv (J ’∗J )∗Jopt ’ ) ) ;

552 %Cal cu l at e p r ed i c t i on at est imated opt imal point

553 CI2=abs (−150∗( pred ∗0.2651) ˆ(−2) )∗CI ; %e r r o r propagat ion f o r time ca l c u l a t i on

554 CI3=abs ( dn i s l )∗CI ; %e r r o r propagat ion f o r n i s l c a l c u l a t i o n

555 CI4=sq r t (2∗ abs (tm−t t a r g e t ) )∗CI2+sq r t (2∗ abs (1 e4 ∗( n i s l −ntarge t ) ) )∗CI3 ; %inc lude both

terms in o b j e c t i v e funct i on s i n c e both depend on F

556 CI5=[CI2 CI3 CI4 ] ; %array to s t o r e a l l con f i d ence i n t e r v a l s

557 boxmax=val+CI4 ; %

558 [ ndata1 , data1 ]=pinky ( data , boxmax , theta , hand , p , d) ; %th i s funct i on w i l l determine i f

data used to f i t the parameters i s wi th in con f i d ence i n t e r v a l . I f i t i s not , that point

i s removed and the parameters are r e f i t us ing r ev i s ed exper imental data

559 counter=counter +1; %increment counter , only want to do th ree i t e r a t i o n s

through th i s loop

560 n5=s i z e ( ndata1 ) ; n6=s i z e ( data ) ; n7=s i z e ( ndata2 ) ;

561 i f ( n5 (1)==n6 (1) ) | | ( n5 (1)==n7 (1) && ndata1 (1 , 3)==ndata2 (1 , 3) ) %i f s i z e s are equal ,

e i t h e r i t ’ s a l r eady using a l l the data , or i t i s unchanged from one i t e r a t i o n to the

next , meaning we should get out o f t h i s whi l e loop
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562 zoink =1;

563 end

564 ndata2=ndata1 ;

565 end

566 %Pred i c t i on Variance at new point

567 i f model2{6}==0, Jnew=Jac ( theta , hand , exppt , d ) ;

568 e l s e i f model2{6}==1 && model2{7}==1, Jnew=ones (1 , 1) ;

569 e l s e Jnew=[ones (1 , 1) exppt (1) exppt (2) ] ; end

570 PVx1=PV(J , Jnew , sigmasq ) ;

571 %ca l c u l a t e p r ed i c t i o n var i ance at est imated opt imal point

572 [dummy1,dummy2,dummy3]=Simdata( point , 1 , 0 , 1 ) ;

573 pred2=dummy1(3) ; %f l u x o f depo s i t i on from true system

574 truen=dummy3(1) ; %nuc l eat i on dens i ty from true system

575 er r1=(pred−pred2 ) ˆ2 ; %e r r o r c a l cu l a t i o n at est imated opt imal

576 %point

577 PVopt1=PV(J , Jopt , sigmasq ) ;

578 %ca l c u l a t e p r ed i c t i o n var i ance at r e a l opt imal point ( not using t h i s s i n c e we don ’ t know opt imal

point f o r nuc s imu lat i on )

579 %ca l c u l a t e f i n a l D−opt imal value using funct i on ’ dfun ’

580 Dopt=optfun ( exppt , theta , model2 , opt , r e su l t , sigmasq , 3 ) ;

581 F=50;%LOF( Sr , data ( : , 3 ) , rep , p) ;

582 %ca l c u l a t e s tuden t i zed r e s i d u a l s

583 [ Sr2 , r e s i d ]=newerr ( theta , data1 , hand , sc ) ; %f i nd s r e s i d u a l s from newerr

584 Hat=J∗(J ’∗ J ) ˆ(−1)∗J ’ ; %c a l c u l a t e s hat matrix which r e l a t e s e r r o r in r e s i d u a l s to exper imental

e r r o r s

585 f o r i =1:n (1)

586 r ( i )=r e s i d ( i ) / s q r t ( Sr∗(1−Hat ( i , i ) ) ) ;

587 end

588 end

589

590 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%newf i t%%%%%%%%%%%%%%%%%

591 funct i on [ theta , Srsc ,G] = newf i t ( data , model , s e t t , sc )

592 %th i s funct i on f i t s the parameters to the data by minimizing the e r r o r

593 %∗∗∗∗∗∗∗∗∗∗modi f i ed f o r use with nuc l eat i on model ing∗∗∗∗∗

594 %funct i on c a l c u l a t e s the best f i t parameters to the data , theta , as we l l as the

595 %model e r ror , Sr

596 % data in [ y x ] form

597 %model i s the funct i on handle

598 %po i s the parameter guess

599 %range con ta in s the bounds f o r the op t im i zat i on

600 %Sr0 i s i n i t i a l e r r o r

601 %theta , Sr , G, output are outputs o f fmincon

602 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

603 %i f statement was added with mod avg in mind . mod avg needs i t s new

604 %parameters to j u s t be an average o f the a va i l ab l e data , which won ’ t

605 %n e c e s s a r i l y minimize the e r r o r

606 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

607 po=model {3} ; %i n i t i a l parameter guess

608 hand=model {1} ; %model funct i on handle

609 i f model{7}==1

610 theta=mean( data ( : , 3 ) ) ;

611 Sr = newerr ( theta , data , hand , 1 ) ;

612 G=1;

613 e l s e

614 Sr=0; Sr0=0;
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615 [ Sr0 , s t u f f ] = newerr (po , data , hand , 1 ) ; % I n i t i a l e r r o r in p r ed i c t i on

616 % Minimize over the f i t

617 %se t t i n g t o l e r an c e f o r fmincon

618 OPTIONS = optimset ( ’ Display ’ , ’ i t e r ’ , ’ MaxFunEvals ’ , s e t t (2 , 1 ) , ’ LargeScale ’ , ’ o f f ’ ) ;

619 % ’TolFun ’ , s e t t (1 , 1 ) , ’TolX ’ , s e t t (1 , 2 ) , ’ TolCon ’ , s e t t (1 , 2 ) , −−t h i s cou ld go back in

l a t e r

620 [ theta , Sr ,G, output ] = fmincon (@( theta ) newerr ( theta , data , hand , 1 ) , po , . . .

621 [ ] , [ ] , [ ] , [ ] , model {4} ,model { 5 } , [ ] ,OPTIONS) ;

622 %G i s e x i t f l a g o f fmincon

623 %output g i ve s i n format i on on opt im i zat i on

624 %G, output used f o r debugging

625 end

626 Srsc=Sr /1 ; %de s c a l e s Sr to use in r e s t o f s imu l at i on

627 end

628 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%nuc%%%%%%%%%%%%%%%%%%

629 funct i on dndt = nuc ( t , n , x , q )

630 % Nucleat ion model from Evans , Thiel , and Bar te l t

631 %This i s to go with funct i on ’ simdata .m’ and obj fun .m

632 % Process inputs ( f a c t o r s )

633 T = x (1) ;

634 F = x (2) ;

635 %q are the f i t t e d parameters in t h i s model

636 %fo r mod mech2 , ’q ’ has l ength 2 and ’Ed ’ must be s e t to 0 . 8

637 i f l ength ( q)==3

638 Ei = q (1) ; % Energy o f c r i t i c a l c l u s t e r [ eV ]

639 Ed = q (2) ; % d i f f u s i o n a c t i v a t i on energy [ eV ]

640 sigma = q (3) ; % Capture number

641 e l s e

642 Ei = q (1) ; % Energy o f c r i t i c a l c l u s t e r [ eV ]

643 sigma = q (2) ; % Capture number

644 %6/26−−− t e s t i n g to see i f Ed w i l l make a d i f f e r e n c e in model i f i t ’ s wrong .

645 %Normally at 0 . 8

646 Ed = 0 . 8 ; % d i f f u s i o n ac t i v a t i on energy [ eV ]

647 end

648 %constan t s

649 kb = 8.62 e−5; % Boltzmann ’ s constant [ eV/K]

650 v = 1e13 ; %attempt frequency o f hopping [ 1/ s ]

651 c i = 1 ; %# con f i gu r a t i on s o f a s t a b l e i s l and

652 i =2; %#adatoms needed to form an i s l and

653 %(s e t at low numbers , 1 or 2)

654 beta =1/kb/T; %[1/eV ]

655 h = v∗exp(−beta∗Ed) ; %[1/ s ]

656 %ca l c u l a t i on o f N i s l

657 % State s

658 theta = n (1) ;

659 N1 = n (2) ;

660 N i s l = n (3) ;

661 Ni = c i ∗exp(−beta∗Ei )∗N1ˆ i ; % Density o f c r i t i c a l c l u s t e r s

662 Knuc = sigma∗h∗N1∗Ni ;

663 Kagg = sigma∗h∗N1∗Ni s l ;

664 % D i f f e r e n t i a l equat ion model

665 dndt = zeros (3 , 1) ;

666 dndt (1) = F; % Coverage theta

667 dndt (2) = F∗(1− theta ) − ( i +1)∗Knuc − Kagg ;

668 dndt (3) = sigma∗h∗N1∗Ni ;

177



669 end

670 %%%%%%%%%%%%%%%%%%%%%%%%%%%objfun%%%%%%%%%%%%%%%%%

671 funct i on [ z1 , r , d e r i v ]=obj fun (x , theta , hand , d)

672 %th i s funct i on ca l cu l a t e s the value o f the ob j e c t i v e funct i on f o r the

673 %nuc l eat i on study

674 %−−−−−−−−Constraints−−−−−−−−−−−−−−−−−−−−−−−−−−−−

675 ntarge t =0.001; %sma l l e s t value o f n { i s l } des i r ed

676 t t a r g e t =3; %want f i lm to grow in 3 minutes

677 %i f you change these c on st ra i n t s , must a l s o change co ns t r a i n t s in box1 .m

678 %−−−−−−Calcu lat ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

679 [F , t , n i s l ]= f e va l ( hand , x , theta ) ; %get s model p red i c t i on o f n { i s l }

680 %z=∗10000; %i f n i s l < nopt , then z i s negat i ve . 10000 i s to make va lues c l o s e r to 1

681 z1=((t−t t a r g e t ) ˆ2+(1 e4 ∗( n i s l −ntarge t ) ) ˆ2) ; %ob j e c t i v e funct i on f o r maximizing

n i s l and minimizing growth time . Negat ive s i gn i s used so fmincon f i n d s the point where the

o b j e c t i v e funct i on i s at i t s MAXIMUM

682 %5e9 /( t i −15)ˆ2+

683 i f nargout >=2, r=[F t n i s l ] ; , end

684 i f nargout==3, %need to c a l cu l a t e de r i v a t i v e o f N i s l c a l c f o r e r ro r propagat ion ca l c u l a t i o n

685 ds i g =0.001∗d ;

686 dF=F+ds i g ;

687 z=sc a l e (x , 1 ) ;

688 T = z (1) ; %temperature [K]

689 u=[T;F ] ;

690 %−−−−−−−−−PARAMETERS%−−−−−−−−−−−−−−−−−−−−−−−−−−

691 Ei = 0 ; %binding energy [ eV ]

692 Ed = 0 . 8 ; % d i f f u s i o n ac t i v a t i o n energy [ eV ]

693 sigma = 0 . 2 ; % capture #

694 q=[Ei Ed sigma ] ; %s t o r e s Ei , E d , and sigma in array to pass to nuc

695 n0 = [ 0 ; 0 ; 0 ] ; % Star t with a bare S i s u r f a c e

696 the ta f = 0 . 1 5 ; % Final coverage in monolayers

697 t f = th et a f /dF ; % Final time to reach th e ta f

698 dt = t f /100; %s i z e o f time step

699 trange = [ 0 : dt : t f ] ; % Range o f t imes [ s ]

700 [ teh , dn ] = ode23t (@nuc , trange , n0 , [ ] , u , q ) ;

701 der i v=(dn( end , 3 )−n i s l ) / d s i g ;

702 end

703 end

704 %%%%%%%%%%%%%%%%%%%%%%%%%%%optfun%%%%%%%%%%%%%%%%

705 funct i on z=optfun (xd , theta , model4 , opt , r e su l t , sigmasq2 , f l ag , sc )

706 %∗∗∗∗∗∗∗∗∗modi f i ed f o r use with nuc l eat i on model∗∗∗∗∗∗

707 %%%This i s a funct i on f o r opt imal des ign . Depending on the number o f

708 %inputs , the funct i on w i l l do e i t h e r d−, g−, or p− opt imal des ign .

709 %−−−−−−−−−−−−−−−−−L i s t o f va r iab l e s−−−−−−−−−−−−−−

710 %model4=handle f o r model funct i on

711 %opt=c e l l array f o r op t imal i ty being run

712 %f l a g=t e l l s funct i on to run e i t h e r

713 %0 = gfun

714 %1=dfun

715 %2=pfun

716 %r e s u l t i s c e l l array o f s imu l at i on r e s u l t s

717 hand=model4 {1} ;

718 a=opt {7} ; %passe s i t e r a t i o n so i t can be found in an array

719 %f i r s t , need to f i n d jacob i an f o r new exper imental point

720 i f model4{6}==0, J1=Jac ( theta , hand , xd , opt {1}(a ) ) ;

721 e l s e i f model4{6}==1 && model4{7}==1, J1=ones (1 , 1) ;
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722 e l s e J1=[ones (1 , 1) xd (1) xd (2) ] ; end

723 X=[ r e s u l t {5} ; J1 ] ;

724

725 i f f l a g ==0

726 %do gfun−t r i e s to reduce PV over e n t i r e exper imental range by p i ck ing

727 %point with maximum PV and running next experiment at that point

728 z = −J1∗ inv ( r e s u l t {5} ’∗ r e s u l t {5})∗J1 ’∗ sigmasq2 ;

729

730 e l s e i f f l a g ==1

731 %c a l c u l a t e s D−opt imal i ty ( maximizes det (X’∗X) )

732 z = −det (X’∗X) ;

733 e l s e i f f l a g==2

734 %do pfun −pfun uses opt imal point and exper imental point to f i nd the

735 %pr ed i c t i on var i ance at the opt imal point . When used with fmincon , i t

736 %w i l l f i nd the exper imental point with the l a r g e s t p r ed i c t i on var i ance

737 %and run more exper iments at that point

738 xp=r e s u l t {4}(a , : ) ; %opt imal point

739 %compute jacob i an f o r opt imal point ’ xp ’

740 i f model4{6}==0, Jnew=Jac ( theta , hand , xp , opt {1}(a ) ) ;

741 e l s e i f model4{6}==1 && model4{7}==1, Jnew=ones (1 , 1) ;

742 e l s e Jnew=[ ones (1 , 1) xp (1) xp (2) ] ; end

743 %compute p r ed i c t i on var i ance

744 z = −Jnew∗ inv (X’∗X)∗Jnew ’∗ sigmasq2 ;

745 e l s e i f f l a g ==3

746 %c a l c u l a t e s D−opt imal i ty f o r metrix3 ( maximizes det (X’∗X) )

747 z = −det ( r e s u l t {5} ’∗ r e s u l t {5}) ;

748 end

749 i f nargin ==8, z=z∗ sc ; end %th i s i s i n c l uded s i n c e the magnitude o f optfun f o r nuc l eat i on

study i s so small , need s c a l i n g f a c t o r f o r fmincon

750 end

751 %%%%%%%%%%%%%%%%%%%%%%%%%%%%PINKY%%%%%%%%%%%%%%

752 funct i on [ ndata1 , ndata ]=pinky( data , boxmax , theta , hand , p , d)

753 %This funct i on i s des igned to check whether exp . data po in t s f a l l wi th in con f i d ence i n t e r v a l o f

des i r ed o b j e c t i v e funct i on . I f they don ’ t , remove po in t s from data matrix whi l e s t i l l l e av ing

matrix f u l l rank

754

755 n=s i z e ( data ) ; %determines how many po in t s are in ndata

756 %f i r s t , need to c a l c u l a t e ob j e c t i v e funct i on f o r each o f the data po in t s

757 f o r i =1:n

758 a=[data ( i , 1 ) data ( i , 2 ) ] ;

759 [ z1 ( i , : ) , r ( i , : ) ]= obj fun ( a , theta , hand , d ) ;

760 end

761 ndata=[data z1 r ] ; %s t o r e s exper imental data in ndata array f o r ed i t i n g

762 ndata=sortrows ( ndata , 4 ) ;

763 counter=0;

764 f o r i =1:n

765 i f ndata ( i , 4 ) < boxmax

766 counter=counter+1; %i f yes , increment counter

767 ndata1 ( counter , : )=ndata ( i , 1 : 3 ) ;

768 end

769 end

770 i f counter==0

771 ndata1=ndata ( 1 , 1 : 3 ) ;

772 end

773 n1=s i z e ( ndata1 ) ;
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774 zoink=0;

775 whi l e zoink==0

776 J=Jac ( theta , hand , ndata1 , d ) ;

777 cond=rank ( J ) ; %only need data matrix to be f u l l rank , not exper imental output ( column 3)

778 n1=s i z e ( ndata1 ) ;

779 i f ( cond ˜= p) | | ( n1 (1) <= p)

780 ndata1=[ndata1 ; ndata ( n1 (1) +1 ,1:3) ] ;

781 e l s e

782 zoink =1; %change f l a g to get out o f whi l e loop

783 end

784 end

785 end

786 %%%%%%%%%%%%%%%%%%%%%%%%%%%%Sca l e%%%%%%%%%%%%%%%%

787 funct i on z=s ca l e (x , f l a g )

788 %should output z as a column vector [T;C]

789 %f l a g =1 means desca l e , otherwise , s c a l e v a r i ab l e s

790 Ta=973; Tb=100;

791 Ca=0.9; Cb=0.6;

792 i f f l a g==1

793 %th i s funct i on d e s c a l e s the x va lues so they can be expre s sed in K and micromoles /min

r e s p e c t i v e l y

794 z (1 , 1)=x (1) ∗Tb+Ta ; %Temp

795 z (2 , 1)=x (2) ∗Cb+Ca ; %concen t rat i on

796 e l s e %Sca l e v a r i ab l e s

797 %th i s funct i on s c a l e s the x va lues so they can be expre s sed in K and micromoles /min

r e s p e c t i v e l y

798 z (1 , 1)=(x (1)−Ta) /Tb ; %Temp

799 z (2 , 1)=(x (2)−Ca) /Cb ; %concen t rat i on

800 end

801 end

802 %%%%%%%%%%%%%%%%%%%%%%%%%%Simdata%%%%%%%%%%%%%%

803 funct i on [ data , q , data2 ]=Simdata(u , rep , err , f l a g 1 )

804 % Evans , Thiel , and Ba r t l e t t (2006) equat ion ( 6 . 4 )

805 %This i s the equat ion used to generat e the data from exper imental runs

806 %suggested by D(x)

807 %INPUTS

808 %u (1)=T ( s c a l ed )

809 %u (2)=C ( s c a l ed )

810 %z=# fo r saving output graph

811 %rep=# of r e p i t i t i o n s to be done

812 %e r r=var i ance o f gauss ian data

813 i f nargin==2, e r r =0; end %i f no e r r o r i s s p e c i f i e d , make the e r r o r 0

814 %−−−−−−−−−−−−−−Un−Sca l i ng va r iab l e s−−−−−−−−−−−−

815 z=s c a l e (u , 1 ) ;

816 T = z (1) ; %temperature [K]

817 [F , t ]= f l ux (u , e r r ) ; %c a l c u l a t e s f l u x using ’ f l ux .m’

818 x = [T; F ] ; % Temperature and f l u x

819 data=[u (1) u (2) F t ] ;

820 i f nargin==4

821 %−−−−−−−−−PARAMETERS%−−−−−−−−−−−−−−−−−

822 Ei = 0 ; %binding energy [ eV ]

823 Ed = 0 . 8 ; % d i f f u s i o n ac t i v a t i o n energy [ eV ]

824 sigma = 0 . 2 ; % capture #

825 q=[Ei Ed sigma ] ; %s t o r e s Ei , E d , and sigma in array to pass to nuc

826 n0 = [ 0 ; 0 ; 0 ] ; % Star t with a bare S i s u r f a c e
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827 the ta f = 0 . 1 5 ; % Final coverage in monolayers

828 t f = th et a f /F ; % Final time to reach the t a f

829 dt = t f /100; %s i z e o f time step

830 trange = [ 0 : dt : t f ] ; % Range o f t imes [ s ]

831 %This whi l e loop w i l l do 10 r e p i t i t i o n s o f the experiment , save the de s i r ed

832 %data , and p l ot the 10 th s imu lat i on and save i t f o r l a t e r v iewing

833 L = 1 ;

834 whi l e L <= rep ;

835 [ t , n ] = ode23t (@nuc , trange , n0 , [ ] , x , q ) ;

836 data2 (L , : ) =[n ( end , 3 ) t f max(n ( : , 2 ) ) ] ;

837 L = L + 1 ;

838 end

839 end

840 end

841 %%%%%%%%%%%%%%%%%%%%%%%%%%mod emp%%%%%%%%%%%%%%

842 funct i on [F , t , N i s l ]=mod emp(x , q )

843 %This i s an emp i r i ca l model f o r the data from the nuc l eat i on model ing

844 %T=temperature [K]

845 %i= # adatoms needed to form an i s l and [ u n i t l e s s ]

846 %N i s l=i s l and dens i ty

847 %C=concen t rat i on [ micromol/L ]

848 %Tu and Cu are s c a led va r i ab l e s , need to be unscaled f o r ’ f l ux .m’

849 conv2 =0.2651; %conver s i on f o r nm to monolayers (ML) [=]nm/ML

850 %z=s ca l e (x , 1 ) ; %emp i r i ca l w i l l use unscaled va r i ab l e s at t h i s point

851 %4/15/08

852 T = x (1) ; %temperature [K]

853 C = x (2) ; %Concentrat ion [ micromoles /L ]

854 a=q (1) ;

855 b=q (2) ;

856 c=q (3) ;

857 F=a+b∗T+c∗C;

858 t=150/(F∗conv2 ) ; %ta rg e t o f 150nm th i ck f i lm

859 i f nargout==3

860 [dummy,dummy2, n]=Simdata(x , 1 , 0 , 1 ) ; %i f the r e are th ree outputs to t h i s funct ion , then

the nuc l eat i on dens i ty i s c a l cu l a t ed

861 N i s l=n (1) ;

862 end

863 end

864 %%%%%%%%%%%%%%%%%%%%%%mod avg%%%%%%%%%%%%%%%%%%

865 funct i on [F , t , N i s l ]=mod avg (x , q )

866 %This i s a model f o r the data from the nuc l eat i on model ing that j u s t takes

867 %the average o f the data and re tu rn s that as N i s l

868 %T=temperature [K]

869 %N i s l=i s l and dens i ty

870 %F=f lu x to su r f a c e

871 %These are the dependant v a r i a b l e s

872 %(need to be desca l ed f o r mechani st i c model )

873 conv2 =0.2651; %conver s i on f o r nm to monolayers (ML) [=]nm/ML

874 %z=s ca l e (x , 1 ) ;

875 %T = z (1) ; %temperature [K]

876 F=q ;

877 t=150/(F∗conv2 ) ; %ta rg e t o f 150nm th i ck f i lm

878 i f nargout==3

879 [dummy,dummy2, n]=Simdata(x , 1 , 0 , 1 ) ;% i f the r e are th ree outputs to t h i s funct ion , then the

nuc l eat i on dens i ty i s c a l cu l a t ed
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880 N i s l=n (1) ;

881 end

882 end

883 %%%%%%%%%%%%%%%%%%%%mod mech%%%%%%%%%%%%%%%%%%%

884 funct i on [F , t f2 , N i s l ]=mod mech(x , q , f l a g1 )

885 %th i s funct i on uses a hybrid model to c a l cu l a t e the f l u x based on ac t i v a t i o n energy

886 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

887 R=0.00831447; %kJ /(mol∗K)

888 conv2 =0.2651; %conver s i on f o r nm to monolayers (ML) [=]nm/ML

889 %%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

890 %These are the dependant v a r i a b l e s

891 %(need to be desca l ed f o r mechani st i c model )

892 z=s c a l e (x , 1 ) ;

893 T = z (1) ; %temperature [K]

894 C = z (2) ; %Concentrat ion [ micromoles /L ]

895 %−−−−−−−−−−−−−−−Fo ca l cu l a t i on−−−−−−−−−−−−−−−−

896 %−−−−−−−−−−−−−−−Flux ca l cu l a t i on−−−−−−−−−−−−−

897 F=Fo∗exp(−q/(R∗T) ) ;

898 t f 2 =150/(F∗conv2 ) ; %ta rg e t o f 150nm th i ck f i lm

899 x1=[T F ] ;

900 %%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

901 i f nargout==3

902 [dummy,dummy2, n]=Simdata(x , 1 , 0 , 1 ) ;% i f the r e are th ree outputs to t h i s funct ion , then the

nuc l eat i on dens i ty i s c a l cu l a t ed

903 N i s l=n (1) ;

904 end

905 end

906 %%%%%%%%%%%%%%%%%%%%mod mech2%%%%%%%%%%%%%%%%

907 funct i on [F , t f2 , N i s l ]=mod mech2 (x , q )

908 %th i s funct i on i s an emp i r i ca l model

909 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

910 conv2 =0.2651; %conver s i on f o r nm to monolayers (ML) [=]nm/ML

911 %These are the dependant v a r i a b l e s

912 %(need to be desca l ed f o r mechani st i c model )

913 z=s c a l e (x , 1 ) ;

914 T = z (1) ; %temperature [K]

915 C = z (2) ; %Concentrat ion [ micromoles /L ]

916 %−−−−−−−−−−−−−−−Fo ca l cu l a t i on−−−−−−−−−−−−−−−−

917 F=C∗T∗q (1)+q (2) ;

918 t f 2 =150/(F∗conv2 ) ; %ta rg e t o f 150nm th i ck f i lm

919 i f nargout==3

920 [dummy,dummy2, n]=Simdata(x , 1 , 0 , 1 ) ;% i f the r e are th ree outputs to t h i s funct ion , then the

nuc l eat i on dens i ty i s c a l cu l a t ed

921 N i s l=n (1) ;

922 end

923 end

Listing D.2: Dsim29.m in Matlab
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D.3 Matlab code for experimental study

This is the file used to determine the sequential experiments in the experimental study

with the CVD reactor testbed.

1 funct i on ni=exp7 (nameout , f l ag2 , rep , s c t o l ,num, data )

2 %7/30/2008 This i s modi f i ed from ’ exp4 .m’ , growth time has been found to be unrepeatab le , so

that por t i on i s being taken out and working s o l e l y with roughness

3 %in c lu de s conver s i on o f molar f low to f l ux f o r ’ n i s l c a l c ’

4 %This i s a funct i on to run the s imu lat i on code , and takes the names o f the

5 %output f i l e and number o f r e p i t i t i o n s . Also i n c o rpo ra t e s F(T,C)

6 %∗∗∗∗∗∗∗L i s t o f inputs and outputs ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

7 %nameout= name of output f i l e f o r r epo r t s

8 %e r r= de s i r ed l e v e l o f no i s e to be added to system

9 %f l ag 2= vector o f l ength 4 f o r each opt imal i ty , t e l l s whether or not to run box algor i thm [P D G

Run] ’Run’ i s a f l a g to say whether to run D and G or not , 1=yes

10 %rep= # r e p i t i t i o n s to perform f o r each simulated experiment

11 %num= # to help d i f f e r e n t i a t e between d i f f e r e n t s imu lat i on s

12 %Srnorm= value o f normal Sr ( kind o f a dummy output )

13 %L i s t o f v a r i ab l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

14 %a , avg , b , c e l l s , ch , ch1 , ch2 , ch3 , ch4 , col1 , col2 , count , d , data , der iv , d i s c r , emp , err ,

15 %err1 , exp , F , f l ag , f l ag1 , f l ag2 ,FVAL, G, guess , h , i , I , I2 , i t e r , ik , j , k , K, kk , L , Low1 , m, mC,

mech , mod , model ,

16 %n , namein , nameout , nC, ni , num, Options , other , output , p , pM, pMcond , psum , P,

17 %q , Q, r , R, raw , rep , s , sc , simdata , Srhat , SrLS , SrLSnorm

18 %sca l , s ca l 2 , set , s e t t , step , step2 , thetahat , T, to l , u , Up1 , v , ve , x , XO, Xset , Xsetnew , z

19

20 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

21 %Check Va l id i t y o f inputs

22 i f i s c h a r ( nameout )==0

23 e r r o r ( ’ nameout needs to be a charact e r s t r i ng , use s i n g l e quotes ’ )

24 end

25 %−−−−−−−−−−−−−−−−−−−−−USER INPUTS−−−−−−−−−−−−−−−−−−

26 source =’exp7 ’ ; %Keeping track o f what generator f i l e generated what data

27 goal =5; %de f i n e s d es i r ed magnitude o f con f i d ence i n t e r v a l (1 second )

28 f l a g =0; %f l a g==1 enab l e s graphs at end

29 ni =6; %max # of i t e r a t i o n s

30 Low1=[873; 1 0 0 ] ; %lower bounds f o r exper imental s e t t i n g s

31 Low2=s ca l e (Low1 , 0 ) ; %s c a l e s lower bounds

32 Up1=[1048; 2 0 0 ] ; %upper bounds f o r exper imental s e t t i n g s

33 Up2=s c a l e (Up1 , 0 ) ; %s c a l e s upper bounds

34 step1 =15; %number o f s t ep s to take when making gr i d o f des ign space f o r 1 s t

part o f d i s c r im funct i on

35 step2 =20; %f in d in g opt imal point , needed more spot s on gr i d

36 c e l l s =[24 1 7 ] ; %d e f i n e s s i z e o f c e l l a r rays f o r opt and model array

37 XO=[971 15 0 ] ; %XO=i n i t i a l exper imental s e t t i n g s f o r fmincon d i sc r im func ;

38 Xset ( 1 , : )=s c a l e (XO, 0 ) ; %s c a l e s XO ( se t o f exper imental s e t t i ng s , [T C]

39 %e r r=1e−4; %var i ance o f gauss ian no i se added to data dur ing s imu lat i on

40 t o l=1e−18; %Tolerance f o r fmincon

41 to l 2=1e−10; %Tolerance f o r TolX

42 i t e r a t e =100; %i t e r a t i o n s f o r fmincon

43 s e t t =[ t o l t o l 2 ; i t e r a t e 0 ] ; %puts t o l e r an c e s and s c a l i n g in a vector f o r fmincon

44 sc2=1%e17 ; %t h i s i s a s c a l i n g f a c t o r f o r fmincon search on optfun

45 Pvalue=zeros ( ni , 1 ) ;
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46 rand ( ’ s tat e ’ , sum(100∗ c l ock ) ) ; %need to i n i t i a l i z e seed f o r random number generator

47 %−−−−−−−−−−−−−−−−−−g l oba l va r iab l e s−−−−−−−−−−−−−−−−−−−−−

48 g l oba l R g l oba l conv2 g l o b a l t h i c k Ei Ed sigma th et a f kb g l ob a l v c i g l o b a l i n targe t conf2

49 R=0.00831447; %kJ /(mol∗K)

50 g l oba l conv2 =0.2651; %conver s i on f o r nm to monolayers (ML) [=]nm/ML

51 g l o b a l t h i c k =120; %de s i r ed th i c kne s s o f f i lm [nm]

52 Ei = 0 ; %binding energy [ eV ]

53 Ed = 0 . 8 ; % d i f f u s i o n ac t i v a t i on energy [ eV ]

54 sigma = 0 . 2 ; % capture #

55 th e ta f = 0 . 1 5 ; % Final coverage in monolayers

56 kb = 8.62 e−5; % Boltzmann ’ s constant [ eV/K]

57 g l ob a l v = 1e13 ; %attempt frequency o f hopping [ 1/ s ]

58 c i = 1 ; %# con f i gu r a t i on s o f a s t a b l e i s l and

59 g l o b a l i =2; %#adatoms needed to form an i s l a nd

60 ntarge t=7; %de s i r ed roughness [nm]

61 conf2 =0.975; %l e v e l o f con f i d ence f o r con f i d ence i n t e r v a l s

62 %−−−−−−−−−−−−−−−−−−−−−−−−−Make model arrays−−−−−−−−−−−−−−−

63 %th i s makes the model ar rays with in format i on about each model

64 %models are organized by column

65 % model ( 1 , : )=name of model

66 % model ( 2 , : )=%# of parameters in the model

67 % model ( 3 , : )=model {3 ,1}=[ .7 . 1 . 7 ] ; %i n i t i a l guess f o r emp model parameters

68 %i n i t i a l guess f o r model parameters

69 % model ( 4 , : )=Lower bound f o r model parameters

70 % model ( 5 , : )=Upper bound f o r model parameters

71 % model{6 ,:}= Flag (==0, no d e r i v a t i v e ==1 d e r i v a t i v e in model {8 , :}

72 % model{7 ,:}= Flag f o r Compfit (==0, normal ==1, f o r mod avg )

73 % av a i l ab l e data po in t s

74 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%Empir i cal model∗∗∗∗∗∗∗∗∗∗∗

75 model{1 ,1}=@rms1 ; %name of model to be loaded

76 model {3 ,1}=[0.7 0 . 1 ] ; %i n i t i a l guess f o r model parameters

77 model{2 ,1}= length ( model {3 ,1}) ; %# of parameters in the model

78 model{4,1}=−1000∗ ones (1 , model {2 ,1}) ; %Lower bound f o r emp model

79 model{5 ,1}=1000∗ ones (1 , model {2 ,1}) ; %Upper bound f o r emp model

80 model{6 ,1}=0;

81 model{7 ,1}=0;

82 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%Empir i cal model∗∗∗∗∗∗∗∗∗∗∗

83 model{1 ,2}=@rms2 ; %name of model to be loaded

84 model {3 ,2}=[0.7 0 . 1 0 . 3 ] ; %i n i t i a l guess f o r model parameters

85 model{2 ,2}= length ( model {3 ,2}) ; %# of parameters in the model

86 model{4,2}=−1000∗ ones (1 , model {2 ,2}) ; %Lower bound f o r emp model

87 model{5 ,2}=1000∗ ones (1 , model {2 ,2}) ; %Upper bound f o r emp model

88 model{6 ,2}=0;

89 model{7 ,2}=0;

90 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%Empir i cal model∗∗∗∗∗∗∗∗∗∗∗

91 model{1 ,3}=@rms3 ; %name of model to be loaded

92 model {3 ,3}=[0.7 0 . 1 ] ; %i n i t i a l guess f o r model parameters

93 model{2 ,3}= length ( model {3 ,3}) ; %# of parameters in the model

94 model{4,3}=−1000∗ ones (1 , model {2 ,3}) ; %Lower bound f o r emp model

95 model{5 ,3}=1000∗ ones (1 , model {2 ,3}) ; %Upper bound f o r emp model

96 model{6 ,3}=0;

97 model{7 ,3}=1;

98 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%Empir i cal model∗∗∗∗∗∗∗∗∗∗∗

99 model{1 ,4}=@rms4 ; %name of model to be loaded

100 model {3 ,4}=[0.7 0 . 1 0 . 3 ] ; %i n i t i a l guess f o r model parameters
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101 model{2 ,4}= length ( model {3 ,4}) ; %# of parameters in the model

102 model{4,4}=−1000∗ ones (1 , model {2 ,4}) ; %Lower bound f o r emp model

103 model{5 ,4}=1000∗ ones (1 , model {2 ,4}) ; %Upper bound f o r emp model

104 model{6 ,4}=0;

105 model{7 ,4}=0;

106 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%Empir i cal model∗∗∗∗∗∗∗∗∗∗

107 model{1 ,5}=@rms5 ; %name of model to be loaded

108 model {3 ,5}=[0.7 0 . 1 ] ; %i n i t i a l guess f o r model parameters

109 model{2 ,5}= length ( model {3 ,5}) ; %# of parameters in the model

110 model{4,5}=−1000∗ ones (1 , model {2 ,5}) ; %Lower bound f o r emp model

111 model{5 ,5}=1000∗ ones (1 , model {2 ,5}) ; %Upper bound f o r emp model

112 model{6 ,5}=0;

113 model{7 ,5}=0;

114 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%Empir i cal model∗∗∗∗∗∗∗∗∗∗

115 model{1 ,6}=@rms6 ; %name of model to be loaded

116 model {3 , 6}=[0 . 7 ] ; %i n i t i a l guess f o r model parameters

117 model{2 ,6}= length ( model {3 ,6}) ; %# of parameters in the model

118 model{4,6}=−1000∗ ones (1 , model {2 ,6}) ; %Lower bound f o r emp model

119 model{5 ,6}=1000∗ ones (1 , model {2 ,6}) ; %Upper bound f o r emp model

120 model{6 ,6}=0;

121 model{7 ,6}=0;

122 %%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Mechani st i c model∗∗∗∗∗∗∗∗∗

123 model{1 ,7}=@rms7 ; %name of model to be loaded

124 model {3 ,7}=0.7; %i n i t i a l guess f o r model parameters

125 model{2 ,7}= length (model {3 ,7}) ; %# of parameters in the model

126 model{4 ,7}=−1000; %Lower bound f o r model

127 model{5 ,7}=1000; %Upper bound f o r model

128 model{6 ,7}=0;

129 model{7 ,7}=1;

130 [m,mC]= s i z e (model ) ; % mC i s the number o f models contained in models . mat

131 %−−−−−−−−−−−−−−−−−−−−−−−make opt arrays−−−−−−−−−−−−−−

132 %opt c e l l a r rays s t o r e i n f o as f o l l ow s :

133 %{1}=d max value o f exper imental data

134 %{2}=data s t o r e s the s imulated data

135 %{3}=er r s t o r e s e r r o r

136 %{4}= optrange range f o r exper imental po in t s ( upper and lower

137 %bounds )

138 %{5}=exper imental point next exper imental point to be run

139 %{6}= # r ep e t i t i o n s to be run

140 %{7}= element to pass value o f ’ a ’ to other fu nc t i on s

141 %{8} s t o r e s number o f c o r r e c t model f o r each i t e r a t i o n

142 %{9} s t o r e s max value accep tab l e f o r box ca l c

143 %{10}=system output f o r stopping c r i t e r i o n

144 %{11}=ve rd i c t t e l l s user why s imu lat i on was stopped

145 %1=theta and Srhat not changing

146 %2=CI < s q r t ( no i s e )

147 %3=CI < CI ( des i r ed )

148 %{12}=counter counter f o r stopping c r i t e r i o n , s ee SC f o r a l l

149 %stopping c r i t e r i o n ques t i on s

150 %{13}=se t t %th i s has the s e t t i n g s f o r fmincon

151 %{14}=sc a l %th i s c a r r i e s the s c a l i n g s to be used f o r newf i t .m and newerr .m

152 %{15}= s to r e s the po in t s found using box1 and va lues o f funct i on at those po in t s [ x1 x2 ]

153 %{16}= to l e r an c e f o r SC (may not be used in growth time s imu lat i on s . . )

154 %{17}= exper imental po in t s desca l ed

155 i n i t=f ev a l ( @cel l , c e l l s ( 2) , 1 ) ; %extra c e l l array f o r i n i t a l c a l c s
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156 %−−−−−−−−−−−−−−−−−−−−−−−−−− r e s u l t arrays−−−−−−−−−−−−−−−

157 %r e s u l t ar rays f o r each model and opt imal i ty

158 %1=thetahat

159 %2=srhat

160 %3=normal i zed p r ob ab i l i t y o f model

161 %4=est imated opt imal point

162 %{5}=J Jacobian o f data with re spe c t to parameters

163 %{6}=D D−opt imal value o f model

164 %{7}=PVxnew pr ed i c t i o n var i ance at new exper imental point

165 %{8}=PVxopt p r ed i c t i o n var i ance at est imated optimum point

166 %{9}=model p r ed i c t i o n at est imated opt imal point

167 %{10} holds F s t a t i s t i c s f o r LOF when i t i s c a l c u l a t ed

168 %{11}=exper imental e r r o r ( c a l cu l a t ed )

169 %{12}=con f i d ence i n t e r v a l on p r ed i c t i on s

170 %{13}=empty

171 %{14}=model p red i c t i on e r r o r

172 %{15}= output from system at opt imal point

173 %{16}=ob j e c t i v e funct i on output

174 %{17}=unscaled est imated opt imal point

175 %{18}=n i s l from model

176 %{19}=n i s l from true system

177 %{20}=counter f o r pinky .m

178 %{21}=array o f con f i d ence i n t e r v a l s from metrix3

179 %{22}=time needed f o r f i lm to grow

180 %{23}=J matrix f o r opt imal point

181 %{24}=J matrix f o r opt imal point f o r time model

182 r e s u l t=f ev a l ( @cel l , c e l l s ( 1) ,mC) ; %extra c e l l array f o r i n i t a l c a l c s

183 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

184 %%−−−−−−−−−−−−−−−−−−−−MAIN CODE−−−−−−−−−−−−−−−−−−−−−

185 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

186 %f i r s t f i nd most probable model to work with the growth rate model

187 a l lP=zeros (mC, 1 ) ; %i n i t i a l i z e array to zero

188 iprob=1/mC; %i n i t i a l p r o bab i l i t y f o r models

189 f o r z=1; %run experiment d i f f e r e n t t imes with a d i f f e r e n t i n i t i a l parameter guess

190 %−−−−−−−−−−−−− i n i t i a l c a l c u l a t i o n s f o r roughness models

191 d=max( round ( data ( : , 3 ) ∗100) ) /100; %ca l cu l a t e s maximum of output f o r

jacob i an ca l cu l a t i o n

192 [ n ,nC]= s i z e ( data ) ;

193 f o r nt=1:n

194 [ dn i s l 1 ( nt ) , e x t r a n i s l da t ]= n i s l c a l c ( data ( nt , 1 : 2 ) ) ;

195 %ca l cu l a t e s nuc l eat i on dens i ty f o r the exper imental data

196 end

197 %pr es e t the opt c e l l a r rays to the c o r r e c t i n i t i a l va lues

198 i n i t {2}=data ; i n i t {1}=d ; i n i t {4}=[Low2 Up2 ] ; i n i t {3}= dn i s l 1 ; i n i t {5}=Xset ; i n i t {6}=rep ;

i n i t {7}=1; i n i t {11}= zeros (1 , 3) ; i n i t {13}= s e t t ;

199 i n i t {14}=sc ; i n i t {16}= s c t o l ;

200 %−−−−−−−−−−%PARAMETER FIT AND PROBABILITY CALCULATION−−−

201 % Compute the l e a s t squares f i t parameters ( theta1hat ) and

202 %e r r o r f o r parameters ( Sr1hat ) f o r each model

203 %l a s t number in input f o r compf i t c e l l array f o r model

204 f o r j =1:mC

205 [ r e s u l t {1 , j } ( 1 , : ) , r e s u l t {2 , j }(1) , r e s u l t {4 , j } ( 1 , : ) , r e s u l t {5 , j } , r e s u l t {8 , j }(1) ,

r e s u l t {11 , j }(1) , r e s u l t {12 , j }(1) , i n i t {1}(1) , r e s u l t {16 , j }(1) , r e s u l t {18 , j }(1) ,

r e s u l t {21 , j } ( 1 , : ) , r e s u l t {23 , j }]= metrix3 ({model { : , j }} ,{ i n i t { : , 1}} ,{ r e s u l t { : , j

}} , step2 ) ; %
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206 r e s u l t {17 , j } ( : , 1 )=s c a l e ( r e s u l t {4 , j } ( 1 , : ) , 1 ) ; %de s c a l e s T and C

207 model{3 , j}=r e s u l t {1 , j } ( 1 , : ) ; %r ep l a c e s i n i t i a l guess with new theta

f o r next i t e r a t i o n

208 a l lP ( j ) = mprob( iprob , model {2 , j } , i n i t {6} , r e s u l t {2 , j }) ; % Compute the

c o nd i t i on a l p r o b a b i l i t i e s o f the models

209 end

210 % normal i ze p r o b ab i l i t i e s and f i nd most probable

211 [P, i n i t {8}]=maxP( a l lP ) ; %normal i z e s and outputs p r ob ab i l i t y to sc r een

212 f o r zz=1:mC

213 r e s u l t {3 , zz}=P( zz ) ; %s t o r e s norm . prob . f o r each model

214 end

215 %−−−−−−−−−a s s i gn i ng ar rays f o r each opt imal i ty −−−−−−−−−−−−

216 popt=i n i t ; p r e su l t=r e s u l t ; dopt=i n i t ; gopt=i n i t ; d r e su l t=r e s u l t ; g r e s u l t=r e s u l t ;% ass i gn c e l l

a r rays to c o r r e c t op t imal i ty f o r s torage%%

217 %% loop f o r pfun ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

218 f p r i n t f ( ’ s t a r t i n g p−opt imal exper imental loop \n ’ ) ;

219 %s ta r t4=da te s t r (now)

220 count=0; %pre s e t to zero

221 OPTIONS=optimset ( ’ Display ’ , ’ i t e r ’ , ’ LargeScale ’ , ’ o f f ’ ) ;

222 f o r i =1: n i

223 popt{7}= i ;

224 i t e r p=i

225 best=popt {8}( i ) ; %s t o r e s the number o f most probable model f o r t h i s i t e r a t i o n

226 i f f l a g 2 (2)==1 %f l a g2 t e l l s whether or not to run box algor i thm (1=yes )

227 [ pointp ,XY4, Z4 , Z1]=optgraph ( popt {4} ( 1 , : ) , popt {4} ( 2 , : ) , step1 , p r e su l t {1 , best }( i , : ) ,

{model { : , best }} ,{popt { :}} ,{ pr e s u l t { : , best }} , p r e s u l t {11 , best }( i ) , 4) ; %This i s

used to generat e XY and Z f o r box1 .m inputs

228 [ pout{ i } , popt {15}( i , : ) , popt{9}( i ) ]=box1 ({XY4{ :}} , Z4 , Z1 ,{ popt { :}} ,{ p r e su l t { : , best

}} ,{model { : , best }} , 2) ;

229 [ LB1 ,UB1]= g r i d i n t ( popt {15}( i , : ) ,Low2 ,Up2 , step1 ) ;

230 [ popt {5 ,1}( i , : ) , fnew ] = fmincon(@(xd ) optfun ( xd , p r e su l t {1 , best }( i , : ) ,{model { : , best

}} ,{popt { :}} ,{ pr e s u l t { : , best }} , p r e s u l t {11 , best }( i ) ,2 , sc2 ) , popt {15}( i , : )

, [ ] , [ ] , [ ] , [ ] , LB1 ,UB1) ;

231 e l s e %

232 %f i r s t , f i nd best s t a r t i n g point f o r op t im i zat i on using optgraph

233 [ pointp2 ( i , : ) ,XY5, Z5 ( : , : , i ) , Z6]=optgraph ( popt { 4} (1 , : ) , popt {4} (2 , : ) , step1 , p r e su l t

{1 , best }( i , : ) ,{model { : , best }} , {popt { :}} ,{ pr e s u l t { : , best }} , p r e s u l t {11 , best }( i )

, 2 ) ;

234 [ popt {5}( i , : ) , fnew ,Gp] = fmincon (@(xd ) optfun (xd , p r e s u l t {1 , best }( i , : ) ,{model { : , best

}} ,{popt { :}} ,{ pr e s u l t { : , best }} , p r e s u l t {11 , best }( i ) ,2 , sc2 ) , pointp2 ( i , : )

, [ ] , [ ] , [ ] , [ ] , popt {4} ( : , 1 ) , popt {4} ( : , 2 ) , [ ] ,OPTIONS) ;

235 end

236 popt {17} ( : , i )=s c a l e ( popt {5}( i , : ) , 1 ) ; %s t o r e s desca l ed va lues o f exper imental po in t s

237 %generate new data point

238 n i s l 1=n i s l c a l c ( popt {5}( i , : ) ) ;

239 popt {3}( i+n)=n i s l 1 ;

240 i f model{7 , best}==1

241 [ newGS]= f ev a l (model{1 , best } , popt {3}( i+n) , p r e su l t {1 , best }( i , : ) ) ; %get s model

p red i c t i on o f n { i s l } , d i f f e r e n t c a l cu l a t i o n i f us ing hybrid models

242 e l s e

243 [ newGS]= f ev a l (model{1 , best } , popt {5}( i , : ) , p r e su l t {1 , best }( i , : ) ) ; %get s model

p red i c t i on o f n { i s l }

244 end

245 [ data5 ]=[ popt {5}( i , : ) newGS ] ;

246 popt{2}=[popt {2} ; data5 ] ;
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247 f o r j =1:mC

248 %c a l c u l a t e met r i c s f o r each model

249 [ p r e s u l t {1 , j }( i +1 , : ) , p r e su l t {2 , j }( i +1) , p r e su l t {4 , j }( i +1 , : ) , p r e su l t {5 , j } , p r e su l t {8 , j }( i

+1) , p r e su l t {11 , j }( i +1) , p r e su l t {12 , j }( i +1) , popt {1 ,1}( i +1) , p r e su l t {16 , j }( i +1) , p r e su l t

{18 , j }( i +1) , p r e s u l t {21 , j }( i +1 , : ) , p r e s u l t {23 , j }]=metrix3 ({model { : , j }} ,{popt { : , 1}} ,{

p r e su l t { : , j }} , step2 ) ;

250 p r e su l t {17 , j } ( : , i +1)=s c a l e ( p r e su l t {4 , j }( i +1 , : ) , 1 ) ; %d e s c a l e s T and C

251 a l lP ( j )=mprob( iprob , model {2 , j } , popt {6} , p r e su l t {2 , j }( i +1) ) ; %ca l cu l a t e

p r o b a b i l i t i e s f o r each model

252 end

253 %c a l c u l a t e normal i zed p r o b ab i l i t i e s f o r each model and f i nd most

254 %probable model

255 [P, popt {8 ,1}( i +1)]=maxP( a l lP ) ;

256 f o r j =1:mC

257 %as s i gn p r o b ab i l i t i e s to the r e s p e c t i v e model ar rays

258 p r e su l t {3 , j }( i +1)=P( j ) ;

259 end

260 exper=s i z e ( popt {2}) ; %c a l c u l a t e s how many exper iments have been run

261 [ pout1 ( i +1 , : ) , count , popt {11}( i +1 , : ) ]=SC2( popt {7} ,{ pr e su l t { : , popt {8}( i +1)}} , goal , count , exper (1)

, rep , popt {16}) ;

262 i f pout1 ( i +1)==2

263 i f f l a g 2 (4)==1

264 break

265 e l s e

266 pout1 ( i +1)=0; %i f SC i s not being run , change out to zero so box

algor i thm can be run

267 end

268 end

269 end

270 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−Saving Data−−−−−−−−−−−−−−

271 p=date s t r (now , ’ mm dd yy ’ ) ;

272 ch5=[p , ’ ’ , num2str ( z ) , ’ ’ , num2str (num) ] ;

273 save ( ch5 ) ;

274 c l e a r point

275 count=0; %pr es e t to zero

276 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗D−opt imal∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

277 f p r i n t f ( ’ s t a r t i n g d−opt imal exper imental loop \n ’ ) ;

278 f o r i =1: n i

279 dopt{7}= i ;

280 i t e r d=i

281 best=dopt {8}( i ) ; %s t o r e s the number o f most probable model f o r t h i s

i t e r a t i o n

282 i f f l a g 2 (2)==1 %f l a g 2 t e l l s whether or not to run box algor i thm (1=yes )

283 [ pointd ,XY4, Z4 , Z1]=optgraph ( dopt {4} ( 1 , : ) , dopt {4} (2 , : ) , step1 , d re su l t {1 ,

best }( i , : ) , {model { : , best }} ,{dopt { :}} ,{ dr e s u l t { : , best }} , d r e s u l t {11 , best

}( i ) , 4) ; %This i s used to generat e XY and Z f o r box1 .m inputs

284 [ dout{ i } , dopt {15}( i , : ) , dopt {9}( i ) ]=box1 ({XY4{ :}} , Z4 , Z1 ,{ dopt { :}} ,{ d r e su l t

{ : , best }} ,{model { : , best }} , 1) ;

285 [ LB1 ,UB1]= g r i d i n t ( dopt {15}( i , : ) ,Low2 ,Up2 , step1 ) ;

286 [ dopt {5 ,1}( i , : ) , fnew ] = fmincon (@(xd ) optfun (xd , d r e su l t {1 , best }( i , : ) ,{

model { : , best }} ,{ dopt { :}} ,{ d re su l t { : , best }} , d r e su l t {11 , best }( i ) ,1 , sc2 ) ,

dopt {15}( i , : ) , [ ] , [ ] , [ ] , [ ] , LB1 ,UB1) ;

287 e l s e %run normal opt imazat ion rou t i n e

288 %f i r s t , f i nd best s t a r t i n g point f o r op t im i zat i on using optgraph
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289 [ pointd2 ( i , : ) ,XY5, Z5 ( : , : , i ) , Z6]=optgraph ( dopt {4} (1 , : ) , dopt { 4} (2 , : ) , step1 ,

d r e su l t {1 , best }( i , : ) ,{model { : , best }} , {dopt { :}} ,{ d r e su l t { : , best }} ,

d r e s u l t {11 , best }( i ) , 1 ) ;

290 [ dopt {5}( i , : ) , fnew ] = fmincon(@(xd ) optfun ( xd , d r e su l t {1 , best }( i , : ) ,{model

{ : , best }} ,{dopt { :}} ,{ dr e s u l t { : , best }} , d r e s u l t {11 , best }( i ) ,1 , sc2 ) , pointd2

( i , : ) , [ ] , [ ] , [ ] , [ ] , dopt {4} ( : , 1 ) , dopt {4} ( : , 2 ) , [ ] ,OPTIONS) ;

291 end

292 dopt {17} ( : , i )=s c a l e ( dopt {5}( i , : ) , 1 ) ; %s t o r e s desca l ed va lues o f exper imental

po in t s

293 %generate new data point

294 n i s l 1=n i s l c a l c ( dopt {5}( i , : ) ) ;

295 dopt {3}( i+n)=n i s l 1 ;

296 i f model{7 , best}==1

297 [ newGS]= f ev a l (model{1 , best } , dopt {3}( i+n) , d r e su l t {1 , best }( i , : ) ) ; %get s model

p red i c t i on o f n { i s l }

298 e l s e

299 [ newGS]= f ev a l (model{1 , best } , dopt {5}( i , : ) , d r e su l t {1 , best }( i , : ) ) ; %get s model

p red i c t i on o f n { i s l }

300 end

301 [ data5 ]=[ dopt {5}( i , : ) newGS ] ;

302 dopt{2}=[dopt {2} ; data5 ] ;

303 f o r j =1:mC

304 %ca l c u l a t e met r i c s f o r each model

305 [ d r e su l t {1 , j }( i +1 , : ) , d r e su l t {2 , j }( i +1) , d r e su l t {4 , j }( i +1 , : ) , d r e su l t {5 , j } , d r e su l t

{8 , j }( i +1) , d r e s u l t {11 , j }( i +1) , d r e s u l t {12 , j }( i +1) , dopt {1}( i +1) , d r e s u l t {16 , j }( i

+1) , d r e su l t {18 , j }( i +1) , d r e su l t {21 , j }( i +1 , : ) , d r e su l t {23 , j }]=metrix3 ({model { : , j

}} ,{dopt { : , 1}} ,{ d r e su l t { : , j }} , step2 ) ;

306 d r e su l t {17 , j } ( : , i +1)=s ca l e ( d r e s u l t {4 , j }( i +1 , : ) , 1 ) ; %de s c a l e s T and C

307 a l lP ( j )=mprob( iprob , model{2 , j } , dopt {6} , d r e su l t {2 , j }( i +1) ) ; %c a l cu l a t e

p r o b a b i l i t i e s f o r each model

308 end

309 %c a l c u l a t e normal i zed p r o b a b i l i t i e s f o r each model and f i nd most

310 %probable model

311 [P, dopt {8 ,1}( i +1)]=maxP( a l lP ) ;

312 f o r j =1:mC

313 %ass i gn p r o b a b i l i t i e s to the r e s pe c t i v e model ar rays

314 d re su l t {3 , j }( i +1)=P( j ) ;

315 end

316 exper=s i z e ( dopt {2}) ; %c a l c u l a t e s how many exper iments have been run

317 [ dout1 ( i +1 , : ) , count , dopt {11}( i , : ) ]=SC2( dopt {7} ,{ dr e su l t { : , dopt {8}( i +1)}} , goal , count , exper

(1) , rep , dopt {16}) ;

318 i f dout1 ( i +1)==2

319 i f f l a g2 (4)==1

320 break

321 e l s e

322 dout1 ( i +1)=0; %i f SC i s not being run , change out to zero so box

algor i thm can be run

323 end

324 end

325 end

326 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−Saving Data−−−−−−−−−−−−

327 p=date s t r (now , ’ mm dd yy ’ ) ;

328 ch5=[p , ’ ’ , num2str ( z ) , ’ ’ , num2str (num) ] ;

329 save ( ch5 ) ;

330 c l e a r point
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331 count=0; %pr es e t to zero

332 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗RANDOM∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

333 f p r i n t f ( ’ s t a r t i n g random exper imental loop \n ’ ) ;

334 f o r i =1: n i

335 gopt{7}= i ;

336 i t e r g=i

337 best=gopt {8}( i ) ; %s t o r e s the number o f most probable model f o r t h i s i t e r a t i o n

338 i f f l a g 2 (2)==1 %f l a g2 t e l l s whether or not to run box algor i thm (1=yes )

339 [ pointg ,XY4, Z4 , Z1]=optgraph ( gopt {4} ( 1 , : ) , gopt {4} ( 2 , : ) , step1 , g r e s u l t {1 , best }( i , : ) ,

{model { : , best }} ,{ gopt { :}} ,{ g r e su l t { : , best }} , g r e su l t {11 , best }( i ) , 4) ; %This i s

used to generat e XY and Z f o r box1 .m inputs

340 [ gout{ i } , gopt {15}( i , : ) , gopt {9}( i ) ]=box1 ({XY4{ :}} , Z4 , Z1 ,{ gopt { :}} ,{ g r e s u l t { : , best

}} ,{model { : , best }} , 4) ;

341 [ o , q]= s i z e ( gout{ i }) ;

342 i f q>=8

343 pop=round ( un i f rnd (1 , o ) ) ;

344 gopt {5 ,1}( i , : )=gout{ i }(pop , 2 : 3 ) ;

345 e l s e %i f po in t s can ’ t be found on the gr id , then make random

poin t s

346 gopt {5 ,1}( i , 1 ) = un i f rnd ( gopt {4}(1 ,1) , gopt {4}(1 ,2) ) ;

347 gopt {5 ,1}( i , 2 )= un i f rnd ( gopt {4}(2 ,1) , gopt {4}(2 ,2) ) ;

348 end

349 e l s e

350 %generate exper imental po in t s us ing random number generator , un i f rnd p i cks random

number between optrange

351 gopt {5 ,1}( i , 1 ) = un i f rnd ( gopt {4}(1 ,1) , gopt {4}(1 ,2) ) ;

352 gopt {5 ,1}( i , 2 )= un i f rnd ( gopt {4}(2 ,1) , gopt {4}(2 ,2) ) ;

353 end

354 gopt {17} ( : , i )=s c a l e ( gopt {5}( i , : ) , 1 ) ; %s t o r e s desca l ed va lues o f exper imental po in t s

355 %generate new data point

356 n i s l 1=n i s l c a l c ( gopt {5}( i , : ) ) ;

357 gopt {3}( i+n)=n i s l 1 ;

358 i f model{7 , best}==1

359 [ newGS]= f ev a l (model{1 , best } , gopt {3}( i+n) , g r e s u l t {1 , best }( i , : ) ) ; %get s model

p red i c t i on o f n { i s l }

360 e l s e

361 [ newGS]= f ev a l (model{1 , best } , gopt {5}( i , : ) , g r e s u l t {1 , best }( i , : ) ) ; %get s model

p red i c t i on o f n { i s l }

362 end

363 [ data5 ]=[ gopt {5}( i , : ) newGS ] ;

364 gopt{2}=[ gopt {2} ; data5 ] ;

365 f o r j =1:mC

366 %ca l c u l a t e met r i c s f o r each model

367 [ g r e s u l t {1 , j }( i +1 , : ) , g r e s u l t {2 , j }( i +1) , g r e su l t {4 , j }( i +1 , : ) , g r e s u l t {5 , j } , g r e s u l t

{8 , j }( i +1) , g r e su l t {11 , j }( i +1) , g r e su l t {12 , j }( i +1) , gopt {1 ,1}( i +1) , g r e su l t {16 , j }( i

+1) , g r e s u l t {18 , j }( i +1) , g r e s u l t {21 , j }( i +1 , : ) , g r e s u l t {23 , j }]=metrix3 ({model { : , j

}} ,{ gopt { : , 1}} ,{ g r e s u l t { : , j }} , step2 ) ;

368 g r e su l t {17 , j } ( : , i +1)=s ca l e ( g r e su l t {4 , j }( i +1 , : ) , 1 ) ; %de s c a l e s T and C

369 a l lP ( j )=mprob( iprob , model{2 , j } , gopt {6} , g r e su l t {2 , j }( i +1) ) ; %c a l cu l a t e

p r o b a b i l i t i e s f o r each model

370 end

371 %c a l c u l a t e normal i zed p r o b a b i l i t i e s f o r each model and f i nd most

372 %probable model

373 [P, gopt {8 ,1}( i +1)]=maxP( a l lP ) ;

374 f o r j =1:mC
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375 %ass i gn p r o b a b i l i t i e s to the r e s pe c t i v e model ar rays

376 g r e s u l t {3 , j }( i +1)=P( j ) ;

377 end

378 exper=s i z e ( gopt {2}) ; %c a l c u l a t e s how many exper iments have been run

379 [ gout1 ( i +1 , : ) , count , gopt {11}( i +1 , : ) ]=SC2( gopt {7} ,{ g r e s u l t { : , gopt {8}( i +1)}} , goal , count ,

exper (1) , rep , gopt {16}) ;

380 i f gout1 ( i +1 ,1)==2

381 i f f l a g 2 (4)==1

382 break

383 e l s e

384 gout1 ( i +1 ,1)=0; %i f SC i s not being run , change out to

zero so box algor i thm can be run

385 end

386 end

387 end

388 c l e a r point

389 f i n i s h=da t e s t r (now)

390 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−Saving Data−−−−−−−−−−−−−

391 p=date s t r (now , ’ mm dd yy ’ ) ;

392 ch5=[p , ’ ’ , num2str ( z ) , ’ ’ , num2str (num) ] ;

393 save ( ch5 ) ;

394 %% extra f unc t i on s needed

395 %%%%%%%%%%%%%%%%%%%%%%%%%%box1%%%%%%%%%%%%%%%%%%%%%%

396 funct i on [ out , point , boxmax]=box1 (mat ,Z , Zal l , opt , r e su l t , model8 , f l a g )

397 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ modi f i ed f o r nuc l eat i on study∗∗∗∗∗∗∗

398 %th i s funct i on takes as input the array o f x and y va lues ’X’ , and the

399 %matrix o f some func t i on s eva lua t i on s in the (x , y ) space , Z . ’boxmax ’ i s the

400 %maximum al lowed value c a l cu l a t ed from avareage output + CI

401 %Z1 i s the model e va lua t i on s at (X,Y) where Z i s the o b j e c t i v e funct i on eva lua t i on s at (X,Y)

402 %−−−−−−−−Constraints−−−−−−−−−−−−−−−−−−−−−−−−−−−−

403 g l oba l n targe t conf2

404 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

405 a=opt {7} ; %i t e r a t i o n

406 counter=0; %need something to track how many po in t s are below boxmax

407 theta=r e s u l t {1}(a , : ) ; %parameters

408 s i g s q=r e s u l t {11}(a ) ; %exp e r r o r

409 hand=model8 {1} ; %handel f o r model funct i on

410 d=opt {1}(a ) ; %max value o f data f o r Jac .m

411 J=r e s u l t {5} ; %X matrix ( de r i v a t i v e o f model wrt parameters )

412 n=l ength ( opt {2}) ; %c a l c u l a t e s how many exper iments have been performed

413 de l ta=r e s u l t {12}(a ) ; %con f i d ence i n t e r v a l on F

414 p=model8 {2} ; %# parameters in model

415 n i s l=r e s u l t {18}(a ) ;

416 value=r e s u l t {16}(a ) ; %value o f obj . func . at e s t . opt . point o f most probable model

417 %Cal cu l at i on o f var i ance on ob j e c t i v e funct i on

418 CI=r e s u l t {21}(a , 2 ) ; %con f i d ence i n t e r v a l o f o b j e c t i v e funct i on ca l cu l a t ed in metrix3 f o r

opt imal point

419 boxmax=value+CI ; %

420 X=mat {1} ; Y=mat{2} ;

421 Z2=Za l l {1} ; %taking Za l l apart to be used by box .m funct i on (Z1=time , Z2=n i s l , Z3=F, Z4=dn i s l )

422 f o r i =1: l ength (X)

423 f o r j =1: l ength (X)

424 point=[X( i , j ) Y( i , j ) ] ;

425 %c a l cu l a t e p r ed i c t i on var i ance at point

426 i f model8{7}==0,
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427 Jopt=Jac ( theta , hand , point , d) ; %c a l c u l a t e s Jacobian o f ALL the data to

use in D−opt imal .

428 e l s e

429 Jn i s l 1=n i s l c a l c ( point ) ;

430 Jopt=Jac ( theta , hand , Jn i s l 1 , d ) ;

431 end

432 PVopt1=PV(J , Jopt , s i g s q ) ;

433 %c a l cu l a t e con f i d ence i n t e r v a l at est imated opt imal point . Equation taken

434 %from pg 395 Montgomery . ∗∗Jopt should be a 3x1 matrix , so the t ran spose i s

435 %rever sed ∗∗

436 de l ta2=t inv ( conf2 , ( n (1)−p) )∗ sq r t ( s i g s q ∗( Jopt∗ inv (J ’∗ J )∗Jopt ’ ) ) ;

437 CI4=sqr t (2∗ abs ( ( Z2( i , j )−ntarge t ) ) )∗ de l ta2 ; %inc lude both terms in o b j e c t i v e

funct i on s i n c e both depend on F

438 i f (Z( i , j ) < boxmax) | | ( (Z( i , j )−CI4 ) < boxmax) %want value to be g re a te r than

boxmax s in c e the point i s to maximize N i s l

439 counter=counter+1;

440 out ( counter , : ) =[CI4 X( i , j ) Y( i , j ) Z( i , j ) Z2 ( i , j ) CI boxmax de l ta2 ] ; %

the column i nd i c e o f Z i s the x ind i ce , row i s f o r y in d i c e

441 end

442 end

443 end

444 i f counter==0 %i f noth ing was found that met c on t s t r a i n t s , end funct i on

445 out=1; %out re tu rn s a dummy va r i ab l e so no e r r o r

446 re tu rn

447 end

448 %out i s o f the form [ output x y ] f o r as many rows as va lues below ’boxmax ’

449 % part 2 o f funct ion−p i ck ing best value f o r pfun

450 [ n ,m]= s i z e ( out ) ;

451 i f f l a g==4 %i f f l a g ==4, doing random and want to sk ip t h i s se t o f c a l c u l a t i o n s

452 point =[out (1 , 2) out (1 , 3) ] ; %i f f l a g ==4, t h i s point i s meaningless

453 e l s e

454 f o r k=1: counter %ca l c value o f op t imal i ty ( depends on f l a g ) at the po in t s below

Pvalue

455 out (k , 9 )=optfun ( [ out (k , 2 ) out (k , 3 ) ] , theta , model8 , opt , r e su l t , s i g sq , f l ag , 1 ) ;

456 end

457 %−−−−−−−−−−FINDING MINIMUM−−−−−−−−−−−−−−−−−−

458 [ val , I ]=min( out ( : , 9 ) ) ; %f i n d s minimum of each column in ’b ’ and i t s i nd i c e

459 x f i n=out ( I , 2 ) ;

460 y f i n=out ( I , 3 ) ;

461 point =[ x f i n y f i n ] ; %index o f minimum point

462 end

463 end

464 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%metrix3%%%%%%

465 funct i on [ theta , Sr , point , J , PVopt1 , sigmasq , CI , d , val , n i s l , CI5 , Jopt ]=metrix3 (model2 , opt , r e su l t , step )

466 %funct i on

467 % metrix3 i s to c a l c u l a t e the model outputs f o r the roughness models , a l s o c a l c u l a t e s J f o r time

models as we l l and propagates e r ro r f o r both models

468 %∗∗∗∗∗∗∗∗∗∗∗∗∗Modi f i ed f o r nuc l eat i on s imu lat i on∗∗

469 %This funct i on w i l l reduce the c l u t t e r in the main funct i on . This funct i on

470 %w i l l c a l c u l a t e the D−opt imal value

471 %%%%INPUT De f i n i t i o n s

472 %model2=array passed with needed in format i on f o r op t imal i ty

473 %e r r=exper imental e r r o r

474 %range=lower and upper bounds f o r c a l cu l a t i n g new thetas

475 %optrange=range f o r f i nd i ng optimum point
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476 %step=how many step s one wants optgraph to perform

477 %%%%OUTPUT De f i n i t i o n s

478 %theta=pred i c t ed thetahat f o r t h i s i t e r a t i o n

479 %Sr=pred i c t ed Srhat f o r t h i s i t e r a t i o n

480 %d=pred i c t ed max value o f y from data

481 %J=pred i c t ed jacob i an f o r t h i s i t e r a t i o n

482 %data=data matrix p lus new experiment from th i s i t e r a t i o n

483 %Dopt=D−opt imal value f o r t h i s i t e r a t i o n

484 %PVx1=pr ed i c t i on var i ance f o r exper imental point

485 %pred=pred i c t ed value at est imated opt imal point

486 %er r1=e r r o r o f p red i c t ed value to actua l value at p red i c t ed opt imal point

487 %PVopt1=PV at i n i t i a l est imated opt imal point

488 %PVopt2=PV at r e a l opt imal point

489 %pred2=output from system

490 %sigmasq=exper imental var i ance c a l cu l a t ed from exper imental data

491 %optpoint=est imated opt imal point f o r t h i s i t e r a t i o n ( a f t e r new experiment

492 %i s generated ( used in c a l cu l a t i o n s f o r next round

493 %−−−−−−−−−−−−pu l l i ng in format i on from ar rays

494 a=opt {7} ; %passe s # of i t e r a t i o n to f i n d co r r e c t value

495 data=opt {2} ; %exper imental data

496 hand=model2 {1} ; %model funct i on handle

497 exppt=opt {5}(a , : ) ; %next exper imental point

498 xLB=opt {4} ( : , 1 ) ; %range f o r x1

499 xUB=opt {4} ( : , 2 ) ; %range f o r x2

500 p=model2 {2} ; % # parameters in model

501 rep=opt {6} ; %number r e p i t i t i o n s

502 ndata1=data ;

503 %ca l c u l a t e new thetahat and Srhat

504 g l oba l n targe t conf2

505 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

506 % These c a l c u l a t i o n s need to be performed BEFORE running pinky , so here they are ou t s i d e the

whi l e loop

507 [ theta , Sr , G] = newf i t ( ndata1 , model2 , opt {13} , opt {3}) ;

508 n=s i z e ( ndata1 ) ;

509 sigmasq=Sr /(n (1)−p) ; %ca l cu l a t i n g exper imental var i ance

510 d=max( round( ndata1 ( : , 3 ) ∗100) ) /100; %c a l c u l a t e s maximum of output f o r

jacob i an c a l cu l a t i o n

511 %∗1000 i s used so d i s a number other than 0

512 i f model2{7}==0,

513 J=Jac ( theta , hand , ndata1 , d) ; %ca l cu l a t e s Jacobian o f ALL the data to use in D−

opt imal .

514 e l s e J=Jac ( theta , hand , opt {3} ’ , d) ; %i f hybrid model i s most probable , change inputs

to Jac

515 end

516 hand

517 %f ind opt imal point p red i c t ed by the opt imal i ty

518 %f i r s t , use optgraph to s t a r t op t im i zat i on

519 [ pointp ,XY4, Z4 , Z1]=optgraph ( opt {4} (1 , : ) , opt { 4} (2 , : ) , step , theta , {model2 { :}} ,{ opt { :}} ,{

r e s u l t { :}} , sigmasq , 4) ;

520 OPTIONS = optimset ( ’ Display ’ , ’ i t e r ’ , ’ LargeScale ’ , ’ o f f ’ ) ;

521 [ point , val ]=fmincon (@( point ) obj fun ( point , theta ,{model2 { :}} , d) , pointp , [ ] , [ ] , [ ] , [ ] , xLB,xUB) ;

522 [ val , s t u f f ]=obj fun ( point , theta ,{model2 { :}} , d ) ; %need to r e c a l c obj fun .m now that opt .

point i s found f o r other parameters needed f o r e r r o r propagat ion

523 n i s l=s t u f f ;

524 i f model2{7}==0,
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525 Jopt=Jac ( theta , hand , point , d) ; %ca l cu l a t e s Jacobian o f ALL the data to use in D−

opt imal .

526 e l s e

527 Jn i s l 1=n i s l c a l c ( point ) ;

528 Jopt=Jac ( theta , hand , Jn i s l 1 , d ) ;

529 end

530 % %ca l c u l a t e con f i d ence i n t e r v a l at est imated opt imal point . Equation taken

531 % %from pg 395 Montgomery . ∗∗Jopt should be a 3x1 matrix , so the t ran spose i s

532 % %rever sed ∗∗

533 CI=t inv ( conf2 , ( n (1)−p) )∗ s q r t ( sigmasq ∗( Jopt∗ inv (J ’∗J )∗Jopt ’ ) ) ;

534 % %Cal cu l at e p r ed i c t i on at est imated opt imal point

535 CI4=sq r t (2∗ abs ( ( n i s l −ntarge t ) ) )∗CI ; %inc lude both terms in ob j e c t i v e funct i on s i n c e

both depend on F

536 CI5=[CI CI4 ] ; %array to s t o r e a l l con f i d ence i n t e r v a l s

537 boxmax=val+CI4 ; %

538 PVopt1=PV(J , Jopt , sigmasq ) ;

539 end

540 %%%%%%%%%%%%%%%%%%%%%%%%%%n i s l c a l c%%%%%%%%%%%%

541 funct i on [ dn i s l 1 , data2 ]= n i s l c a l c (u)

542 % Evans , Thiel , and Ba r t l e t t (2006) equat ion ( 6 . 4 )

543 %This i s the equat ion used to generat e the data from exper imental runs

544 %suggested by D(x)

545 %INPUTS

546 %u (1)=T ( s c a l ed )

547 %u (2)=C ( s c a l ed )

548 %z=# fo r saving output graph

549 %rep=# of r e p i t i t i o n s to be done

550 %e r r=var i ance o f gauss ian data

551 %−−−−−using g l oba l v a r i ab l e s

552 g l oba l g l oba l conv2 g l o b a l t h i c k Ei Ed sigma th et a f

553 %−−−−−−−−−−−−−−Un−Sca l i ng va r iab l e s−−−−−−−−−−−−

554 z=s c a l e (u , 1 ) ;

555 T = z (1) ; %temperature [K]

556 F=3341.07∗ z (2) ; %[ML/micromol ] conver s i on f a c t o r o f molar f low to ML/min

557 x=[T F ] ;

558 %−−−−−−−−−PARAMETERS%−−−−−−−−−−−−−−−

559 q=[Ei Ed sigma ] ; %s t o r e s Ei , E d , and sigma in array to pass to nuc

560 n0 = [ 0 ; 0 ; 0 ] ; % Star t with a bare S i s u r f a c e

561 t f = th et a f /F ; % Final time to reach the t a f

562 dt = t f /100; %s i z e o f time step

563 trange = ( 0 : dt : t f ) ; % Range o f t imes [ s ]

564 [ t , n ] = ode23t (@nuc , trange , n0 , [ ] , x , q ) ;

565 data2 ( 1 , : ) =[n ( end , 3 ) t f max(n ( : , 2 ) ) F ] ;

566 twodn i s l=data2 (1 , 1) ;

567 i f twodn i s l <=0

568 e r r o r ( ’ 2D n i s l i s l e s s than zero ’ ) ;

569 end

570 dn i s l 1=sq r t ( twodn i s l ) ; %take square root o f 2D n i s l f o r input to hybrid models

571 end

572 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%nuc%%%%%%%%%%%%

573 funct i on dndt = nuc ( t , n , x , q )

574 % Nucleat ion model from Evans , Thiel , and Bar te l t

575 %g loba l va r i ab l e s−−−−−−−−−−−−−

576 g l oba l kb g l ob a l v c i g l o b a l i

577 % Process inputs ( f a c t o r s )

194



578 T = x (1) ;

579 F=x (2) ;

580 %q are the f i t t e d parameters in t h i s model

581 Ei = q (1) ; % Energy o f c r i t i c a l c l u s t e r [ eV ]

582 Ed = q (2) ; % d i f f u s i o n a c t i v a t i on energy [ eV ]

583 sigma = q (3) ; % Capture number

584 beta =1/kb/T; %[1/eV ]

585 h = g lob a l v ∗exp(−beta∗Ed) ; %[1/ s ]

586 %ca l c u l a t i on o f N i s l

587 % State s

588 theta = n (1) ;

589 N1 = n (2) ;

590 N i s l = n (3) ;

591 Ni = c i ∗exp(−beta∗Ei )∗N1ˆ g l o b a l i ; % Density o f c r i t i c a l c l u s t e r s

592 Knuc = sigma∗h∗N1∗Ni ;

593 Kagg = sigma∗h∗N1∗Ni s l ;

594 % D i f f e r e n t i a l equat ion model

595 dndt = zeros (3 , 1) ;

596 dndt (1) = F; % Coverage theta

597 dndt (2) = F∗(1− theta ) − ( g l o b a l i +1)∗Knuc − Kagg ;

598 dndt (3) = sigma∗h∗N1∗Ni ;

599 end

600 %%%%%%%%%%%%%%%%%%%%%%%%%%%objfun%%%%%%%%%%%%

601 funct i on [ z1 , r ]=obj fun (x , theta , model , d)

602 %th i s funct i on ca l cu l a t e s the value o f the ob j e c t i v e funct i on f o r the

603 %nuc l eat i on study

604 %−−−−−−−−Constraints−−−−−−−−−−−−−−−−−−−−−−−−

605 g l oba l n targe t

606 %i f you change these c on st ra i n t s , must a l s o change co ns t r a i n t s in box1 .m

607 %−−−−−−Calcu lat ion −−−−−−−−−−−−−−−−−−−−−−−−−

608 hand=model {1} ;

609 i f model{7}==1

610 n i s l 1=n i s l c a l c (x ) ;

611 x=n i s l 1 ;

612 end

613 [GS]= f ev a l (hand , x , theta ) ; %get s model p red i c t i on o f roughness

614 z1 =(((GS−ntarge t ) ) ˆ2) ;

615 r=[GS ] ;

616 end

617 %%%%%%%%%%%%%%%%%%%%%%%%%%%%Sca l e%%%%%%%%%%%%%%%

618 funct i on z=s ca l e (x , f l a g )

619 %should output z as a column vector [T;C]

620 %f l a g =1 means desca l e , otherwise , s c a l e v a r i ab l e s

621 Ta=960.5; Tb=87.5;

622 Ca=150; Cb=50;

623 i f f l a g==1

624 %th i s funct i on d e s c a l e s the x va lues so they can be expre s sed in K and micromoles /min

r e s p e c t i v e l y

625 z (1 , 1)=x (1) ∗Tb+Ta ; %Temp

626 z (2 , 1)=x (2) ∗Cb+Ca ; %concen t rat i on

627 e l s e %Sca l e v a r i ab l e s

628 %th i s funct i on s c a l e s the x va lues so they can be expre s sed in K and micromoles /min

r e s p e c t i v e l y

629 z (1 , 1)=(x (1)−Ta) /Tb ; %Temp

630 z (2 , 1)=(x (2)−Ca) /Cb ; %concen t rat i on
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631 end

632 end

633 %%%%%%%%%%%%%%%%%%%%%%rms1%%%%%%%%%%%%%%%%%%%

634 funct i on [GS]=rms1 (x , q )

635 %T=temperature [K]

636 %These are the dependant v a r i a b l e s

637 %(need to be desca l ed f o r mechani st i c model )

638 %u=s ca l e (x , 1 ) ;

639 T = x (1) ; %temperature [K]

640 C = x (2) ; %Concentrat ion [ micromoles /L ]

641 a=q (1) ;

642 b=q (2) ;

643 GS=a+b∗T;

644 end

645 %%%%%%%%%%%%%%%%%%%%%%rms2%%%%%%%%%%%%%%%%%

646 funct i on [GS]=rms2 (x , q )

647 %T=temperature [K]

648 %These are the dependant v a r i a b l e s

649 %(need to be desca l ed f o r mechani st i c model )

650 %u=s ca l e (x , 1 ) ;

651 T = x (1) ; %temperature [K]

652 C = x (2) ; %Concentrat ion [ micromoles /L ]

653 a=q (1) ;

654 b=q (2) ;

655 c=q (3) ;

656 GS=a+b∗T+c∗C;

657 end

658 %%%%%%%%%%%%%%%%%%%%%%rms3%%%%%%%%%%%%%%%

659 funct i on [GS]=rms3 (x , q )

660 %T=temperature [K]

661 %These are the dependant v a r i a b l e s

662 %(need to be desca l ed f o r mechani st i c model )

663 a=q (1) ;

664 %u=s ca l e (x , 1 ) ;

665 %T = x (1) ; %temperature [K]

666 %C = x (2) ; %Concentrat ion [ micromoles /L ]

667 b=q (2) ;

668 GS=a+b∗x ;

669 end

670 %%%%%%%%%%%%%%%%%%%%%%rms4%%%%%%%%%%%%%

671 funct i on [GS]=rms4 (x , q )

672 %T=temperature [K]

673 %These are the dependant v a r i a b l e s

674 %(need to be desca l ed f o r mechani st i c model )

675 %u=s ca l e (x , 1 ) ;

676 T = x (1) ; %temperature [K]

677 C = x (2) ; %Concentrat ion [ micromoles /L ]

678 a=q (1) ;

679 b=q (2) ;

680 c=q (3) ;

681 GS=a+b∗T+c∗T∗C;

682 end

683 %%%%%%%%%%%%%%%%%%%%%%rms5%%%%%%%%%%%%

684 funct i on [GS]=rms5 (x , q )

685 %T=temperature [K]
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686 %These are the dependant v a r i a b l e s

687 %(need to be desca l ed f o r mechani st i c model )

688 %u=s ca l e (x , 1 ) ;

689 T = x (1) ; %temperature [K]

690 C = x (2) ; %Concentrat ion [ micromoles /L ]

691 a=q (1) ;

692 b=q (2) ;

693 GS=a+b∗T∗C;

694 end

695 %%%%%%%%%%%%%%%%%%%%%%rms6%%%%%%%%%%%

696 funct i on [GS]=rms6 (x , q )

697 %T=temperature [K]

698 %These are the dependant v a r i a b l e s

699 %(need to be desca l ed f o r mechani st i c model )

700 a=q (1) ;

701 GS=a ;

702 end

703 %%%%%%%%%%%%%%%%%%%%rms7%%%%%%%%%%%%%

704 funct i on [GS]=rms7 (x , q )

705 %x i s the input o f nuc l eat i on dens i ty

706 %q i s the f i t t e d parameter

707 GS=q∗x ;

708 end

Listing D.3: exp7.m in Matlab
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