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SUMMARY

Chemical vapor deposition (CVD) is an industrially important process to

deposit crystalline and amorphous thin films on solid substrates. In situ sensing for

CVD is necessary for process monitoring, fault detection, and process control. The

challenge of in situ sensing lies in the prohibitive environment of the CVD process.

Optical sensors such as the reflectometer and the ellipsometer are the most promising

sensors because they can be installed outside of the deposition chamber, and are

sensitive and easy to implement. However, the optical sensors do not measure film

properties directly. Mathematical methods are needed to extract film properties from

indirect optical measurements. Currently the most commonly used method is least

squares fitting.

In this project, we systematically investigated in situ reflectometry data inter-

pretation based on state estimation theory. Optical models for light reflection on

both smooth and rough surfaces were studied. The model validation results indicated

that the effective medium model is better than the scalar scattering model when

the surface is microscopically rough. The analysis of the observability for the sensor

models indicated that the linearized observability does not always guarantee the true

observability of a nonlinear system.

We studied various state estimators such as batch least squares fitting (BLS),

recursive least squares fitting (RLS), extended Kalman filter (EKF), and moving

horizon estimation (MHE). It was shown that MHE is the general least-squares-based

state estimation and BLS, RLS, and EKF are special cases of MHE. To reduce the

computational requirement of MHE, a modified moving horizon estimator (mMHE)

was developed which combines the advantage of the computational efficiency in RLS

xvi



and the a priori estimate in MHE.

State estimators were compared in simulated film growth processes, including

both process model mismatch and sensor model mismatch, and reflection of both

single wavelength and dual wavelength. In the case of process model mismatch and

reflection on a smooth surface, there exists an optimum horizon size for both RLS

and mMHE, although mMHE is less sensitive to the horizon size and performs better

than RLS at all horizon sizes. The estimate with dual wavelength is more accurate

than that with single wavelength indicating that estimation improves with more in-

dependent measurements. In the case of reflection on a rough surface, RLS failed

to give a reasonable estimate due to the strong correlation between roughness and

the extinction coefficient. However, mMHE successfully estimated the extinction co-

efficient and surface roughness by using the a priori estimate. MHE is much more

computationally intensive than mMHE and there is no significant improvement on

the estimation results. In the case of sensor model mismatch, either state estimator

gave a good result, although mMHE consistently gave a better estimate, especially

at a shorter horizon size.

In order to test the state estimators in a real world environment, we built a

cold-wall low-pressure chemical vapor deposition testbed with an in situ emissivity-

correcting pyrometer. Fully automatic data-acquisition and instrument-control soft-

ware was developed for the CVD testbed using LabVIEW. State estimators were com-

pared using two experimental reflectance data sets acquired under different deposition

conditions. The estimated film properties are compared with ex situ ellipsometry and

AFM characterization results. In all cases, mMHE consistently yielded better esti-

mates for processes under quite different deposition conditions. This indicated that

mMHE is a useful and robust state estimator for in situ sensor data interpretation.

By using the information from both the process and the sensor model, one can ob-

tain a better estimate. A good feature of mMHE is that it provides such a versatile
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framework to organize all these useful information and gives a user the opportunity to

interact with fitting and make wise decisions in the in situ sensor data interpretation.
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CHAPTER I

INTRODUCTION

1.1 Overview of in situ sensing for chemical vapor deposi-

tion

Chemical vapor deposition (CVD) is a chemical process that can be used to deposit

crystalline and amorphous thin films on solid substrates. The thickness of the thin

film is usually in the range of a few nanometers to tens of micrometers. In a typical

CVD process, the substrate is heated to high temperature and is exposed to the vapor

of one or more gas phase precursors, which react on the substrate surface to produce

the desired deposit. Frequently, volatile byproducts are also produced, which are

removed by gas flow through the deposition chamber. CVD has a number of forms

depending on the process conditions and how the chemical reactions are initiated.

Some of the forms that are frequently referenced in the literature include low-pressure

CVD (LPCVD), atomic layer CVD (ALCVD), plasma enhanced CVD (PECVD),

metalorganic CVD (MOCVD), and vapor phase epitaxy (VPE). CVD has become

an important process technology in several industrial fields. The largest application

of CVD is in the semiconductor industry where thin films of insulators, dielectrics,

elemental and compound semiconductors, and conductors are extensively utilized in

the fabrication of solid-state devices. CVD is also widely used to make numerous types

of coatings such as hard and wear-resistant coatings like boron, diamond-like carbon,

borides, carbides and nitrides in tool technology, and corrosion resistant coatings,

especially oxides and nitrides for metal protection in metallurgical applications [110,

131].

The applications of CVD are largely dependent on the properties of the deposited
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thin films such as film thickness, surface roughness, composition etc. An in situ thin

film sensor is highly desirable because it can provide the information about the film

in real-time during the deposition. The real-time information can be used for fault

detection, process diagnostics, and ultimately to allow the feedback control of the

CVD process. Currently, in situ sensors have not yet been widely applied in industry

due to some unique challenges. First, CVD is usually operated at high temperature,

low pressure, and with reactive materials. The in situ sensor must be compatible with

the harsh processing environment of CVD. Furthermore, the in situ sensor must not

disturb the deposition process. Finally, the in situ sensor must be fast, robust and

easy to operate. Due to the lack of in situ sensors, currently the process control of

CVD in the semiconductor industry is based on run to run control (R2R). In R2R

control, the processing recipe such as gas flow rate, pressure, temperature, etc. is fixed

during the deposition. After the deposition, the film is characterized ex situ and the

results are used by the R2R controller which then decides whether a recipe change

is needed. A modified recipe for use in the next deposition run is then computed.

The shortcoming of R2R control is that the control actions only take place between

deposition runs so it can not correct the problems that happen in one deposition run.

Ideally one would like to control each deposition run in situ and this is why the in situ

sensor is important. In situ sensing has always been a primary consideration for the

development of process control in the semiconductor industry. The semiconductor

industry is characterized by physically and chemically prohibitive environments and

this makes in situ sensor development and application difficult or even impossible.

In situ sensing has been identified as one of the grand challenges in the near term

(through 2009) in The International Technology Roadmap for Semiconductors 2003

edition [41, 99].

Although not yet widely used in industry, in situ sensing has been extensively

utilized in academia to study reaction mechanisms and monitor the film growth in
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CVD. For example, in situ mass spectrometry is commonly used to identify the reac-

tant species, gaseous reaction byproducts to study gas phase evolution, and pre-

cursor decomposition pathways to help understand the reaction mechanism [144,

70, 143, 29, 174, 53, 168, 175]. In situ Fourier transform infrared spectroscopy

(FTIR) and Raman spectroscopy were used to study the decomposition of the pre-

cursor and gas phase reaction which can be correlated with the characteristics of the

film [96, 97, 55, 69, 54, 126, 105, 56, 27, 1]. In situ Auger electron spectroscopy was

used to study the composition and identify the contamination of the film [28, 102].

In situ X-ray diffraction (XRD) was used to obtain information about film thickness,

growth rate and the chemical composition of compound thin films [74, 128]. In situ

X-ray reflectivity (XRR) was used to study the kinetics and structural evolution of

the deposit in the early stages [73, 101]. In situ scanning transmission electron mi-

croscopy was used to study the microstructure of the film and the effect of processing

conditions on the microstructure [76, 49]. These in situ characterization tools, how-

ever, are not suitable in the production setting because they are expensive, difficult to

install and operate, and the sensor data interpretation is difficult to do in real-time.

For in situ sensing of CVD in the production setting, another group of in situ

sensors are particularly suitable and this includes the pyrometer, ellipsometer and

reflectometer. These sensors are nonperturbing to the process, can be installed out-

side of the deposition chamber, and sensor data interpretation can utilize the well-

understood models of interaction between light and matter. A pyrometer measures

thermal radiation from the film/substrate and this measurement is used to determine

surface temperature. During the growth, the intensity of thermal radiation changes

because of the variations of the effective emissivity of the film/substrate system due

to interferences, absorption, or scattering phenomena. The change of intensity causes

a periodic variation of the pyrometer’s apparent temperature reading. The oscillation

period and amplitude are dependent on the growth rate, complex refractive index and
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surface roughness of the film. Therefore a great deal of information about the film

can be obtained by analyzing the oscillation of apparent temperature. The in situ py-

rometer was extensively used to study the growth rate, complex refractive index and

surface roughness of diamond thin film by CVD [12, 3, 13, 134, 9, 8, 26, 21]. Other

applications include molecular beam epitaxy of GaAs/GaAlAs Bragg reflectors [15],

silicon layers [75], AlGaAsSb materials [14], and MOCVD of metallic thin films [52].

The pyrometer is also used with a reflectometer (reflectance-correcting pyrometer) to

accurately measure the true temperature of the film surface [19], in the presence of

changing surface properties.

An ellipsometer measures the polarization state change of the probe light upon

reflection from the film/substrate system [147]. The incident light is usually totally

polarized with a known polarization state. The polarization state of the reflected

light is described by a complex number ρ̃, which is the ratio of the complex reflec-

tion coefficient parallel to the plane of incidence R̃p to the one perpendicular to the

place of incidence R̃s. The ratio can be described by two real quantities, the ellip-

sometric angles ψ and ∆ which are measured by the ellipsometer, by the equation

ρ̃ = R̃p/R̃s = tanψei∆. The polarization state of the reflected light is dependent

on the optical properties and thickness of the film. Ellipsometry is primarily used

to determine film thickness and optical constants. However, it can also be used to

determine characterization of composition, crystallinity, roughness, doping concen-

tration, and other material properties associated with a change in optical response.

By following the characteristic trajectory of ψ and ∆ during the growth, the growth

stages and mechanism can be studied. From the extracted complex refractive index,

the composition, roughness of the film can be inferred. In situ ellipsometer has been

used extensively to study the growth mechanism of III-V compound semiconductors

such as GaN, AlN, and InN [17, 23, 38, 81, 108, 116, 129, 130, 133, 138, 142, 148, 173].

Other material systems that have been studied include II-VI semiconductors such as
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HgCdTe and CdTe [100, 112], diamond film [84, 60, 31, 33], Si1−xGex film [2, 80, 90],

carbon thin film [62, 159, 65, 161, 160], TiO2 film [4], Si film [82, 132], boron nitride

and titanium nitride [92, 61], Bi2Te3 and Sb2Te3 films and Bi2Te3-Sb2Te3 superlat-

tice [35], Al film [59], silicon oxide [39], YBa2Cu3Ox thin film [169], and Polyphenylene

oxide film [163]. In situ ellipsometer has been also used with reflectance-difference

spectroscopy [40, 93, 137]. Some reviews on the status and challenge of in situ ellip-

sometry can be found in [16, 63, 68].

A reflectometer measures reflectance which is the fraction of incident light re-

flected by the film/substrate system. When a thin film is deposited on a substrate

with a different refractive index, the reflectance will oscillate due to the Fabry-Perot

interference. The oscillation period is determined by the growth rate and the refrac-

tive index of the film. The amplitude of the oscillation is dependent on the refractive

index of both the film and the substrate. The decay of the amplitude is dependent on

the extinction coefficient of the film. Other factors such as the grading of the refrac-

tive index in the film and surface roughness could also affect reflectance. Therefore a

great deal of information about the film could be obtained from an in situ reflectance

measurement. The reflectometer usually measures normal reflectance so the setup is

simpler than the ellipsometer because it requires only one window for optical access.

The normal reflectance is insensitive to incidence angle in the near-normal direction

and this allows monitoring deposition on rotating substrates. The normal reflectance

is also insensitive to light polarization and this allows one to use inexpensive and

stable unpolarized light sources and optical relay systems such as multimode optical

fibers that do not need to preserve polarization. In addition, the reflectometer does

not require strain-free windows for the optical access which are necessary in ellipsome-

ter. Numerical analysis is also easier at normal incidence because only s polarization

needs be considered and the propagation angle inside the film does not need to be

calculated [20]. The disadvantage of the reflectometer is that it is less sensitive than
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the ellipsometer because the latter measures polarization state instead of the intensity

of the reflected light which is more prone to noise.

An extensive body of literatures on in situ reflectometry has been focused on the

study of growth of III-V compound semiconductors such as GaN, AlN, InN and their

ternary compounds [86, 127, 85, 7, 42, 135, 120, 121, 36, 78, 57, 122]. These materials

are widely used for the fabrication of short wavelength light-emitting devices and high

power microwave transistors. GaN is commonly grown on a sapphire substrate by

metalorganic vapor phase epitaxy (MOVPE). A sapphire substrate has a large lattice

mismatch from GaN. In order to accommodate the lattice mismatch, a multiple-step

growth process is usually used. First, a thin buffer layer of GaN is grown at a relatively

low temperature. Then the buffer layer is annealed by increasing the temperature to

that used for subsequent high temperature epitaxy growth of GaN. Finally GaN is

grown on top of the annealed buffer layer. These growth steps can be well identified by

in situ reflectometry. During the deposition of the buffer layer, reflectance decreases

due to the light scattering by the deposited GaN islands on sapphire substrate. Then

in the annealing stage, reflectance increases because GaN islands coalesce to produce

an optically smooth film. Finally the reflectance exhibits regular oscillation due to

2D growth of GaN on the annealed buffer layer. By using an in situ reflectometer,

various deposition conditions can be explored to obtain high quality growth of GaN.

In fact MOVPE process of GaN is so well understood that the in situ reflectometer

has become an established technique for monitoring growth of GaN. It is common for

commercial nitride MOVPE reactors to be shipped with an in situ reflectometer as

standard. In addition to III-V compound semiconductors, the in situ reflectometer

has also been used to study and monitor the growth of diamond film [89, 177, 178],

II-VI semiconductors such as ZnO [32], ZnTe [136, 165], and CdS/CdTe [64].
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1.2 In situ sensor data interpretation

Most of the literatures on in situ sensing has been focused on using in situ sensors to

help understand rather than control the film growth process. For example, the in situ

reflectometer is used to help identify the different growth stages of GaN on sapphire

substrate in MOVPE. This qualitative analysis of in situ sensor data is necessary

for an unknown growth process and represents the first step toward controlling the

process. However, in order to implement process control, film properties such as film

thickness, refractive index and surface roughness must be quantified in real-time. The

challenge of optical sensors is that they do not measure film properties directly. Film

properties must be extracted from indirect measurements like polarization state and

intensity of the reflected light through a model-based analysis using optical physics.

In the following, we briefly review currently available techniques of extracting film

properties from indirect in situ reflectance measurements.

Most reported data interpretation of in situ sensors are retrospective, i.e. sensor

data interpretation is performed after the deposition process is finished. The retro-

spective sensor data interpretation can provide more precise information of the film

than the qualitative analysis but is still not enough for real-time process control.

Therefore this level of sensor data interpretation is somewhat between the qualitative

analysis and the real in situ sensor data interpretation that is to be discussed next.

The simplest and most common method of in situ reflectance interpretation is the

peak-counting method. According to the optical model of thin film interference, each

of the interference extrema corresponds to a film thickness of half the wavelength

of the light in the film. Therefore by counting the number of interference extrema,

film thickness could be estimated when the refractive index is known [178, 177]. The

peak-counting method is extremely easy to use but it requires multiple interference

extrema to process. But in some cases, depending on the film thickness desired and

the wavelength of the light, there may be only a few oscillations during the entire film
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growth. Besides, the peak-counting method cannot estimate film thickness between

interference extremas so it is not a real-time method in the strict sense.

A more rigorous method is the least squares fitting method (LS) [20, 89, 32, 7, 136].

In LS, film parameters like growth rate and refractive index are assumed to be con-

stant and are estimated by minimizing the square of the error between the sensor

model prediction and the measurement. For example, Breiland and his coworkers

used LS to extract five parameters (growth rate, complex refractive index of GaAs

film, and complex refractive index of virtual substrate) from one normal reflectance

measurement [20]. Least squares fitting method can process measurements between

interference peaks but is very sensitive to the initial guess of film parameters. This

is because the error surface of the least squares fit contains multiple local minima

due to the high nonlinearity of the optical model and close correlation between film

parameters. Another problem with LS is that it assumes constant film parameters

over the entire deposition period and this may not be valid in practice. For example,

the film growth rate may change with substrate temperature or decrease due to de-

pletion of the precursor. The refractive index of the film may also change with the

temperature, composition, and microstructure. An in situ sensor must be able to deal

with a time-varying process if feedback control is to be used. One solution is to divide

the film into sublayers and the growth rate and refractive index is assumed constant

within each sublayers [121]. Another solution is to fit the data over a shorter window

of data. When new measurement data is acquired, the window is shifted to include

new data and at the same time discard part of the old data. The optimal solution

in the previous window is then passed into the new window as an initial guess for

the optimization. We refer to this approach as recursive least squares fitting (RLS).

The optical models are usually complicated and for most of the LS based sensor data

interpretation, assumptions are made to simplify the model. For example the film

surface was usually assumed to be smooth. However, surface roughness could have
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multiple effects on optical measurements such as emissivity of the surface and normal

reflectance by scattering the light. By neglecting the roughness one loses informa-

tion contained in the measurements, and introduces errors into the estimates of other

parameters.

State estimator represents another approach for in situ sensor data interpretation.

Estimation theory provides a theoretic framework to deal with estimating the values

of interest from indirect and noise-corrupted measurements. While LS only uses

a static sensor model, a state estimator utilizes the information from both process

dynamic model and sensor model even if the models are not perfect. Currently, most

of the reported work on in situ sensor data interpretation using a state estimator

are focused on the Kalman filter. A Kalman filter is an optimal state estimator

applied to a linear dynamic system that involves random perturbations. It gives

a linear, unbiased, and minimum error variance recursive algorithm to optimally

estimate the unknown state of a linear dynamic system from noisy data taken at

discrete times [30, 91]. For a nonlinear system, a linearization has to be made at each

local estimated state and has proved to be useful in many applications. Compared to

peak-counting and least square fitting methods, the Kalman filter requires only the

most recent measurements to process and thus is more computationally efficient and

suitable for in situ sensing and feedback control. Kalman filters have been widely

used in many areas of industrial applications such as video and laser tracking systems

and satellite navigation. There are also a few applications of the Kalman filter in in

situ sensing for CVD and other surface processing. An early application of Kalman

filter to in situ monitoring of a deposition process appeared in 1984 [6]. Later Woo

et al. applied a modified Kalman filter to estimate film thickness and growth rate

from a laser reflectance measurement [165]. EKF was also used to estimate etch rate

and end-point in a plasma etch system by Vincent and co-workers[158, 157]. In both

their works, adjustable parameters called forgetting factor in Woo and optical gain
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in Vincent have to be included to account for the deficiency of the sensor model.

However, in many cases film roughness and changing extinction coefficient caused the

reflected light amplitude to decay. By using adjustable parameters, the information

contained in the amplitude change was lost. In addition, there is no systematic study

of the uncertainties involved in the models. There is no study on model validation

either.

1.3 Objective and chapter outline

The objective this research is to develop and demonstrate experimentally an in situ

sensor based on estimation theory for real time sensing of thin film properties in chem-

ical vapor deposition (CVD). In this research a commercially available emissivity-

correcting pyrometer (ECP) is used as the sensing element. The ECP measures

normal reflectance at 950 nm and 470 nm, and thermal radiation at 950 nm and

850 nm. Given these indirect measurements, this research aims to answer the fol-

lowing two questions: (i) what kind of thin film properties are embedded in ECP

measurements? (ii) how to extract these properties from indirect and noise-corrupted

ECP measurements? Specifically, this research will work on the development of sensor

model, model validation, observability analysis, implementation and comparison of

estimation algorithms. This state estimator based in situ sensor will also be demon-

strated on an experimental CVD testbed where yttria thin film is deposited on silicon

wafers by metal-organic chemical vapor deposition (MOCVD).

This thesis is divided into the following major chapters:

• Chapter 1 is the literature review on in situ sensing for CVD and currently

available techniques for in situ sensor data interpretation.

• Chapter 2 presents detailed description of the chemical vapor deposition testbed

and its data acquisition and instrument control software that have been built

in this project. The operation procedure of the CVD and lessons that we have
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learned in operating the CVD are also included in this chapter.

• Chapter 3 focused on sensor model development and validation. The sensor

models for both smooth and rough film are described. Based on the sensor

models, the effect of film parameters like growth rate, refractive index and

roughness on the normal reflectance are discussed. Finally the analysis of the

observability based on the nonlinear sensor model are presented.

• Chapter 4 presents the algorithms of state estimators that are studied in this

project, which includes recursive least square estimator, extended Kalman fil-

ter, moving horizon estimator and a modified moving horizon estimator. The

connections between these estimators and their pros and cons are also discussed.

• Chapter 5 presents the results of simulation study. We compare the performance

of different state estimators in simulated film growth processes in terms of speed

and accuracy. The simulation study helps one to understand the mechanism of

how each estimator works and provides a guideline on how to tune the state

estimators.

• Chapter 6 presents the results of experimental study. In this chapter, CVD of

yttria film have been carried out under different processing conditions and in-

terrupted at different time for ex situ characterization. We use state estimators

to extract film properties from experimental reflectance data and compare the

results with ex situ characterization.

• Chapter 7 gives some conclusions of this research and presents suggestions for

future work.
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CHAPTER II

CHEMICAL VAPOR DEPOSITION TESTBED

2.1 Hardware

Figure 1 and 2 show the schematic and the photograph of the CVD testbed, respec-

tively. For ease of discussion, the CVD system is divided into three parts: upstream,

deposition chamber and in situ sensor, and downstream. This CVD system was

originally designed to deposit yttria-stabilized zirconia (YSZ) on silicon substrate.

However in the work in this thesis, we decided to deposit only yttria (Y2O3) in order

to simplify the experimental work and focus on in situ sensing. With that in mind,

we discuss each part in details in the following sections.

2.1.1 Upstream

The upstream consists of six mass flow controllers (MFC) [MKS Instruments], two

precursor evaporators [Kurt J. Lesker], two UV cells [Ocean Optics], a flow man-

ifold and tubes connecting them [Swagelok]. The evaporators are cylinder-shaped

containers made of stainless steel. The size of the containers is 5” tall × 2” diam-

eter. The container is covered by a 3-3/8” Conflat vacuum flange. There are three

tubes on the flange. One is a 1/4” OD inlet tube that extends down 4-5/8” into

the container. This tube is used to introduce carrier argon (Ar3 for Zr precursor

and Ar4 for Y precursor) into the evaporator to dilute and flush out the evaporated

precursors. The second one is a 1/8” sealed tube that extends down 3” into the

container. This tube is used to house a K-type thermocouple to measure evaporator

temperature. The last one is a 1/2” OD outlet tube for evaporated precursors. The

larger diameter of the outlet tube is intended to prevent clogging of the tube with

condensed or decomposed precursors. There is a valve on both inlet and outlet tubes
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Figure 1: Schematic of the chemical vapor deposition testbed.

which allows the evaporator to be closed off and isolated from the rest of the sys-

tem. The evaporators are placed in separate ovens due to the different volatility of

the precursors. Oven temperatures are set manually but it is important to monitor

the evaporator temperature through the thermocouple. The evaporators are heated

by convection of the hot air inside the oven. Due to the large mass of the evapora-

tors, it is common to take more than two hours to heat the evaporators to 150 oC

when the oven temperature is 200 oC. The β-diketonates Zr(tmhe)4 and Y(tmhd)3

[Strem Chemicals, Inc.] are used as the precursors due to their high volatility at

temperatures below 250 oC and thermal stability in the gas phase at elevated tem-

peratures [114, 113]. The precursors material properties are summarized in Table 1.

When packing the evaporators, the precursors are ground into fine powders and coated

onto stainless steel ball bearings to maximize the surface area for evaporation. A sim-

ple calculation can give us a rough idea of how much precursors should be loaded.

Suppose we have deposited 1 micrometer thick yttria (Y2O3) film on a 1” diameter

silicon substrate. The density and the molecular weight of yttria are 5.010 g/cm3 and

225.81 g/mol, respectively. Therefore, the amount of 1 micrometer thick yttria film

is π×0.02542×10−6×5.010×106

4×225.81
= 1.124×10−5 mol. Because one mole of yttria requires two
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Figure 2: Photograph of the chemical vapor deposition testbed.
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Table 1: Precursor material properties. Vapor pressure can be found in [48].

Material CAS No. Formula Molecular Weight Melting Point
Y(TMHD)3 15632-39-0 Y(C11H19O2)3 638.71 g/mol 170-173 oC
Zr(TMHD)4 18865-74-2 Zr(C11H19O2)4 824.29 g/mol 318-320 oC

moles of Y(TMHD)3 and the molecular weight of Y(TMHD)3 is 638.71 g/mol, the

amount of Y(TMHD)3 required is 1.124×10−5×2×638.71 = 0.0144 g. In reality, how-

ever, only a small fraction of the precursor is deposited and rest amount is unreacted

and flushed out of the system. Suppose the efficiency is 10% and we run 10 depositions

after each repack, the amount of precursor needed is 1.44 g, which is what we usually

load in practice. The volume of the evaporator is around 250 cm3 and the loaded ball

bearings usually take about 20% volume of the evaporator. Given the vapor pressure

of the precursor, we can calculate how much precursor is in the gas phase using the

ideal gas law. Suppose the evaporator temperature is 160 oC, the vapor pressure of

Y(TMHD)3 is 48.2 Pa [48], we have n = PV
RT

= 48.2×200×10−6

8.314×433.15
= 2.68×10−6 mol. When

1.44 g Y(TMHD)3 is packed, the precursor in the gas phase is only about 0.12 % of

the total amount. The amount of precursor in the gas phase can certainly affect the

mole flow rate of precursor but it is not the only factor. Another factor is the flow

rate of carrier argon and the mixing beween precursor vapor and argon. The flow of

carrier argon affects the precursor evaporation rate by influencing the mass transfer

boundary layer thickness around the solid precursor. Because it is difficult to quantify

the effect of argon flow, we cannot determine mole flow rate of precursor solely from

thermal dynamic analysis and that is why we need an inline UV spectrometer which

is to be discussed next.

The mixture of evaporated precursor and argon flows out of the evaporator and

enters a UV cell which is connected to a UV spectrometer [Ocean Optics. Model

S2000] via high temperature optical fibers. The UV spectrometer can measure three
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channels of absorbance in the wavelength range from 200 to 1100 nm. Channel

one (Master) measures absorbance of Zr(TMHD)4, channel two (Slave 1) measures

absorbance of Y(TMHD)3, and channel three (Slave 2) is directly connected to light

source so that we can monitor the stability of the UV lamp. Y(TMHD)3 has a

maximum absorption at λmax = 286 nm and its concentration can be determined

from the UV absorbance at λmax by using the Beer-Lambert relation, c = A
ǫb

, where c

is the concentration of the precursor with unit of mol/L,A is absorbance, ǫ is the molar

absorptivity with unit of L/mol cm and is 34673.7 for Y(TMHD)3 [119, 37], b is the

length of UV cell which is 12 cm. With the concentration known, the mole flow rate

of precursor (nY )can be calculated from the mole flow rate of argon (nAr). Suppose

the volume flow rate of the mixture of Y(TMHD)3/Ar4 is V , the steady state pressure

and temperature in the UV cell are P and T , then we have c = nY

V
= nY

(nY +nAr)RT/P
.

Rearranging the equation gives

nY =
1

P
RTc

− 1
nAr (1)

This inline UV spectrometer offers tremendous advantages for the operation of

CVD. It allows us to monitor the flow of the precursors, to determine how much

precursor has been used, and to decide when a repack of the evaporator is necessary.

The concentration of the precursors in the gas phase can also be correlated with the

film composition and other characteristics. MOCVD has been known to have poor

repeatability partly due to the inability of existing MOCVD equipment to precisely

control the precursor delivery [119, 37]. A PID controller is designed in this project

to maintain constant precursor delivery rate by adjusting the flow rate of argon. This

controller is discussed in the Software section.

After the UV cell, the mixtures meet the main carrier argon stream (Ar2) and

enter a flow manifold, which consists of four bellows-sealed valves, two normally closed

(NC) and two normally open (NO). The manifold has two inlets and two outlets.

The mixture of precursor and argon enters from one inlet and another stream of
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dummy argon (Ar5) with the same flow rate enters from the other inlet. One of the

outlets goes to the deposition chamber and the other one goes to the bypass line.

The four valves on the manifold are controlled by four solenoid valves and allows us

to either flow precursors into the reactor to deposit, or to bypass the reactor and

flow pure argon (Ar5) over the substrate during the heat up and cool down steps of

the process. The flow manifold is located outside of the oven so it must be heated

separately to prevent precursor condensation. The rope heater, thermocouple and

temperature controller are all purchased from OMEGA. The temperature set point

of temperature controller is 20 oC higher than oven temperature to compensate for

the poorer thermal insulation of the flow manifold. The flow manifold was designed

to ensure smooth switching between the reaction line and bypass line. However, in

practice the switching of the flow is far from ideal. We have consistently observed

that UV absorbance had a sudden drop to zero when switching the lines. This may

have been due to the pressure imbalance caused during the switch. We have noticed

that normally closed valves switches slower than normally open valves.

All tubes in the upstream are placed inside the oven. Considering the flow rate

of the gas, it is important to make sure the tubes are long enough so that the gas

entering the deposition chamber and evaporators are hot enough. The appropriate

tube length can be obtained by doing some simple thermal calculations [149]. Suppose

the tube inner diameter is D, wall temperature is Tw, gas inlet temperature is Ti, heat

transfer coefficient (from the wall to the gas) is h, the mass flow rate of gas is ṁ, the

specific heat of the gas is Cp, then for gas outlet temperature To, the required tube

length L can be obtained by solving the following ODE: ṁCp
dT
dx

= hπD(Tw − T ),

with boundary condition of T = Ti at x = 0. The solution is L = ṁCp

πhD
ln

(

Tw−Ti

Tw−To

)

. An

additional 20% of calculated length was added for an extra margin of safety. The heat

transfer coefficient h is highly dependent on the physical properties of the fluid and

the type and velocity of flow. For fully developed laminar tube flow with a constant
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wall temperature, h can be obtained from the Nusselt number Nu = hD/k = 3.657,

where k is the thermal conductivity of the fluid [72]. One example of calculating Ar

tube length is shown as follows. The parameters are D = 0.18 in, Tw = 200oC, Ti =

25oC, To = 180oC, k = 0.0177 W/m K, ṁ = 1000 SCCM and Cp = 519.65J/Kg K.

Converting all parameters to SI unit, we have h = 3.657×0.0177
0.18×0.0254

= 14.2 W/m2 K and

L = ṁCp

πhD
ln

(

Tw−Ti

Tw−To

)

= 0.16 m. The above thermal calculation neglected the axial

fluid conduction term which may be significant at low values of Re and or Pr [72].

However, the successful deposition of yttria film suggested that the calculated tube

length is acceptable and we have not even had a problem with clogging of the lines.

2.1.2 Deposition chamber

Figure 3 and 4 show the photograph and cross-sectional view of the deposition cham-

ber. The chamber consists of two standard stainless-steel ultra-high vacuum (UHV)

reducing crosses [MDC Vacuum Products]. The size of the main flange and reducer

flange are 4-1/2” and 2-3/4”, respectively. For the upper reducing cross, the upper

flange connects to an optical viewport and the lower main flanges connects to the

lower reducing cross. One of the reducer flange is used to introduce precursor/argon

mixture in operation mode or dummy argon in bypass mode. The other reducer flange

is used to introduce oxygen and purge flow (Ar1). Both oxygen and Ar1 tubes are

1/4” diameter. The separated flow of oxygen and precursor is intended to minimize

the possible premature reactions which could lead to undesired gas-phase particle

formation. The purge flow has a relatively slower flow rate and is used to prevent

precursor condensation on the viewport. For the lower reducing cross, the upper

flange connects to the upper cross. The lower flange is where to insert a substrate

heater assembly which is to be discussed later. One of the reducer flange is used

for vent line. The other reducer flange connects to the downstream. The deposi-

tion chamber is placed in an oven to prevent precursor condensation on the chamber
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Figure 3: photograph of the chemical vapor deposition chamber.

walls. A vertical flow geometry was selected for the MOCVD reactor because it is

typically used in cold wall designs for rapid thermal processing and also suitable for

in situ sensing. Another reason for the popularity of the vertical flow geometry is the

existence of a one-dimensional similarity solution in the limit of an infinite wafer.

We have used COMSOL to study the gas flow pattern inside the deposition cham-

ber, and Fig. 5 shows the two-dimensional velocity field. The size of the chamber in

Fig. 5 is the same as that of real one except that the heater assembly is not included.

The gas is Ar and its density and dynamic viscosity are corrected for P = 2 Torr

and T = 160 oC which is a typical condition inside the chamber. The boundary

condition is no-slip on all walls except at the inlets and outlet. The mass flow rate

of argon is 50 SCCM for inlet 1 (1/4” diameter) and 140 SCCM for inlet 2 (1/2”

diameter). The gas velocity can be calculated from mass flow rate and pressure and

temperature inside the chamber. Although it is a highly simplified representation of

our system, Fig. 5 offers some interesting insights. First, the flow inside the chamber

is more likely to be laminar flow. The Reynolds number is in the range of 1-100, far
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Figure 4: Cross view of the chemical vapor deposition chamber.

smaller than the transition Reynolds number which is 2100 for gas flowing in a tube.

Second, the velocity appears to be higher around the edge of the substrate and this

may contribute to the convective cooling of the substrate, which in turn may cause

temperature nonuniformity across the substrate. Third, the gas flow has a tendency

toward the pump side (left-hand side). In this CVD system, the exit port is on one

side of wall instead of the bottom which is more common in MOCVD reactors. This

may cause nonuniform delivery of materials to the substrate surface which causes

film nonuniformity. Fig. 5 also shows some recirculation regions in the chamber. It is

reasonable to believe that the precursors in these regions may be difficult to flush out.

The COMSOL solution also gives the pressure profile. It is not presented here but the

result indicated there is almost no pressure drop in the chamber. The biggest pressure

drop appears at inlet 1 in Fig. 5. This makes sense because when gas flow from a

tube with small diameter to a tube with large diameter, pressure will decrease. The

chamber diameter (2-1/2”) is much larger than tube diameter (1/2”) so we expect

less pressure drop inside the chamber.

We have also determined the volume of upstream plus the deposition chamber

by a simple experiment. We first pumped down the system to its base pressure and
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Figure 5: Velocity field inside the deposition chamber.
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Figure 6: Pressure rising curve with 1000 SCCM argon.

closed the throttle valve in the downstream. Then argon with a constant flow rate is

introduced into the system. From the pressure rising rate, the system volume can be

determined by ideal gas law. Because PV = nRT , we have V = ṅRT
dP/dt

, where ṅ is the

argon mole flow rate and dP/dt is the pressure rising rate. Figure 6 shows the pressure

rising curve when Ar flow rate is 1000 SCCM and the chamber temperature is 25 oC.

The pressure rising curve can be fitted by a line with slope equal to 5.8 Torr/sec.

By using the above equation and SI unit, we obtained the system volume equal to

2401 cm3. Once the system volume is known, the residence time can be calculated.

When gas flow rate is 140 SCCM which is what we typically use, at operation pressure

of 2 Torr and temperature of 160 oC, the volume flow rate is 140/60× 160+273.15
273.15

× 760
2

=

1406 cm3. Therefore the residence time is 2401/1406 = 1.7 sec. With the knowledge

of the system volume, the effect of residence time on film growth can be studied.

Figure 7 shows the photograph of the heater assembly [Kurt J. Lesker]. As shown

in Fig. 4, the heater assembly is inserted into the deposition chamber from the lower
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main flange of the lower reducing cross. The heater assembly is about 9” tall. On

top of the assembly is a substrate heater [HeatWave Labs. part No: 101275-27]

which supports and heats the substrate. The heater is made of alumina ceramic

around the filament, with moly shielding around the outside. The filament has a

resistance of about 2 Ω and can reach a maximum temperature of 1200 oC. On the

bottom of the assembly are power feedthrough and thermocouple feedthrough. The

wire connecting the filament to the power feedthrough is exposed to the reactive

gas in the deposition chamber and can easily break. A ceramic paste [Cotronics

Corp.] is coated on the wire and it greatly increase the life span of the heater.

The power feedthrough connects to a power supply with maximum output power of

1350 Watts [Behlman Electronics. Model P1350]. In practice, the heating voltage

is increased gradually to protect the filament. A current sensor [Veris Industries]

is used to monitor the actual current flowing through the filament and allows us to

evaluate the stability of the heater. The thermocouple feedthrough connects to K-type

thermocouple which measures the temperature behind the heater. This temperature

is what is usually reported in the literature. However it can be quite different from

the actual temperature on the substrate surface. The heater body is alumina which

has a very low thermal conductivity (27 W/m K). It is also quite transparent to

thermal radiation at elevated temperatures. Both of these lead to relatively poor

temperature uniformity of the heater face. The mounting shielding, gas flow, spacing

to the sample, etc. could also add to this nonuniformity. In fact, it turned out that

temperature nonuniformity on the heater surface is one of the major problems in this

CVD system. We have observed that when the substrate is heated up to 700 oC, the

reflected light from the substrate gradually shifted out of the view of the detector

and caused significant decrease in the reflected light intensity. When the substrate

is cooled down to room temperature, the reflected light moved back to its original

position and the reflected light intensity increased back to its original value. Figure 8
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Figure 7: photograph of the heater assembly.

shows reflectance change in a heating-cooling cycle experiment with voltage ramping

rate of 0.3 V/min. The left axis is reflectance and the right axis is voltage. The shift of

the light is due to the misalignment between the substrate and the detector, which is

caused by the elastic deformation of the substrate. The deformation of the substrate

is caused by the temperature nonuniformity which induced thermal stress in the

substrate due to local differences in thermal expansion. In addition to the substrate

deformation, temperature nonuniformity could also cause different film growth rates

across the substrate, and this resulting film nonuniformity can have a profound effect

on the reflected light intensity. The reflectometer measures the averaged reflected

light intensity in a certain area on the substrate. If film is nonuniform inside the

area, the measured reflectance will exhibit abnormal behaviors which would make

the sensor data interpretation much more difficult.

The temperature nonuniformity can be lessened by inserting a thermal diffuse

plate between the heater and the substrate. We have used COMSOL to study the

surface temperature profile and the effect of a thermal diffuse plate. Figure 9 shows
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Figure 8: Reflectance change in a heating-cooling cycle experiment. Silicon substrate
is on bare heater surface (Date acquired: 3/10/2006).

the temperature profile on the bare heater surface. The size of the heater in the

model is very close to the real one. The material of the heater body is alumina with

a thermal conductivity of 27 W/m2. The main form of heat dissipation is assumed to

be radiation, which is reasonable considering high vacuum and low gas flow rate inside

the chamber. The filament resistance is 2 Ω and the heating voltage is 15 V. The only

unknown parameter is the effective heating area of the filament, which is needed to

set up the boundary condition. It can be easily obtained by trying some values until

a reasonable surface temperature was obtained, e.g. 800oC. As shown in Fig. 9, the

temperature isolines are circles sharing the same wafer center and the hottest spot

is right above the heating filament. This is because the filament is arranged around

the center of the heater. The temperature difference can be as large as 40 oC over

the heater body. Figure 10 shows the temperature profile when a copper thermal

diffuse plate is placed on top of the heater. The copper plate size is 1/16” thick × 1”

diameter. As shown, the surface temperature is much more uniform than Fig. 9 due
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to the high thermal conductivity of copper (400 W/m2). In practice, however, copper

cannot be used because it reacts with silicon at high temperature. Instead an Inconel

(nickel-chromium-molybdenum alloy) is used. Inconel has a low thermal conductivity

of 9.8 W/m2 but it has good thermal and erosion resistance which is necessary for

use inside the deposition chamber. Ideally, the thicker the thermal diffuse plate

is, better temperature uniformity will be. However, thicker thermal diffuse plate

limits the maximum surface temperature. The maximum surface temperature we can

have with the Inconel plate is around 750 oC. At the time of this writing, a boron

nitride thermal diffuse plate is being fabricated to further improve the temperature

uniformity. The thermal conductivity of boron nitride (30 W/m2) is higher than

that of Inconel so we should expect better uniformity and higher surface temperature

at the same time. With the Inconel thermal diffuse plate, the heating-cooling cycle

experiment was repeated (voltage ramping rate 0.5 V/min) and the result is shown

in Fig. 11. As shown, even at a faster voltage ramping rate, both reflectance at

950 nm and 470 nm gradually increase with temperature. This is expected because

the refractive index of silicon increases with temperature [67, 66]. Fig. 11 indicated

that a much better thermal uniformity has been achieved.

2.1.3 In situ sensor

Figure 12 shows the photograph of the in situ emissivity-correcting pyrometer (ECP)

[SVT Associates. Model: In-Situ 4000]. The ECP measures thermal radiation in-

tensity at 950 and 850 nm and normal reflected light intensity at 950 and 470 nm.

The bandwidths of both thermal radiation and reflection channels are around 15 nm.

The idea of emissivity-correcting pyrometer can be found in [19]. In brief, the ther-

mal radiation from a real surface can be described the blackbody radiation times the

emissivity of the surface. However, as thin films are deposited, the emissivity of the
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Figure 9: Temperature profile on the heater surface.

Figure 10: Temperature profile on the heater surface with a copper thermal diffuse
plate.
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Figure 11: Reflectance change in a heating-cooling cycle experiment. Silicon sub-
strate is on an Inconel thermal diffuse plate (Date acquired: 4/24/2007).

surface changes due to optical interference effects between film interfaces. A pyrom-

eter that does not account for the emissivity changes will yield inaccurate surface

temperature reading. If the emissivity can be independently measured, then accurate

surface temperature may be obtained. Under the conditions of an opaque substrate,

a perfectly specular substrate front surface, and perfect uniformity of the deposited

films, the emissivity (ǫ) may be measured via reflectance (R) at the same wavelength,

ǫ = 1 − R. This is why one of the reflectometer wavelength is 950 nm, to match

the 950 nm thermal radiation channel. The wavelength of 950 nm is chosen because

it is short enough to ensure that silicon substrate is opaque, and long enough to

ensure a measurable thermal radiation at growth temperatures. The opacity of the

substrate also minimize the modeling effort for the thin film interference which is to

be discussed in the next chapter.

The ECP is mounted on a quartz viewport [MDC Vacuum Products] which is

connected to the upper main flange of the upper reducing cross by a straight tube. The
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ECP has several connectors on the rear. The serial connector is used to communicate

with the computer and the BNC connector is used to connect to a video monitor.

There are two different fields of view for the pyrometer and the reflectometer. The

pyrometer detectors have 2 degree field of view whereas the reflectometer detectors

have a 3.6 degree of view. The video monitor views the reflectometer view so that

dark boundary outside of the central video image corresponds to the limits of the

reflectometer field. The pyrometer field is approximately 55% of the reflectometer

and is centered on the video image. The field of view for the pyrometer can be

calculated by D = L/25, where D is the diameter of the area the pyrometer views

and L is the distance from the substrate to the pyrometer. In our CVD testbed, L

is around 15” so we have D around 0.6”. Because the area pyrometer views is 55%

of the reflectoemter, the diameter of the area the reflectometer views is around 0.8”.

The silicon substrate we use is 1” diameter so this means the measured reflectance

is averaged over almost entire substrate. It is important to ensure film uniformity

across the area the reflectometer views so that sensor data interpretation would not

be complicated. However, this turned out to be quite difficult in our CVD testbed

because of the temperature nonuniformity across the wafer due to the design of the

heater. To solve this problem, we have made a simple shutter and placed it in front of

the objective lens. The diameter of the shutter is made small enough to ensure only

a small area on the substrate is viewed, and large enough to ensure the reflectometer

can still detect enough signal. Currently, the diameter of the shutter is around 1/4”

compared to 1” diameter of the objective lens.

2.1.4 Downstream

In the downstream portion of the system, a pressure transducer with a full scale of

760 Torr measures the pressure in the deposition chamber and passes it to a pressure

controller [MKS Instruments], which adjusts a throttle valve in the downstream to
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Figure 12: photograph of the emissivity-correcting pyrometer.

keep pressure stay close to the setpoint value. Another pressure transducer with

smaller full scale of 10 Torr measures the pressure under 1 Torr and displays on its

own readout. The exhaust passes through a liquid nitrogen trap before entering the

vacuum pump [Alcatel] so that unreacted precursors can be captured. The vacuum

pump is designed to operate at pumping speed of 40-50 cfm, which can easily allow

working pressure 1 Torr at mass flow rate of 1000 SCCM.

2.2 Software

We have developed a data acquisition and control software for the CVD testbed by

using LabVIEW [National Instruments]. Figure 13 shows the wiring diagram for

all data acquisition and instrument control hardwares. Figure 14 shows the flow

chart of the data acquisition and instrument control software. The program consists

of eight sub-programs, each of which performs a specific task. Figure 15 and 16

show the front panel and block diagram of the software, respectively. The software

is submitted together with the thesis. We now discuss each sub-program and its

associated hardware wiring in details.
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Figure 13: Wiring diagram for data acquisition and instrument control.
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Figure 14: Flowchart of data acquisition and instrument control software.

32



Figure 15: Front panel of the data acquisition and instrument control software.
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Figure 16: Block diagram of the data acquisition and instrument control software.
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2.2.1 Gas flow sub-program

Gas flow sub-program allows user to acquire six channels of gas flow rate (oxygen and

Ar1 5), to switch on and off the flow, and to set the setpoint of the flow rate. The

program is placed in an event structure. When there is no user input, the program

acquires flow rates and displays them on the front panel. When user switch on and

off the flow, or change the setpoint of the flow rate, the program will capture the

user input and automatically write a comment to the data file to record when and

what change has been made. On the hardware level, the flow rate data acquisition

and control are realized through six mass flow controllers. As shown in Fig. 13,

these controllers are connected to two 4-channel readout [MKS Instrument. Model:

247D]. The readout has a serial connector on the rear and an open-end serial cable

is used to connect the readout to an analog input board [Measurement Computing.

Model: PCIM-DAS1602/16] for flow rate acquisition and to an analog output board

[Measurement Computing. Model: PCI-DAC6703] for flow rate control. Each wire of

the open-end cable has specific usage which can be found in readout’s manual. The

channel assignment to each wire on both input and output boards have been built

into the software so they must be connected in the exactly the same way as shown in

Fig. 13.

2.2.2 Pressure sub-program

Pressure sub-program allows user to acquire pressure, to zero the pressure transducer,

and to switch between auto and manual mode for pressure control. In the auto mode,

it allows user to set the setpoint of the pressure. In the manual mode, it allows user to

open, close or hold the throttle valve. The program also implements an over-pressure

protection mechanism. It allows user to set the upper limit of the pressure in the

chamber. When pressure exceeds the upper limit, the program will automatically

shut off all six channels of gas flow. The program is placed in an event structure.
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When there is no user input, the program acquires pressure and displays it on the

front panel. When user zero the pressure transducer, switch between auto and manual

mode, change the pressure setpoint, open/close/hold the throttle valve, or change

the pressure upper limit, the program will capture the user input and automatically

write a comment to the data file to record when and what change has been made.

On the hardware level, the pressure data acquisition and control are realized through

a pressure controller [MKS Instruments. Model: 1651C]. As shown in Fig. 13, the

controller is connected to a pressure transducer [MKS Instruments. Model: 121A]

and a throttle valve [MKS Instruments. Model: 253B]. The controller communicates

with the computer through COM3 port. The command syntax can be found in the

pressure controller’s manual.

2.2.3 Power supply sub-program

Power supply sub-program allows user to acquire current, to set the setpoint of heating

voltage, and to switch between step and ramp mode. In the step mode, the program

changes the voltage to the setpoint immediately. In the ramp mode, the program

allows user to specify the ramping rate and it calculates the voltage increment for

each iterative based on the ramping rate. The program is placed in an event structure.

When there is no user input, the program acquires current and voltage and displays

them on the front panel. When user change the setpoint of the voltage, switch

between step and ramp mode, or change the ramping rate, the program will capture

the user input and automatically write a comment to the data file to record when and

what change has been made. On the hardware level, the current data acquisition is

realized through a current sensor [Veris Industries] and the voltage control is realized

through a power supply [Behlman Electronics. Model P1350]. As shown in Fig. 13,

the current sensor is connected to the input board on channel number 10. The power

supply has an input connector on the rear and is connected to the output board on
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channel number 12. The power supply output AC voltage (Vo) is determined by the

input DC voltage (Vi). The relationship has been determined experimentally and is

Vo = 13.66 × Vi.

2.2.4 Temperature and solenoid valve sub-program

Temperature and solenoid valve sub-program allows user to acquire three channels

of temperature and to switch four solenoid valves on the flow manifold between the

reaction and the bypass line. The program is placed in an event structure. When

there is no user input, the program acquires temperatures and displays them on the

front panel. When user switch the solenoid valves, the program will capture it and

automatically write a comment to the data file to record when the solenoid valves

are switched and its new state (On or Off). The program uses the time of switching

the solenoid valves from the bypass to the reaction line as the starting point and

the time of switching from the reaction to the bypass line as the ending point of the

deposition process. The elapsed time since start of deposition is also displayed on the

front panel. On the hardware level, the three K-type thermocouples are connected

to the input board on channel number 0, 1 and 2. The thermocouple on channel 0

is connected to the thermocouple feedthrough of the heater assembly and measures

the temperature behind the heater. The thermocouple on channel 1 and 2 measures

the temperature of Zr evaporator and Y evaporator, respectively. The four solenoid

valves are connected in parallel to a 120 V power source and to the output terminal

of a solid state relay (SSR) whose input is connected to the output board on channel

number 13. The SSR acts like a switch to turn on or off the 120 V power source that

drives the solenoid valves. When the input voltage on the SSR is higher than 3 V,

the four solenoid valves switch simutaneouly.
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2.2.5 Emissivity-correcting pyrometer sub-program

Emissivity-correcting pyrometer (ECP) sub-program is the most challenging part

of this software. The ECP was shipped with its own data acquisition and control

software developed by SVT Associates. We basically rebuilt all the functionalities of

the commercial software by using LabVIEW. The ECP sub-program has three tabs

in the front panel, as shown in Fig. 17 to 19. The first tab is Engine tab in which

the program allows user to acquire thermal radiation intensity at 950 and 850 nm

and reflected light intensity at 950 and 470 nm, to enable or disable data acquisition,

to turn on or off LED light source, and to switch between manual and auto mode

for gain control. In manual mode, the program allows user to change the electric

gain by using the scale bar on the right-hand side of the plots. If the gain is set

too high, the electric amplifiers may saturate, so the manual gain must be used with

care. In auto mode, the program automatically adjust the gain to maximize the

signal but not exceeds 2000 mV. The Clear Graph button clears plots on three tabs

simultaneously. The second tab is Reflectance tab in which the program calculates

reflectance at 950 and 470 nm based on the low calibration and high calibration

point. The program allows user to specify the reflectance value at both low and high

calibration points and to calibrate the reflectance using Calibrate High and Calibrate

Low buttons. Once calibrated, the value of reflectance and intensity at both low

and high calibration points are saved in the hard disk for future use. The third

tab is temperature tab in which the program calculates single and dual-wavelengths

temperature of the substrate surface from 950 nm thermal radiation intensity and the

intensity ratio of 950 to 850 nm, respectively. The temperature calculation only occurs

when the thermal radiation intensity at both 950 and 850 nm exceed a threshold

value of 0.05 mV. The program also allows the user to calibrate the single wavelength

pyrometer with dual-wavelength temperature reading by using the Calibrate Ratio

Temp button. The geometric constant obtained in the calibration is displayed in
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Figure 17: Engine tab of ECP sub-program.

the front panel and also saved in the hard disk for future use. The program is

placed in an event structure. When there is no user input, the program either does

nothing if communication and LED light source is off, or acquires thermal radiation,

reflected light intensity, reflectance and temperature and display them on the front

panel if the communication is on. When user enable or disable the communication,

turn on or off the LED light source, change the mode of gain control, manually

change the gain, change the reflectance calibration value, calibrate reflectance, or

calibrate temperature, the program will capture the user input and automatically

write a comment to the data file to record when and what change has been made. On

the hardware level, as shown in Fig. 13, the ECP communicates with the computer

through COM1 port. The syntax of the command is provided by SVT Associates and

is attached in the Appendix.
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Figure 18: Reflectance tab of ECP sub-program.

Figure 19: Temperature tab of ECP sub-program.
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2.2.6 UV spectrometer sub-program

Figure 20 shows the front panel of UV spectrometer sub-program. The program allows

user to acquire spectral transmitted light intensity, to calibrate spectral absorbance by

using dark and reference spectrum, and to turn on or off three optical channels. The

program also calculates the mole flow rate of Zr and Y precursors based on Eq. (1)

and allows PID control of mole flow rate by adjusting carrier argon flow rate. User can

specify PID parameters and enable or disable the controller in a popup window once

the PID button is clicked. The user specified PID parameters are saved in the hard

disk for future use. The program is placed in an event structure. When there is no user

input, the program either does nothing if the optical channels are off or acquires spec-

tral transmitted light intensity and display them on the front panel if the optical chan-

nels are on. When user stores dark or reference spectrum, or activate the PID con-

troller, the program will capture the user input and automatically write a comment to

the data file to record when and what change has been made. On the hardware level,

as shown in Fig. 13, the UV spectrometer communicates with the computer through a

USB port. The LabVIEW driver for the UV spectrometer can be obtained from Ocean

Optics or downloaded from Instrument Driver Network on National Instruments web-

site [http://sine.ni.com/apps/utf8/niid web display.model page?p model id=2843].

2.2.7 Data logging sub-program

Data logging sub-program allows user to specify where to save the data, how fre-

quently to save the data, to write comments that are not built into the software,

and to stop the program. The program also displays elapsed time since the program

started and elapsed time since deposition started, i.e. when the solenoid valves are

switched. The data file has 30 columns and they are time, thermal radiation intensity

at 950 and 850 nm, reflected light intensity at 950 and 470 nm, calibrated reflectance
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Figure 20: Front panel of UV spectrometer sub-program.

at 950 and 470 nm, temperature from dual and single wavelength pyrometer, tem-

perature behind the heater, Zr and Y evaporators, heating voltage and current, six

channels of gas flow rate (oxygen and Ar1 5), pressure, three channels of transmitted

light intensity and calibrated absorbance at 286 nm, calculated Zr and Y precur-

sor mole flow rate, and finally comments including both built-in and user entered

comments. The data file can be directly opened by Microsoft Excel. An Excel VB

script was written to automatically plot the data, summarize comments and output

an Excel workbook file that can be loaded into Matlab for further analysis.

2.3 Operation of CVD system

A detailed procedure for operating this chemical vapor deposition testbed is attached

in the Appendix. It is written by Derek Jamrog who worked in our group as an

undergraduate research assistant in summer semester 2007. He wrote this procedure

from the perspective of a brand new user. In the rest of this section, we summarize

some practical lessons we have learned in operating this CVD testbed.
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• Do not touch any vacuum components with bare hands when packing the evap-

orators and loading the substrate on the heater assembly.

• Always load the substrate in the same orientation, e.g. face the flat edge of the

wafer toward the user. If the substrate does not have a flat edge, use a diamond

cutter to make a small mark on the substrate. Knowing the orientation of the

substrate can help us to investigate the effect of flow direction and pattern on

the film uniformity.

• Pressure inside the deposition chamber can affect the reflectance when pumping

down or venting the system. This is because the pressure difference between

inside and outside of the deposition chamber put a force on the heater assembly

which is held to the chamber by a hinge clamp.

• The reflectance change during heating up and cooling down the substrate is

difficult to predict even when a thermal diffuse plate is used. This is because the

measured reflectance is an overall response to the optical properties change and

thermal deformation of the substrate. However, reflectance will stabilize after

the heating voltage and oven temperature are stabilized and that reflectance is

what is important to us. Once the reflectance is stabilized, we can adjust the

position of the ECP to maximize the reflected light intensity which is attained

at normal incidence. We can also calibrate reflectance using high temperature

refractive index of silicon.

• After the deposition, do not cool down the reactor immediately. Wait for around

10 minutes to allow any unreacted precursors to be consumed or flushed out of

the system. We have observed that quick cooling down of the reactor caused

remaining precursors in the chamber to condense on the film. The resulting film

appears dirty and it introduces error in ex situ surface characterization such as

AFM.
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• After the deposition, the temperature inside the chamber is not uniform. The

pressure transducer is close to the liquid nitrogen trap and thus has a much

lower temperature while other parts are still hot. When flowing argon to bring

the system back to normal pressure, we have observed that argon stopped flow-

ing even though the pressure transducer read a much smaller pressure than

atmospheric pressure. This indicated that the pressure in the upstream is much

higher than downstream due to temperature difference. Later when downstream

temperature increases due to the evaporation of liquid nitrogen, the pressure in

the chamber increases sharply and sometimes exceed the atmospheric pressure.

This is quite dangerous for the quartz viewport. Therefore we should wait for

the system to cool down before flowing argon to bring the system back to the

atmospheric pressure.
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CHAPTER III

SENSOR MODELS AND OBSERVABILITY

In order to extract thin film properties such as film thickness, refractive index and

surface roughness from the reflectance measurements, we must have an optical sen-

sor model that quantifies the relationship between thin film properties and the re-

flectance. In this chapter, we start with a simple optical model for light reflection on

a film/substrate system with perfectly smooth surface. We then study two additional

optical models that consider the surface roughness effect, namely scalar scattering

model and effective medium model. We discuss the conditions for validity of the two

models and present model validation results using ex situ characterization. Based

on the sensor models, we study the effect of film growth rate, extinction coefficient

and roughness on the reflectance. Finally, we discuss the observability based on the

sensor model and a simple process dynamic model.

3.1 Sensor models

3.1.1 Reflection on film/substrate with smooth surface

Figure 21 shows the schematic of light reflection on a film/substrate system with per-

fectly smooth surface. n1, n2 and n3 are the complex refractive index of vacuum, the

film and the substrate, respectively. In the complex refractive index, n = nr − ik, the

real part nr is the refractive index and the imaginary part k is the extinction coeffi-

cient, which indicates the amount of absorption loss when light propagates through

the material. The incident light travels in the direction SB1 with an incident angle of

θ and upon reflection at B1 it is divided into two beams, one reflected in the direction

B1C1 and the other transmitted into the film in the direction B1D1. The transmitted

beam is further divided upon reflection at D1, one transmitted in the direction D1E1
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which is assumed to be totally absorbed by the substrate, and the other reflected

back into the film in the direction D1B2. Such division of light continues infinitely

as shown in the figure. The reflected beams that leave the film surface have different

amplitude and phase and this is what causes interference. For each reflected beam,

the amplitude is determined by its corresponding incident beam based on the Fresnel

formula and its phase differs from that of the preceding reflected beam by an amount

of which corresponds to a double traversal of the film, δ = 4π
λ
n2hcosθ′, where θ′ is the

refractive angle. At normal incidence the phase difference is

δ =
4π

λ
n2h (2)

where h is the thickness of the film and λ is the wavelength of the light in vacuum.

Therefore, if the amplitude of the incident light is A(i), the amplitude of reflected

beams that leave the film surface are r12A
(i), t12t21r23A

(i)e−iδ, t12t21r
2
23r21A

(i)ie−2iδ,

· · · , t12t21rp
23r

p−1
21 A(i)ie−piδ, · · · . The quantities r12, r23, r21 are the Fresnel coefficient

for reflected light that goes from medium 1 to 2, medium 2 to 3 and medium 2 to 1,

respectively. The quantities t12 and t21 are the Fresnel coefficient for transmitted light

that goes from medium 1 to 2 and medium 2 to 1, respectively. In the above analysis,

the incident light is assumed to be linearly polarized with the electric vector either

parallel (p-polarization) or perpendicular (s-polarization) to the plane of incidence.

If the incident light has both p and s component, each component must be dealt with

separately because the reflectance depends on the polarization of the incident light.

In the case of normal incidence, however, the difference between the reflectance of p-

and s-polarization disappears and we can use the Fresnel coefficients of either p or

s-polarization. For s-polarization, the Fresnel coefficients are expressed by [18].

r12 =
n1 − n2

n1 + n2

, r23 =
n2 − n3

n2 + n3

, t12 =
2n1

n1 + n2

, t21 =
2n2

n1 + n2

(3)

The amplitude of the reflected light is obtained by superposing all individual reflected

beams that leave the film surface, A(r) = [r12 + t12t21r23e
−iδ

∑∞
p=0(r23r21e

−iδ)p]A(i).
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Figure 21: Reflection on a film/substrate system with perfectly smooth surface.

When p→ ∞, using
∑∞

p=0 x
p = 1

1−p
and r12 × r21 + t12 × t21 = 1, we obtained

A(r) =
r12 + r23e

−iδ

1 + r12r23e−iδ
A(i) (4)

The reflectance is defined as
∣

∣

∣

A(r)

A(i)

∣

∣

∣

2

and therefore for light reflection on a film/substrate

system with perfectly smooth surface, the normal reflectance is

R =

∣

∣

∣

∣

r12 + r23e
−iδ

1 + r12r23e−iδ

∣

∣

∣

∣

2

(5)

This model is what used in [20] but one should note that there is a mistake in Eq. (6)

in that paper when calculating R from r.

3.1.2 Scalar scattering model

When the surface is rough, the incident light is partially scattered and this causes the

reflected light intensity to decrease. This macroscopic observation can be explained

by microscopic events. On a microscopic level, the specular reflection is the net

result of interference among a large number of reflected beams in various directions.

Therefore, when the surface is optically rough, the net result of interference may

change due to the phase difference induced by the roughness and cause the reflected

light to redistribute in other directions which will be seen as scattered light. This

idea is illustrated in Fig 22. As shown, two normal incident beams of A and B reflect
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Figure 22: Reflection on a rough surface. The height irregularity induced phase
difference.

on a rough surface. The irregularities of height ∆h causes a difference in the optical

path r between the two reflected beams AR and BR, r = 2∆hn1 and thus phase

difference ∆ΦR = 4π∆hn1

λ
. When the surface has a Gaussian distribution of height,

it was shown that the reflection coefficient is given by r′12 = r12exp[−(∆ΦR)2] =

r12exp
[

−
(

4πσn1

λ

)2
]

, where r12 is the Fresnel coefficient for the smooth surface and σ is

the root mean square (RMS) roughness and is proportional to (
∑

∆h2)1/2 [11, 43, 24].

Similarly, the phase difference between two transmitted beams TA and TB is ∆ΦT =

2π∆h(n1−n2)
λ

and the transmission coefficient is t′12 = t12exp

[

−
(

2πσ(n1−n2)
λ

)2
]

.

With the new reflection and transmission coefficient, the amplitude of the reflected

beams in Fig. 21 are r12S12A
(i), t12t21S

2
t r23A

(i)e−iδ, t12t21S
2
t r

2
23r21S21A

(i)ie−2iδ, · · · ,

t12t21S
2
t r

p
23r

p−1
21 Sp−1

21 A(i)ie−piδ, · · · , where the scattering factors S12 = exp
[

−
(

4πσn1

λ

)2
]

,

S21 = exp
[

−
(

4πσn2

λ

)2
]

and St = exp

[

−
(

2πσ(n1−n2)
λ

)2
]

. Following the same proce-

dures in the smooth case, we superpose all individual reflected beams and obtained

the normal reflectance on a film/substrate with rough surface

R =

∣

∣

∣

∣

S12r12 + (S2
t t12t21 + S12S21r

2
12)r23e

−iδ

1 + r12r23S21e−iδ

∣

∣

∣

∣

2

(6)

Obviously, when the surface is smooth, S12 = S21 = St = 1, and Eq. (6) reduces to

Eq. (5).
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3.1.3 Effective medium model

The scalar scattering model is valid when the surface is macroscopically rough, i.e.

the length scale of the irregularities is of the order of or exceeds the wavelength of

light. When the surface is microscopically rough, i.e. the mean height and correla-

tion length of the irregularities are both much less than the wavelength of light, the

multiple-scattering is not significant and the roughness is commonly modeled by the

effective medium model, in which the roughness is modeled as a thin homogeneous

layer with refractive index intermediate to the refractive indices of the two adjacent

optical media [5]. Three effective medium approximation (EMA) models, namely

Lorentz-Lorentz approximation, Maxwell-Garnett approximation and Bruggeman ap-

proximation, are used to calculate the refractive index of the effective layer. These

models are jointly expressed by <ǫ>−ǫh

<ǫ>+2ǫh
=

∑

j fj
ǫj−ǫh

ǫj+2ǫh
, where < ǫ > is the dielectric

function of the effective medium, ǫh is the dielectric function of the host material,

fj is the fraction of the jth constituent. Refractive index is related to the dielectric

constant by n =
√
ǫ. The only difference between the three EMA models is the choice

of the host material. The Bruggeman approximation consisting of 50% voids and

50% material underneath has been found to model surface roughness better than the

other two EMA models and has been successful in interpreting spectral ellipsometric

data. In the Bruggeman EMA, ǫh =< ǫ >, i.e. the host material is just the EMA

dielectric function [146]. Using n =
√
ǫ, the refractive index of the effective layer can

be expressed by

< n >=
√
< ǫ > =

√

√

Ω2 + 8n2
1n

2
3 + Ω

2
(7)

where Ω = (n2
1 + n2

3)/2 and n1 and n3 represent the refractive index of the ambient

and the film underneath, respectively.

For this rough/film/substrate system (rough is the effective layer), we can cer-

tainly use the ray tracing method to calculate normal reflectance, as in the smooth
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Figure 23: Light propagation in a system of 4 layers.

and scalar scattering model but this becomes more tedious as number of layers in-

creases. A more elegant way is to use propagation matrices to keep track of light

propagation in multilayer structures [34, 146]. Figure 23 shows light propagation

on a four layer structure, in which layers 1 to 4 represent ambient, roughness layer,

film, and substrate, respectively. Each layer is characterized by four distinct beams,

traveling upwards (S and Q) and downwards (P and R) in the layer, and they are

related by






Pk−1

Qk−1






=

1

tk−1,k







1 rk−1,k

rk−1,k 1













Rk

Sk






(8)

and






Rk

Sk






=







exp(iδk) 0

0 exp(−iδk)













Pk

Qk






(9)

where δk = 2πnkhk/λ. Eq. (8) ensures the continuity condition at each interface and

Eq. (9) represents the phase change after light passing a distance of hk through layer

k.
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For the film/substrate system, applying Eq. (8) and Eq. (9), we have







P1

Q1






=

1

t12







1 r12

r12 1













R2

S2













R2

S2






=







exp(iδ2) 0

0 exp(−iδ2)













P2

Q2






(10)







P2

Q2






=

1

t23







1 r23

r23 1













R3

S3







Because there is no light coming back from the substrate, S3 = 0, Eq. (10) becomes







P1

Q1






=

1

t12t23







(r12e
iδ + r23e

−iδ)R3

(eiδ + r12r23e
−iδ)R3






(11)

From Eq. (11), the reflection coefficient is

Q1

P1
=

r12 + r23e
−i2δ

1 + r12r23e−i2δ
(12)

and this is the same result as Eq. (5).

Similarly, the reflection coefficient for rough/film/substrate system with the effec-

tive medium model can be obtained by simply multiplying the propagation matrices

and is

Q1

P1
=

r12 + r23e
−i2δ2 + r34e

−i2(δ2+δ3) + r12r23r34e
−i2δ3

1 + r12r23e−i2δ2 + r12r34e−i2(δ2+δ3) + r23r34e−i2δ3
(13)

Therefore, the reflectance is expressed by

R =

∣

∣

∣

∣

r12 + r23e
−i2δ2 + r34e

−i2(δ2+δ3) + r12r23r34e
−i2δ3

1 + r12r23e−i2δ2 + r12r34e−i2(δ2+δ3) + r23r34e−i2δ3

∣

∣

∣

∣

2

(14)

3.2 Sensor model validation

The surface roughness is modeled by the scalar scattering model (SSM) and effective

medium model (EMA), which are fundamentally different approaches. In SSM, the

roughness is modeled as the root mean square of height irregularities and it can be
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measured directly by a surface profiling technique such as atomic force microscopy

(AFM). In EMA, however, the roughness is modeled as the thickness of an effective

layer based on the optical response and it can be measured by ellipsometry. Some

researchers have attempted to find the relationship between the RMS roughness and

the effective layer thickness, and different results have been reported. For example,

some claim that the effective layer thickness is twice that of the RMS roughness,

based on both theoretic derivation and experimental work [25, 87, 88, 109], some

claim that the effective layer thickness is 1.5 times of RMS roughness [77], while still

others claim that it is generally impossible to expect a good agreement between the

EMA thickness and RMS roughness reported by AFM [45].

We have deposited yttria films on silicon substrates under different processing

conditions and measured their RMS roughness and effective layer thickness using

AFM [Molecular Imaging. Model: PicoPlus] and ellipsometer [J.A. Woollam Co.

Model: M-2000], respectively. Figure 24 to 28 shows the AFM images of the deposited

films with a scan size of 5µm× 5µm. The height distribution of each film can be well

fit by a Gaussian distribution and thus satisfy the condition of the scalar scattering

model. Figure 29 shows a typical height distribution curve and the Gaussian fit.

The RMS roughness (σ) and the autocorrelation length (τ) for each film have been

obtained by using a AFM data analysis software [Gwyddion] and are summarized

in Table 2. The autocorrelation function is also fitted well by Gaussian (Figure not

shown). It has been shown that for a surface with a Gaussian autocorrelation function,

τ > 0.6λ leads to accurate results for scalar scattering model, and τ > 0.4λ leads to

less than 20% error [178]. Considering the range of τ in Table 2, λ should be less

than 300 nm for SSM to be accurate. Our in situ reflectometer uses two wavelength,

950 nm and 470 nm, both of which are larger than 300 nm. This suggests that SSM

may not be a good model for extracting RMS roughness.

Table 2 also summarizes the fitting result of the ellipsometry data which are
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Figure 24: AFM image of yttria film deposited on 8/14/2006.

Figure 25: AFM image of yttria film deposited on 8/15/2006.
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Figure 26: AFM image of yttria film deposited on 8/16/2006.

Figure 27: AFM image of yttria film deposited on 8/17/2006.
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Figure 28: AFM image of yttria film deposited on 8/18/2006.
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Figure 29: The surface height distribution from the AFM image in Fig. 24. The
height distribution is well fit by a Gaussian.
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Table 2: Ex situ AFM and ellipsometer characterization and optical model validation
results.

Ellipsometry AFM MSE ×10−3

Date An Bn Ak h (nm) he (nm) σ (nm) τ (nm) SSM EMA
8/14/06 1.866 0.0137 0.0294 623.9 77.7 38.0 141 5.8 3.8
8/15/06 1.845 0.0146 0.0235 378.8 61.1 16.4 135 2.0 1.9
8/16/06 1.895 0.0130 0.0294 503.8 69.7 27.8 179 3.5 2.9
8/17/06 1.868 0.0151 0.0274 650.8 76.1 31.6 176 3.0 2.2
8/18/06 1.867 0.01 0.0314 144.7 32.5 8.1 83 1.4 0.7

based on a three layer model of rough/Cauchy/Silicon. The fitted ellipsometry data

are shown in Fig. 30 to 34. The literature value of refractive indices of yttria are

1.9455 and 1.9054 for 470 nm and 950 nm, respectively [106]. The mean refractive

indices based on the fitted Cauchy parameters, An, Bn and Ak, are 1.9283 and 1.8829

for 470 nm and 950 nm, respectively. This corresponds to an error of only 0.88%

and 1.18% for 470 nm and 950 nm. The RMS roughness measured by AFM is

plotted against the fitted rough layer thickness and is shown in Fig. 35. As shown,

these two quantities have strong correlation and can be best fit by the line RMS =

0.5652×rough−12.4806. The slope of 0.5652 is close to [77]. However, it is important

to note the AFM and ellipsometer are sampling quite a different area. The scan size of

AFM is 5 µm× 5 µm but the spot size of the ellipsometer, depending on the incident

angle, is around 7 mm × 2 mm. This means that the ellipsometer is probing an area

that is around two millions times larger than the area the AFM is scanning.

With the measured RMS roughness and rough layer thickness, we computed spec-

tral normal reflectance using both SSM and EMA models. The film thickness used

in SSM model is equal to the thickness of the Cauchy layer plus half of the rough

layer thickness. The calculated spectral reflectance are compared with experimen-

tally measured normal reflectance by an ex situ reflectometer [Ocean Optics], and are

shown in Fig. 36 to 40. The mean squared errors (MSE) for both SSM and EMA are
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Figure 30: Ellipsometer data and fit of yttria film deposited on 8/14/2006.

300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

wavelength (nm)

Ψ

 

 

mod
exp

Figure 31: Ellipsometer data and fit of yttria film deposited on 8/15/2006.
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Figure 32: Ellipsometer data and fit of yttria film deposited on 8/16/2006.
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Figure 33: Ellipsometer data and fit of yttria film deposited on 8/17/2006.
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Figure 34: Ellipsometer data and fit of yttria film deposited on 8/18/2006.
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Figure 35: Effective layer thickness shows strong correlation with the RMS rough-
ness.
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summarized in Table 2. As shown, the EMA model matches the experimental data

better than SSM does in all cases. A common feature in Fig. 36 to 40 is that the

trough of the spectral reflectance curve rises as wavelengths decreases. Ideally, if the

film is perfectly smooth, we would expect all minimums of the spectral reflectance

to be zero due to complete destructive interference. At longer wavelengths, the film

appears smoother and so the minimum of the reflectance is close to zero. At shorter

wavelengths, however, the film appears rougher and the light may not be completely

cancelled out due to the induced phase difference by roughness, and so the minimum

of the reflectance is not zero. Comparing the calculated spectral reflectance in Fig. 36

to 40, it is clear that EMA performed better in capturing the rise of the trough of

the spectral reflectance curve as wavelength decreases.

Even though EMA matches experimental data better, the offset is still quite large.

This may have been due to the different spot size and different sampling location of

the ellipsometerand the reflectometer. We found that by slightly changing the fitted

parameters in Table 2, better result can be achieved. Figure 41 shows an improved

fit of 8/14/06 film when parameters are changed to Ak = 0.015, h = 655 nm and

he = 65 nm (An and Bn are kept unchanged). The MSE decreased from 3.8×10−3 to

8.8× 10−4. We also calculated spectral reflectance for smooth surface using the same

parameters and the result is shown in Fig. 41 as well. As shown, when the surface

is smooth, the peak of the reflectance curve at shorter wavelength is higher than

that at longer wavelength. This is because the refractive index of the film increases

with decreasing wavelength and larger refractive index causes more reflection. In the

experimental data, however, the peak of reflectance at shorter wavelength is lower

than that at longer wavelength. This indicated that reflectance at shorter wavelength

is more sensitive to the surface roughness. The large offset at longer wavelength

suggests that EMA model is more accurate at shorter wavelength where the surface

roughness effect is more apparent.
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Figure 36: Comparison between ex situ spectral reflectance and model prediction
by SSM and EMA for yttria film deposited on 8/14/2006.
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Figure 37: Comparison between ex situ spectral reflectance and model prediction
by SSM and EMA for yttria film deposited on 8/15/2006.
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Figure 38: Comparison between ex situ spectral reflectance and model prediction
by SSM and EMA for yttria film deposited on 8/16/2006.
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Figure 39: Comparison between ex situ spectral reflectance and model prediction
by SSM and EMA for yttria film deposited on 8/17/2006.
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Figure 40: Comparison between ex situ spectral reflectance and model prediction
by SSM and EMA for yttria film deposited on 8/18/2006.
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Figure 41: Improved EMA fit and calculated spectral reflectance when the surface
is smooth for yttria film deposited on 8/14/2006.
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Figure 42: Simulated 950 nm reflectance at three different growth rates (nm/min).

3.3 Effects of film parameters on reflectance

With the sensor models, we can now study the effect of various film parameters on

the reflectance. Fig. 42 shows the simulated 950 nm reflectance at three different

growth rates. The refractive index of the substrate and the film are chosen to be that

of silicon and yttria, respectively. Both light absorption and surface roughness are

assumed negligible. As shown, a faster growth rate corresponds to a shorter oscillation

period. According to Eq. (2), interference minima occurs when δ = π. This condition

leads to the well-known relationship between the film thickness and the number of

reflectance extrema observed

h =
mλ

4n2
(15)

where m = 1 is the first minimum in reflectance, m = 2 the following maximum, and

so on. This is the idea behind the peak-counting method and it is obvious that a faster

growth rate leads to a thicker film and thus more interference extrema according to

Eq. (15).

Fig. 43 shows the simulated 950 nm reflectance at three different extinction coeffi-

cients. The film growth rate is assumed to be 15 nm/min and surface is assumed to be
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Figure 43: Simulated 950 nm reflectance at three different extinction coefficients.

smooth for all cases. As shown, larger extinction coefficient causes more decay in the

oscillation amplitude. This is expected because the extinction coefficient represents

the amount of absorption loss when light propagates through the material. On the

limiting case when the extinction coefficient is very large or the film is very thick,

there will be no light coming back from the film and the reflectance will approach the

constant value of a simple reflection from the film surface, which is determined by

the refractive index of the film. This idea was exploited by Breiland to extract the

refractive index of a GaAs film [20].

For the surface roughness, we have shown that EMA is a better model than

SSM. For completeness of the thesis, however, we have used both SSM and EMA

model to study the roughness effect on reflectance. Figure 44 shows the simulated

950 nm reflectance at three different RMS roughness using SSM. Figure 45 shows the

simulated 950 nm reflectance at three different effective layer thickness using EMA.

The film growth rate is assumed to be 15 nm/min and extinction coefficient of the

film is assumed to be zero for all cases. As shown, both SSM and EMA model predict

reflectance amplitude decrease when the surface is rough. The amount of reduction
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Figure 44: Simulated 950 nm reflectance at three different RMS roughness (nm)
using SSM.

in SSM is more than that in EMA because the effective layer thickness used in the

calculation is the same as RMS roughness. But as we have shown in the model

validation section, the effective layer thickness should be about twice of the RMS

roughness to get the same amount of reduction in reflectance. Also notice that in

SSM the roughness does not change the position of the reflectance peak. In EMA,

however, the effective layer caused the reflectance peak to shift. This is because in

SSM the roughness enters the model through the scattering factors, S12, S21 and

St, and these factors do not affect the phase which is determined by the average

thickness of the film. In EMA, however, the effective layer causes additional phase

change as light propagates through the layer. Also compare to Fig. 43, constant

surface roughness does not cause the reflectance to decay with time. This is because

the roughness is a surface property and the extinction coefficient is a bulk property.

For a constant extinction coefficient, when film becomes thicker, light has to travel

longer distance in the film and thus more light will be absorbed. For a constant

roughness, however, the reduction of reflectance is not dependent on the thickness of

the film.
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Figure 45: Simulated 950 nm reflectance at three different effective layer thickness
(nm) using EMA.

In a real film deposition process, the surface roughness could changes with time

depending on the processing conditions. If the surface roughness increases during the

growth, we then should expect reflectance to decay with time. Figure 46 shows the

simulated 950 nm reflectance at three different roughening rate using SSM. Figure 47

shows the simulated 950 nm reflectance at three different effective layer growth rate

using EMA. As shown, both SSM and EMA predict reflectance decay over time when

surface roughness increases during the growth. However, in SSM only the peak of

the reflectance is affected and this is quite different from the effect of the extinction

coefficient as shown in Fig. 43. In EMA both peak and trough of the reflectance are

affected and the reflectance shows the similar shape to that in Fig. 43. This suggests

that it might be difficult to separately estimate the extinction coefficient and the

surface roughness.

We have also studied the effect of film nonuniformity on the reflectance. The film

nonuniformity can be regarded as surface roughness with an autocorrelation length

that is much larger than the wavelength of the light. As we have discussed in Chapter

2, the diameter of the area the reflectometer views is around 0.8” and the film growth
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Figure 46: Simulated 950 nm reflectance at three different roughening rate (nm/min)
using SSM.
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Figure 47: Simulated 950 nm reflectance at three different effective layer growth
rate (nm/min) using EMA.
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Figure 48: Simulated 950 nm reflectance when the growth rates are varying within
10% of average rate of 15 nm/min.

rate may be different within this area depending on the surface temperature profile

across the wafer. Figure 48 shows the simulated 950 nm reflectance when the growth

rate in the sampling area of the reflectometer are varying within 10% of average rate

of 15 nm/min. The film surface is assumed smooth and the extinction coefficient is

assumed to be zero for all cases. The simulated 950 nm reflectance at growth rate of

15 nm/min is also plotted for comparison. As shown, the reflectance again shows the

similar shape to that in Fig. 43. This suggests that in order to separately estimate

extinction coefficient, it is important to ensure film uniformity and this is why we

have made significant efforts to achieve temperature uniformity on the surface of the

substrate.

3.4 Observability

The optical models are highly nonlinear and the parameters are highly correlated. For

example, the growth rate (G) and refractive index (n) appear in pairs in the optical

model, and their product determines the oscillation period as suggested by Eq. (2).

A simple simulation was used to visualize the correlation between G and n. In the
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Figure 49: Mean squared error surface shows many local minima indicating strong
correlation between G and n.

simulation, we first generated a true 950 nm reflectance using G = 15 nm/min and

n = 1.9320 with the assumption of zero roughness and zero extinction coefficient.

Then we used different combinations of G ∈ [5, 25] and n ∈ [1, 4] to calculate the

reflectance and the mean squared error from the true reflectance. The result in shown

in Fig. 49. As shown, the mean squared error surface contains many local minima.

At first glance, it is not possible to separately estimate G and n. However, n also

affects the amplitude of the reflectance. Figure 50 shows the simulated two 950 nm

reflectance curves when G = 15 nm/min and n = 1.8, and when G = 18 nm/min

and n = 1.5. In these two cases, G and n are different but their product is the same.

As shown, the two curves have the same oscillation period but different amplitude

of oscillation. It has been shown that if accurate absolute reflectance value can be

obtained, then G and n can be separately estimated [20].

More generally, the question of what parameters can be estimated given a sensor

model and a process dynamic model can be answered by observability analysis. The
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Figure 50: Simulated 950 nm reflectance for two cases with different n and G but
the same n×G.

observability of linear system is straightforward. Given a linear system

xk+1 = Axk (16)

yk = Cxk

it is completely observable if the observability matrix O =



















C

CA

...

CAn−1



















has a full

rank n, where n is the dimension of state space. If the rank of the observability

matrix is equal to k, where k < n, then the system is partially observable. In this

case, the state space can be decomposed into observable and unobservable subspaces.

The unobservable subspace is the null space of the observability matrix. The basis of

the observable and unobservable subspaces can be obtained by performing a singular

value decomposition (SVD) on the observability matrix [10].

For a nonlinear system











xk+1 = f(xk)

yk = g(xk)
, it is observable if there exists a k on
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the time axis such that



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y2
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=
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g(x1)

g(f(x1))

...

g(fk−1(x1))



















(17)

has a unique solution x1. Once x1 is obtained, the state in the whole period can

be reconstructed from the process dynamic model. Generally this is a very strong

condition. In practice, local observability is often considered. The local observability

matrix is the same as that in linear system except that a Jacobian matrix of f and

g is used instead of A and C. It is expected that the local observability matrix will

change over time because the Jacobian matrix is a function of the state.

We have studied the observability based on the sensor model Eq. (5) and a simple

process dynamic model. The state space model is expressed by
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(18)

yj = g(hj, nj , kj) (19)

where h is film thickness, G is film growth rate, n and k are the refractive index and

the extinction coefficient of the film, respectively. Eq. (18) is the process dynamic

model. As shown, h is simply the integration of G with time. The function g(h, n, k)

is the optical sensor model and is expressed in Eq. (5). By linearizing the sensor

model and calculating the observability matrix, we found that the process and sensor

models are not locally observable about any value of the state, due to the lack of

coupling between the states in the process model. However, due to the nonlinearity

in the sensor model, it is possible to extract all four states if one assumes that they

are approximately constant during the deposition. Breiland has used a least squares
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fitting method to extract five parameters (growth rate, complex refractive index of

GaAs film, and complex refractive index of virtual substrate) from a single wavelength

normal reflectance. The results indicated that when the reflectance data contains at

least a quarter-wave oscillation, the five parameters can be separately estimated [20].

On the other hand, for a nonlinear system, even if the local observability matrix

is full rank, the system may still not be complete observable. Consider a simple

nonlinear system







x1

x2







k+1

=







0.8 −0.4

0 1.1













x1

x2







k

yk = x1 × x2

For the first two steps, we have

y1 = x1 × x2

y2 = g













0.8x1 − 0.4x2

1.1x2












= (0.8x1 − 0.4x2) × 1.1x2 = 0.88x1x2 − 0.44x2

2

The rank of the local observability matrix is always equal to 2, which means the

system is locally observable during the entire period. It is obvious that x1 × x2 and

x2
2 can be uniquely determined from y1 and y2 and therefore they are observable.

However x1 and x2 themselves can not be uniquely determined. For example, when

x1 was estimated with a wrong sign, x2 must also change the sign to make x1 × x2

correct. Therefore, the lesson we learned here is that for a nonlinear system, the local

observability does not always guarantee the global observability. For a nonlinear

system, one must consider the specific system and mathematical form, because no

general approach and practical tools exist, as they do for linear systems.
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CHAPTER IV

STATE ESTIMATORS

Once we have a sensor model that quantifies the relationship between the film prop-

erties and the reflectance, we can then extract the film properties from the reflectance

measurement using various mathematical approaches. In this chapter, we summarize

those approaches that have been studied in this project.

4.1 Batch least squares fitting

The simplest method to extract the film properties from the reflectance measurement

is batch least squares fitting (BLS). In BLS, some system-specific parameters such

as film growth rate, refractive index of the film, and refractive index of the substrate

are assumed to be constant and based on these parameters, the temporal reflectance

can be calculated from the sensor model. These parameters are estimated by min-

imizing the summed square of the error between the sensor model predictions and

the real measurements. Once the growth rate is estimated, the film thickness can

be calculated from the growth rate. In practice, BLS is operated iteratively. When

new measurements are acquired, a new fitting cycle is launched to fit all available

measurement data. Typically, the initial values used in the new fit are the values

determined from the last fit. BLS is the algorithm that is used by RoboMBE, the

commercial software that was provided with the emissivity-correcting pyrometer [SVT

Associates]. In RoboMBE, there are a total of five parameters to be estimated and

they are the refractive index and extinction coefficient of the substrate, the refractive

index and extinction coefficient of the film, and film growth rate. The sensor model is

similar to Eq. (5), which describes the normal reflectance on a film/substrate system

with a smooth surface. The only difference is that the thickness in Eq. (5) is replaced

74



by the product of growth rate and time. Therefore the sensor model in RoboMBE is

a function of time.

Mathematically, let x be the vector containing the system parameters to be esti-

mated, e.g. x = [G, n, k, ns, ks]
T , where G is the film growth rate, n and k are the

refractive index and extinction coefficient of the film, ns and ks are the refractive

index and extinction coefficient of the substrate. Let g(x, t) be the sensor model,

then given a sequence of reflectance measurements y1 to yk, the optimum solution of

x, xopt, can be obtained by solving the following optimization problem

xopt = min
x

k
∑

l=1

vT
l vl (20)

where vl = yl − g(x, tl) is the error between sensor model prediction and reflectance

measurements at time l.

One problem with BLS is that the assumption of constant system parameters

during the growth process may not be valid in practice. For example, the film growth

rate may change with substrate temperature or decrease due to depletion of the

precursor. The refractive index of the film may also change with the temperature,

composition, and microstructure. One solution to this problem is to divide the film

into sublayers and the growth rate and refractive index is assumed constant within

each sublayer [121]. Another solution is to use the recursive least squares fitting that

is discussed next.

4.2 Recursive least squares fitting

The idea of recursive least squares fitting (RLS) is to fit the measurement data in

a fixed size window of time instead of all available measurement data. When new

measurements are acquired, the window is shifted to include new measurements and

at the same time to discard part of the old measurements and a new fitting cycle

is launched to fit only the data in the new window. The initial values used in the

new fit are the values determined from the previous fit. Although RLS still makes
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the assumption of constant growth rate and refractive index in each window, the

assumption is more acceptable when the windows is sufficiently small and the process

does not exhibit rapid variation. On the other hand, however, the window cannot

be too small because the fitting algorithm needs a certain amount of data to obtain

an optimal solution. It has been shown that at least a quarter-wave oscillation of

reflectance is needed to separately estimate five parameters (growth rate, complex

refractive index of film, and complex refractive index of substrate) from a single

wavelength reflectance measurement [20]. In Chapter 5, we will study the effect of

window size on the RLS estimation result.

Mathematically, let x be the vector containing the system parameters and g(x, t)

be the sensor model, then given a sequence of reflectance measurements in a window

from k−m+1 to k, the optimum solution of xk, x
opt
k , can be obtained by solving the

following optimization problem

xopt
k = min

xk−m+1

k
∑

l=k−m+1

vT
l vl (21)

where vl = yl − g(x, tl) is the error between sensor model prediction and reflectance

measurements at time l. Notice that xopt is the optimum solution in the window from

k −m + 1 to k and it may change in different windows. In this way, the temporal

evolution of parameters like growth rate and refractive index can be captured.

One common problem with BLS and RLS is that they implicitly assumed deter-

ministic process dynamic model by assuming constant film growth rate and refractive

index. Therefore the estimation totally relies on the sensor model. If there is sensor

model mismatch, the estimation will be wrong and there is no way to correct it. An-

other problem is that they do not consider a priori knowledge of the process. The

optimum solution in neighboring window does not have direct connection except that

the optimum solution in the previous window is passed into current window as an

initial guess. As we have shown in Chapter 3, the sensor model is highly nonlinear
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and the error surface contains multiple local minima. Without a priori knowledge,

the solution may get caught in these local minima. To solve these two problems, we

studied the moving horizon estimator that is discussed next.

4.3 Moving horizon estimation

Moving horizon estimation (MHE) is a general least-squares-based state estimation

method [124, 125, 117, 118, 58]. To the best of our knowledge, MHE has not been

applied to interpret in situ sensor data for a thin film growth process. Compared to

BLS and RLS, MHE does not assume deterministic process dynamic model. A simple

statistical process dynamic model for a thin film growth process can be expressed by
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
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



j

+ wj (22)

where h, G, n and k are film thickness, growth rate, refractive index and extinction

coefficient at a specific wavelength λ, respectively. ∆t is the sampling time. As shown,

h at time j + 1 is simply G × ∆t plus h at time j. G, n and k are assumed to be

constant. w represents uncertainty of the process dynamic model and is assumed to be

zero-mean and with a Gaussian distribution. If w is neglected, the process dynamic

model is deterministic and that is the assumption of BLS and RLS. The process

dynamic model can be made more complicated to include other quantities of interest

like surface roughness or temperature, or to include more complicated relationships

between the states at time j and j + 1. Because the process dynamic model is not

deterministic, film properties at different time such as thickness and refractive index

cannot be determined from one set of system-specific parameters like in BLS and RLS.

Instead, they are treated as state variables and are estimated directly by MHE. The

sensor models discussed in Chapter 3 can be directly used in MHE because they are a
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function of the film properties. Eq. (22) together with a sensor models is collectively

referred to as a state space model.

Given a state-space model and a sequence of reflectance measurements in a horizon

from k −m+ 1 to k, the states in this horizon, xk−m+1, · · · , xk, can be estimated by

solving the following minimization problem

min
xk−m+1,··· ,xk

[

(xe
k−m+1)

TP−1
k−m+1|k−mx

e
k−m+1 +

k
∑

l=k−m+1

vT
l R

−1vl +
k−1
∑

l=k−m+1

wT
l Q

−1wl

]

(23)

s.t.

xe
k−m+1 = xk−m+1 − xk−m+1|k−m

vl = yl − g(xl)

wl = xl+1 − f(xl)

As shown, the objective function of MHE consists of three error terms. The second

error term, vl = yl − g(xl), also appears in BLS and RLS and represents the error

between the sensor model prediction and reflectance measurements at time l. R is

the covariance matrix of the sensor model uncertainty. The inverse of R is used

as a weighting matrix for v in the objective function. The third error term, wl =

xl+1 − f(xl), represents the error between the estimated state xl+1 and the process

dynamic model prediction f(xl), where f is the process dynamic model. Q is the

covariance matrix of the process dynamic model uncertainty, e.g. w in Eq. (22).

The inverse of Q is used as the weighting matrix for w in the objective function.

The first error term, xe
k−m+1 = xk−m+1 − xk−m+1|k−m, represents the error between

the initial state xk−m+1 and the a priori estimate xk−m+1|k−m. The term xk−m+1|k−m

denotes the estimate at time k − m + 1 based on the measurements up to time

k −m. Pk−m+1|k−m is the covariance matrix of the a priori estimate. The inverse of

Pk−m+1|k−m is used as a weighting matrix for xe
k−m+1 in the objective function. By

including xe
k−m+1 in the objective function, MHE penalizes the state variation from the
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a priori estimate and this may help prevent the solution from being caught in the local

minima and from overfitting the sensor measurements when there is noise or modeling

error. An additional advantage of MHE is that it explicitly considers uncertainty and

the correlations between parameters to be estimated through covariance matrices,

which are computated at each time step as will be shown below. In the sensor model

the parameters often appear as ratios. To robustly extract maximum information

from the in situ measurement, a statistical analysis is advantageous.

The above minimization problem estimates states in the horizon from k −m+ 1

to k. When new measurement data are acquired, MHE shifts the horizon to include

the new measurements and discard some old measurements. This is necessary to

prevent the minimization problem from growing in size without bound. When the

horizon shifts, a priori knowledge about the initial state xk−m+2|k−m+1 and its co-

variance matrix Pk−m+2|k−m+1 must be updated so that the information obtained in

the previous horizon can be passed into the current horizon. The update scheme for

MHE currently remains an open question in the state estimation community [58]. A

common scheme is to use the extended Kalman filter (EKF) algorithm [125]. The

measurement-correction terms of EKF are

Lk−m+1 = Pk−m+1|k−mC
T
k−m+1|k(Ck−m+1|kPk−m+1|k−mC

T
k−m+1|k +R)−1

xk−m+1|k−m+1 = xk−m+1|k−m + Lk−m+1[yk−m+1 − g(xk−m+1|k) (24)

−Ck−m+1|k(xk−m+1|k−m − xk−m+1|k)]

Pk−m+1|k−m+1 = (I − Lk−m+1Ck−m+1|k)Pk−m+1|k−m

The measurement-prediction terms of EKF are

xk−m+2|k−m+1 = f(xk−m+1|k) + Ak−m+1|k(xk−m+1|k−m+1 − xk−m+1|k) (25)

Pk−m+2|k−m+1 = Ak−m+1|kPk−m+1|k−m+1A
T
k−m+1|k +Q

where Ck−m+1|k = ∂g(x)
∂x

∣

∣

∣x=xk−m+1|k
and Ak−m+1|k = ∂f(x)

∂x

∣

∣

∣x=xk−m+1|k
. Note Eq. (24)
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and (25) are slightly different from the standard EKF because the EKF is linearized

around the smoothed estimate, xk−m+1|k.

MHE provides a general framework for the least-squares-based estimation. Con-

sider the following two limiting cases. First, when the process model is uncertain,

then Q is the infinity matrix, so MHE totally relies on the sensor model. As a result,

the state is estimated independently at each time step, with no relationship between

the fits of xj+1 and xj . Second, when the sensor model is uncertain, then R is the

infinity matrix, so MHE totally relies on the process dynamic model and the a priori

estimate. In between these two limiting cases, MHE uses both the process dynamic

model and the sensor model to obtain a balanced estimate. RLS can be seen as a

special case of MHE if the process model f is deterministic (Q is the zero matrix) and

the a priori estimate is neglected (Pk−m+1|k−m is the infinity matrix). Once xk−m+1

is estimated, other states in the horizon can be reconstructed through process model

f . Because RLS only estimates x at one time step, xk−m+1, its computation is much

faster than MHE. However it loses the advantage of the a priori estimate in MHE

and it does not allow for a stochastic process dynamic model. In addition RLS does

not have much control over the optimization. On the other hand, MHE allows users

to tune the weighting matrices Q and R to obtain an improved estimate. The main

problem with MHE is that it is computationally expensive. For example, if the state

vector has four elements like in Eq. (22) and the horizon size is 10, then we have

to solve 40 variables in each optimization iteration. This is a very slow process for

nonlinear systems and limits the application of MHE in in situ sensor data interpre-

tation. To solve this problem, we proposed the modified moving horizon estimator

that is discussed next.
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4.4 Modified moving horizon estimator

The idea of the modified moving horizon estimator (mMHE) is to assume a determin-

istic process model in order to reduce the computation in MHE. Because the process

dynamic model is deterministic, only the initial state, instead of all states in the hori-

zon, must be estimated. Once the initial state is estimated, other states in the horizon

can be reconstructed from the process model. However, different from RLS, mMHE

considers the error from the a priori estimate, i.e. it does not force Pk−m+1|k−m to be

the infinity matrix in each new horizon. Instead it uses EKF to update the a priori

estimate and its covariance matrix, as in MHE. In this way mMHE combines the

advantage of the computational efficiency in RLS and the a priori estimate in MHE.

The assumption of the deterministic process model is acceptable because thin film

growth process usually does not exhibit rapid variation, but slow drift over time.

Mathematically, given a sequence of measurements in a horizon starting from

k −m+ 1 to k, the initial state in this horizon, xk−m+1, can be estimated by solving

the following minimization problem

min
xk−m+1

[

(xe
k−m+1)

TP−1
k−m+1|k−mx

e
k−m+1 +

k
∑

l=k−m+1

vT
l R

−1vl

]

(26)

s.t.

xe
k−m+1 = xk−m+1 − xk−m+1|k−m

vl = yl − g(f l−(k−m+1)(xk−m+1))

where f l−(k−m+1)(xk−m+1) means the process model f is applied to xk−m+1 for l −

(k − m + 1) times to calculate the state at time l. Compared to Eq. (26), the w

term is neglected because of the assumption of the deterministic process dynamic

model. The EKF update scheme for xk−m+2|k−m+1 and Pk−m+2|k−m+1 is the same

as for MHE and is expressed by Eq. (24) and (25). One thing to notice is that in

Eq. (25), Pk−m+2|k−m+1 = Ak−m+1|kPk−m+1|k−m+1A
T
k−m+1|k + Q, Q is supposed to be
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a zero matrix because of the assumption of deterministic process dynamic model.

In practice, however, Q is not forced to be a zero matrix. Instead it is used as

a tuning matrix in mMHE to represent the added uncertainty when the horizon

shifts. Although we assumed deterministic process dynamic model in one horizon,

it is intended to reduce the computation in mMHE and the process model in reality

is not completely deterministic. Therefore we should add some uncertainty to the a

priori estimate when the horizon shifts.

4.5 Extended Kalman filter

It has also been shown that the Kalman filter is a special case of MHE when the

system is linear and the horizon size is equal to 1 [125]. For a nonlinear system,

the extended Kalman filter (EKF) is by far the most popular state estimator in the

literature [91, 30] and has been implemented in thin film deposition and etching

processes [165, 158, 157]. In fact, EKF is the first state estimator we studied in this

project. For a nonlinear system xk+1 = f(xk)+wk and yk = g(xk)+ vk, the extended

Kalman filter equations are

Pk|k−1 =

(

∂f

∂x
|x̂k−1

)

Pk−1|k−1

(

∂f

∂x
|x̂k−1

)T

+Q

x̂k|k−1 = f(x̂k−1) (27)

Gk = Pk|k−1

(

∂g

∂x
|x̂k|k−1

)T

·
[

(

∂g

∂x
|x̂k|k−1

)

Pk|k−1

(

∂g

∂x
|x̂k|k−1

)T

+R

]−1

Pk|k =

[

I −Gk

(

∂g

∂x
|x̂k|k−1

)]

Pk|k−1

x̂k|k = x̂k|k−1 +Gk

[

yk − g(x̂k|k−1)
]

where Q and R are the covariance matrix of w and v, respectively. Gk is the Kalman

gain at time k. Pk|k−1 and Pk|k are the a priori and a posteriori error covariance

matrices, respectively. EKF utilizes one measurement at a time so it is more compu-

tationally efficient than MHE. However, as we have discussed before, we need certain
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amount of measurement data that exhibit enough curvature in the reflectance oscil-

lation in order to separately estimate film properties. In this sense, MHE is a more

reliable state estimator than EKF. Another advantage of MHE is that it can handle

state constraints, e.g. the growth rate and the refractive index of the film must be

positive.

In the next two chapters, we will compare the performance of the state estimators

discussed in this chapter in both simulation and experimental study.
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CHAPTER V

SIMULATION

In this chapter, we compare the performance of the state estimators discussed in

Chapter 4 using simulated film growth processes. We first consider the case of process

model mismatch, in which the process model used in simulating the process is differ-

ent from that used in the state estimators. Under the case of process model mismatch,

we study several subcases in the order of complexity including single-wavelength re-

flection on a smooth surface, dual-wavelength reflection on a smooth surface and

dual-wavelength reflection on a rough surface. Following that, we consider the case

of sensor model mismatch, in which the sensor model used in simulating the process

is different from that used in the state estimators.

5.1 Process model mismatch

5.1.1 Single-wavelength reflection on smooth surface

In the case of process model mismatch, we simulate a process in which the film growth

rate slowly decreases with time. The growth rate decay is frequently observed in real

CVD processes due to depletion of precursors or decrease of substrate temperature.

The process model used to simulate the process is expressed by simuprocmodelSS


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
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







h

G

n

k






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









j+1

=



















h+G× ∆t

G× 0.99

n

k



















j

+ wj (28)

where h, G, n and k are film thickness, growth rate, refractive index and extinction

coefficient, respectively. ∆t is the sampling time. As shown, h at time j+1 is simply
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G×∆t plus h at time j. Growth rate at time j+1, Gj+1, is 99% of the previous rate,

Gj. n and k are assumed to be constant. w represents uncertainty of the process

dynamic model and is assumed to be zero-mean and with a Gaussian distribution.

The sensor model is expressed by Eq. (5) for single-wavelength reflection on a smooth

surface. In addition to Eq. (5), we add a sensor noise term, v, to represent sensor

noise and uncertainty of the sensor model. v is assumed to be zero-mean and with a

Gaussian distribution. The wavelength is chosen to be the same as the reflectometer

in our CVD testbed, λ = 950 nm. The substrate is chosen to be silicon and at

500oC its complex refractive index at 950 nm is 3.7687-0.0281j [66, 67]. The film is

chosen to be yttria and its refractive index at 950 nm is 1.9054 [106]. The extinction

coefficient of yttria is not available and is assumed to be 0.05 for this simulation. The

initial growth rate is assumed to be 15 nm/min. Therefore the initial state used to

simulate the process is xi = [0, 15, 1.9054, 0.05]T . The covariance matrices of w and

v are diag(xi)× 10−6 and 10−6, respectively. diag(xi) denotes a diagonal matrix with

xi being the diagonal elements and is used as a scaling factor for the covariance of

each state. 10−6 represents an error in the third decimal place. The time interval is

∆t = 1 min, and the total growth time is 120 minutes. The simulated measurement

and states are shown in Fig. 51. The circles are the sampled points. Notice that the

oscillation period gradually increases due to the decrease of growth rate.

We first use BLS to estimate the states from the simulated reflectance mea-

surement. The process dynamic model used in BLS is expressed by Eq. (22), in

which the growth rate is assumed to be constant. The sensor model is the same

as that used in simulating the process. The initial guess is expressed by x1 =

xi×normrnd(ones(4, 1), 0.1), where normrnd(ones(4, 1), 0.1) denotes a 4×1 Gaussian

random vector with mean 1 and standard deviation 0.1. This means that the initial

guess is around 10% offset from the true initial state. To quantify the quality of

the estimation, we defined estimation error as e =
√

∑

((x− xest)/x̄)2, where x̄ is
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Figure 51: Simulated film growth process with decreasing growth rate. The sensor
model is based on single-wavelength reflection on a smooth surface. (top) reflectance
at 950 nm (bottom) states.
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the mean of the true state and is used to normalize the estimation error. By using

the random vector, we tested five random initial guesses and they all converge to

the same solution. The estimation error is e = 21.9130. Figure 52 shows the es-

timated states and fitted measurement. As shown, BLS did not yield satisfactory

estimates due to the inappropriate assumption of constant growth rate in the entire

growth process. The estimated growth rate is actually the average growth rate of the

growth process. Because growth rate and refractive index and extinction coefficient

are closely coupled, the estimate of the refractive index and extinction coefficient also

have large offset. BLS is what the commercial software RoboMBE is based on and we

have observed similar fitting result when using RoboMBE in our CVD experiments.

In addition to the parameters in Eq. (28), RoboMBE also fits the refractive index

and extinction coefficient of the substrate. However, we have found it quite difficult

to separately estimate the refractive index and extinction coefficient of the film and

the substrate because they are highly correlated. In this simulation, the refractive

index and the extinction coefficient of the substrate are assumed known in the sensor

model. This is a reasonable assumption because the refractive index and the extinc-

tion coefficient of silicon is well known in the literature and in the experiment they

are used as reflectance reference to calibrate the raw reflected light intensity data.

Next we use RLS to estimate the states from the same reflectance. The process

dynamic model and the sensor model are the same as BLS. The initial guess is also

expressed by x1 = xi × normrnd(ones(4, 1), 0.1). The only difference is that RLS

needs an additional parameter, i.e. horizon size. We tested four different horizon

sizes, 10, 20, 30 and 40 and for each horizon size, we tested five random initial

guesses and calculated the mean estimation error. The resulting estimation errors are

summarized in Table 3 (row of Single Smooth). Figure 53 shows a typical estimation

result at N = 10, 20 and 30. The result clearly shows that best estimate was obtained

when window size equals 20. This confirmed what we have discussed in Chapter 4,
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Figure 52: Estimation result by BLS from the reflectance measurement in Fig. 51.
The initial guess is 10% offset from the true initial state. (top) fitted reflectance at
950 nm (bottom) true and estimated states.
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Figure 53: Estimated states by RLS from the reflectance measurement in Fig. 51
with horizon size equal to 10, 20 and 30.

the horizon size cannot be either too short or too long. The window size has two

competing effects on the performance of RLS. First, window size should be short so

that the assumption of constant film parameters is more acceptable. On the other

hand, the window size cannot be too short. The sensor model is highly nonlinear and

film parameters are correlated with each other. If the window size is too short, the

fitting algorithm may not be able to separately estimate these parameters. As shown

in Fig. 51, N = 20 corresponds to a quarter-wave oscillation of reflectance and this

is consistent with the conclusion of [20]. We should also notice that as growth rate

decreases, the window size of 20 may not include enough curvature of reflectance in

the later part of the process. Ideally the window size should be optimized during the

growth and this can be one of the future work suggestions for RLS.

Next we use mMHE to estimate the states from the same simulated reflectance

data. The process dynamic model and the sensor model are the same as in RLS.
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Table 3: Average estimation error by RLS and mMHE with different horizon size.
Process dynamic model mismatch

N 10 20 30 40
Single Smooth RLS 3.8744 1.2473 1.4812 5.3383

mMHE 1.4765 1.1343 1.4435 1.4320
Dual Smooth RLS 1.1918 1.1091 1.5957 1.9809

mMHE 1.0544 1.1064 1.5819 2.0100
Dual Rough RLS 26.2015 35.6655 34.7872 32.8599

mMHE 2.3437 3.4856 4.8320 N/A

The initial guess is also expressed by x1 = xi × normrnd(ones(4, 1), 0.1). The only

difference is that mMHE uses the information from both the process dynamic model

and the sensor model, which is represented by three additional tuning matrices, i.e.

the initial covariance matrix P1|0, the covariance matrix for the sensor model uncer-

tainty R, and the covariance matrix for the process model uncertainty Q. In this

example, R is chosen to be the same as that used in simulating the process R = 10−6

because we know in this example the sensor model is correct. Q represents the added

uncertainty when the horizon shifts. Because the process dynamic model of mMHE

assumes constant G, n and k, the model mismatch mainly lies in G. Therefore we

choose Q = diag([10−1, 10−1, 10−6, 10−6]) with the second element being large to in-

dicate the large model uncertainty in G. 10−1 represents an error in the first decimal

place. The covariance of the first element h is also large because h is computed from

G and so the error in G propagates into h. P1|0 is chosen to be diag(xi)× 10−2 which

represents that the initial guess is around 10% from the true initial state. With the

chosen P1|0, R and Q, we tested four different horizon sizes, 10, 20, 30 and 40 and

for each horizon size, we tested five random initial guesses and calculated the mean

estimation error. The resulting estimation errors are summarized in Table 3 (row of

Single Smooth). Figure 54 shows a typical estimation result at N = 10, 20 and 30.

As shown, the effect of horizon size on the estimation in mMHE has a similar
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Figure 54: Estimated states by mMHE from the reflectance measurement in Fig. 51
with horizon size equal to 10, 20 and 30.

pattern as in RLS, i.e. there exists an optimum horizon size. Furthermore, the

estimation error of mMHE decreased in all horizon sizes compared to RLS. The

estimated states in Fig. 54 are also less oscillatory than in Fig. 53 (notice different y

axis scale). The improved estimation in mMHE is due to the additional information

of the process dynamic model and the inclusion of the a priori estimate. Initially,

the inverse of P1|0 limits the search space for the optimum solution. After the first

iteration, P is updated by EKF. If a good fit is obtained in the first window, P

should become small to indicate more confidence on the a priori estimate for the next

window. Then in the next window, the optimization algorithm weights more on the

a priori estimate and limits the change of the parameters. In RLS, however, the a

priori estimate is not used in the objective function and so the solution of RLS in

Fig. 53 oscillates more between windows, especially for longer horizon size since the

process is changing over this window. Figure 55 shows the evolution of variance of
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Figure 55: Variance of estimated states in Fig. 54 when N = 20.

each state after the measurement update in mMHE, when N = 20. As shown, the

variance of n and k are in the order of 10−5 and 10−6 indicating an error in around

second and the third decimal place, respectively, which is confirmed by comparing

the true and estimated n and k. The variance of G and h are much larger due to

the process dynamic model mismatch. It is an additional advantage of mMHE to

explicitly consider the covariance matrix P because it measures the confidence on the

estimate and also the correlations between states.

We also used full MHE to estimate the states from the same reflectance. The

process dynamic model, the sensor model and tuning matrices are the same as mMHE.

The initial guess is also expressed by x1 = xi × normrnd(ones(4, 1), 0.1). Figure 56

shows a typical estimation result at N = 10. The estimation error is 2.7297. As

shown, there is no significant improvement using full MHE. In fact the estimation

error is even slightly larger than mMHE. However, the major problem of MHE is that
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it is computationally expensive. When N = 10 and x ∈ R4, there are 40 variables

to solve in each iteration. For this particular example, MHE takes 8 minutes and

33 seconds while mMHE takes only 22 second on a Pentium(R) D CPU 3.20GHz

computer. In addition, the computation requirement increases exponentially with

the horizon size and this makes MHE impractical for many applications of in situ

sensor data interpretation.

Finally we used EKF to estimate the states from the same reflectance. The process

dynamic model, the sensor model and tuning matrices are the same as mMHE. By

using the random vector, we tested five random initial guesses and the average es-

timation error is e = 2.9599, higher than both mMHE and RLS. Figure 57 shows a

typical estimated states and variance. As shown, EKF yielded reasonable estimate

as well, although it is significantly more oscillatory compared to mMHE. Among the

state estimators studied, EKF is the fastest because it uses only one measurement

at a time. However, based on our experience, we find that mMHE is more robust

than EKF when the initial guess is wrong because mMHE can converge to the solu-

tion faster by using more measurement data that exhibit curvature in the reflectance

oscillation.

5.1.2 Dual-wavelength reflection on smooth surface

We now consider a slightly more complicated case, i.e. dual-wavelength reflection

on smooth surface. The in situ emissivity-correcting pyrometer in our CVD testbed

uses two wavelengths, λ1 = 950 nm and λ2 = 470 nm. Ideally with more independent

measurement we should obtain a better estimate. The process model used to simulate
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Figure 56: Estimation result by MHE from the reflectance measurement in Fig. 51.
The initial guess is 10% offset from the true initial state. (top) true and estimated
states (bottom) variance of estimated states.
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Figure 57: Estimation result by EKF from the reflectance measurement in Fig. 51.
The initial guess is 10% offset from the true initial state. (top) true and estimated
states (bottom) variance of estimated states.
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the process is expressed by
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where subscript 1 and 2 correspond to 950 nm and 470 nm, respectively. The para-

meters used to simulate the process are the same as the single-wavelength case. The

additional parameter is the complex refractive index of silicon at 470 nm, 4.8438-

0.1528j [66, 67]. The refractive index of yttria at 470 nm is 1.9455 [106]. The extinc-

tion coefficient of yttria is not available and is assumed to be 0.1 for this simulation. So

the initial state used to simulate the process is xi = [0, 15, 1.9054, 0.05, 1.9455, 0.1]T .

The covariance matrix R = eye(2) × 10−6, where eye(2) denotes an 2 × 2 identity

matrix. Keep in mind, however, that in practice the sensor may have different sensi-

tivity at different wavelength and so R may not be an identity matrix. The simulated

measurement and states are shown in Fig. 58. Notice that the 470 nm reflectance

curve oscillates faster than 950 nm, as predicted by Eq. (15).

Following the same logic as in the single-wavelength case, we first use BLS to

estimate the states from the simulated reflectance measurement. The process dynamic

model used in BLS assumes constant growth rate and is expressed by

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Figure 58: Simulated film growth process with decreasing growth rate. The sensor
model is based on dual-wavelength reflection on a smooth surface. (top) reflectance
at 950 nm and 470 nm (bottom) states.
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The initial guess is expressed by x1 = xi × normrnd(ones(4, 1), 0.1). We tested five

random initial guesses and they all converge to the same solution. The estimation

error is e = 25.6640. Figure 59 shows the estimated states and fitted measurement.

Again, BLS did not yield satisfactory estimates due to the inappropriate assumption

of constant growth rate in the entire growth process.

Next we use RLS to estimate the states from the same reflectance. The process

dynamic model and the sensor model are the same as BLS. The initial guess is also

expressed by x1 = xi × normrnd(ones(6, 1), 0.1). We tested four different horizon

sizes, 10, 20, 30 and 40 and for each horizon size, we tested five random initial

guesses and calculated the mean estimation error. The resulting estimation errors are

summarized in Table 3 (row of Dual Smooth). Figure 60 shows a typical estimation

result at N = 10, 20 and 30. Compared to single-wavelength case, we found that by

including an additional independent measurement, the horizon size can be shortened.

For example, the estimation error at N = 10 for the dual-wavelength case is similar

to N = 20 for the single-wavelength case. In our view, it would be even better if the

in situ sensor measures spectral reflectance. The spectral wavelength range should be

chosen such that the sensor model is valid at all wavelengths. If the dielectric function

of the film can be modeled by Lorentz oscillator, the spectral refractive index of the

film can be described by the Cauchy layer with several fitting parameters like in

the ellipsometry [146]. In this way, we have more measurement data and less fitting

parameters and thus should obtain better estimation. This can be one of the future

work for the in situ sensor.

Next we use mMHE to estimate the states from the same reflectance. The

process dynamic model and the sensor model are the same as RLS. The initial

guess is also expressed by x1 = xi × normrnd(ones(6, 1), 0.1). Following the same

tuning guideline in the single-wavelength case, we let R = eye(2) × 10−6, Q =

diag([10−1, 10−1, 10−6, 10−6, 10−6, 10−6]) and P1|0 = diag(xi)× 10−2. With the chosen
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Figure 59: Estimation result by BLS from the reflectance measurement in Fig. 58.
The initial guess is 10% offset from the true initial state. (top) fitted reflectance at
950 nm and 470 nm (bottom) true and estimated states.
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Figure 60: Estimated states by RLS from the reflectance measurement in Fig. 58
with horizon size equal to 10, 20 and 30.

P1|0, R and Q, we tested four different horizon sizes, 10, 20, 30 and 40 and for each

horizon size, we tested five random initial guesses and calculated the mean estima-

tion error. The resulting estimation errors are summarized in Table 3 (row of Dual

Smooth). Figure 61 shows a typical estimation result at N = 10, 20 and 30. Figure 62

shows the evolution of variance of each state after the measurement update in mMHE

when N = 20. As shown, mMHE again consistently yields better estimate than RLS.

Notice that at N = 40, mMHE sometimes has difficulty to converge.

We also used full MHE to estimate the states from the same reflectance. The

process dynamic model, the sensor model and tuning matrices are the same as mMHE.

The initial guess is also expressed by x1 = xi × normrnd(ones(6, 1), 0.1). Figure 63

shows a typical estimation result at N = 10. The estimation error is 1.8952. For this

particular example, MHE takes 17 minutes and 44 seconds on a Pentium(R) D CPU

3.20GHz computer. Compared to single-wavelength, the computation time doubled
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Figure 61: Estimated states by mMHE from the reflectance measurement in Fig. 58
with horizon size equal to 10, 20 and 30.
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Figure 62: Variance of estimated states in Fig. 61 when N = 20.
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when two additional states are optimized.

Finally we used EKF to estimate the states from the same reflectance. The process

dynamic model, the sensor model and tuning matrices are the same as mMHE. We

tested five random initial guesses and the average estimation error is e = 1.3071.

Figure 64 shows a typical estimated states and variance. As in the single-wavelength

case, EKF is more oscillatory than mMHE and RLS, but also performs reasonably

well.

5.1.3 Dual-wavelength reflection on rough surface

Now we consider an even more complicated case, i.e. dual-wavelength reflection

on a rough surface. As we have shown in Chapter 3, surface roughness and film

extinction coefficient both cause reflectance to decrease and so in the experiment, the

measured reflectance is a combined result of both light scattering by roughness and

light absorption by extinction coefficient. Therefore, the purpose of this simulation is

to study whether the state estimators can separately estimate extinction coefficient

and surface roughness. The process model used to simulate the process is expressed

by
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where he and Ge represent the effective layer thickness and effective layer growth

rate. As shown, the effective layer growth rate Ge at time j + 1 is 99% of the

previous rate. It has been observed in our experiment that the roughness initially
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Figure 63: Estimation result by MHE from the reflectance measurement in Fig. 58.
The initial guess is 10% offset from the true initial state. (top) true and estimated
states (bottom) variance of estimated states.
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Figure 64: Estimation result by EKF from the reflectance measurement in Fig. 58.
The initial guess is 10% offset from the true initial state. (top) true and estimated
states (bottom) variance of estimated states.
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increases and then saturates after a certain thickness is achieved. The sensor model

is expressed by Eq. (14) for reflection on a rough surface. We use EMA model

because it is better than SSM as discussed in Chapter 3. The complex refractive

index of the substrate and wavelengths are the same as in the case of dual-wavelength

reflection on smooth surface. The initial state used to simulate the process is xi =

[0, 15, 0, 1, 1.9054, 0.05, 1.9455, 0.1]T. The covariance matrices are R = eye(2) × 10−6

and Q = diag(xi)×10−6. The simulated measurement and states are shown in Fig. 65.

Compared to Fig. 58, the reflectance at both wavelengths decreases with time due to

increasing surface roughness. Also notice that the reflectance at 470 nm is affected

more by the roughness, which is consistent with the discussion in Chapter 3.

Following the same logic in the dual-wavelength smooth case, we first use BLS to

estimate the states from the simulated reflectance measurement. The process dynamic

model used in BLS assumes constant growth rate of the film and the effective layer

and is expressed by
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The initial guess is expressed by x1 = xi × normrnd(ones(8, 1), 0.1). We tested five

random initial guesses and they all converge to the same solution. The estimation

error is e = 26.0206. Figure 66 shows the estimated states and fitted measurement.

Again, BLS did not yield satisfactory estimates due to the inappropriate assumption
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Figure 65: Simulated film growth process with decreasing film growth rate and
effective layer growth rate. The sensor model is based on dual-wavelength reflection
on a rough surface. (top) reflectance at 950 nm and 470 nm (bottom) states.

106



of constant growth rate in the entire growth process.

Next we use RLS to estimate the states from the same reflectance. The process

dynamic model and the sensor model are the same as BLS. The initial guess is also

expressed by x1 = xi×normrnd(ones(8, 1), 0.1). We tested four different horizon sizes,

10, 20, 30 and 40 and for each horizon size, we tested five random initial guesses and

calculated the mean estimation error. The resulting estimation errors are summarized

in Table 3 (row of Dual Rough). Figure 67 shows a typical estimation result at

N = 10, 20 and 30. Compared to the dual-wavelength smooth case, we found that

by including two additional states, RLS did not yield a good result. Figure 67 shows

that sometimes he is estimated to be negative. This is because the initial guess of

both he and Ge is close to zero, and without positive constraint the fitting algorithm

may find a local minima at negative region. In this case, it would be helpful to have

a spectral reflectance measurement to estimate roughness.

Next we use mMHE to estimate the states from the same simulated reflectance

data. The process dynamic model and the sensor model are the same as RLS.

The initial guess is also expressed by x1 = xi × normrnd(ones(8, 1), 0.1). Follow-

ing the same tuning guideline in the single-wavelength case, we let R = eye(2)×10−6,

Q = diag([10−1, 10−1, 10−3, 10−3, 10−6, 10−6, 10−6, 10−6]) and P1|0 = diag(xi) × 10−2.

The third and fourth element of Q are chosen to be 10−3 to indicate relative small

uncertainty of he and Ge because he and Ge are smaller than h and G by one order

of magnitude. With the chosen P1|0, R and Q, we tested four different horizon sizes,

10, 20, 30 and 40 and for each horizon size, we tested five random initial guesses and

calculated the mean estimation error. The resulting estimation errors are summa-

rized in Table 3 (row of Dual Rough). Figure 68 shows a typical estimation result at

N = 10, 20 and 30. Figure 69 shows the evolution of variance of each state after the

measurement update in mMHE when N = 20.
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Figure 66: Estimation result by BLS from the reflectance measurement in Fig. 65.
The initial guess is 10% offset from the true initial state. (top) fitted reflectance at
950 nm and 470 nm (bottom) true and estimated states.
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Figure 67: Estimated states by RLS from the reflectance measurement in Fig. 65
with horizon size equal to 10, 20 and 30.
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Figure 68: Estimated states by mMHE from the reflectance measurement in Fig. 65
with horizon size equal to 10, 20 and 30.
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Figure 69: Variance of estimated states in Fig. 68 when N = 20.

As shown, mMHE again consistently yielded better estimate than RLS and sepa-

rately estimated roughness and extinction coefficient. Neither he or Ge is estimated

to be negative because the a priori estimate limits the search space for the optimum

solution. It is clear from this simulation that by utilizing both process dynamic model

and the sensor model instead of using only the sensor model, a better estimate can be

obtained. Also notice that at N = 40, mMHE has difficulty to converge. This maybe

because at the longer horizon, the estimated growth, i.e. averaged growth rate in

the horizon, has more offset from the true growth rate. Therefore when the horizon

shifts, there will be more added uncertainty. Thus, selecting a window size that is

appropriate can also be important for mMHE.

We tested the sensitivity of mMHE to tuning matrices P1|0, Q, and R by scaling

the matrices by 1/10 and 10. The estimation error at N = 10 for different tuning

matrices are summarized in Table 4. As shown, mMHE gave better results than RLS
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Table 4: Estimation error by mMHE at N = 10 with different P1|0, Q, and R

R/10 R R× 10
Q/10 Q Q× 10 Q/10 Q Q× 10 Q/10 Q Q× 10

P1|0/10 2.238 3.848 8.338 1.399 1.542 3.661 1.627 1.540 1.484
P1|0 5.385 5.920 8.282 2.273 2.328 3.814 1.898 2.253 2.160

P1|0 × 10 5.621 6.882 8.643 5.655 5.033 4.129 3.325 2.075 2.456

(estimation error is 26.2015) in all cases, indicating a good robustness to the tuning

matrices. Also notice there is a trend that the estimation error increases when Q

and P1|0 increase and R decreases. This is expected because increasing Q and P1|0

indicates less confidence on the a priori estimate and decreasing R indicates more

weight on the measurement. This is esentially approaching to RLS and therefore the

estimation error increases.

Finally we used EKF to estimate the states from the same reflectance. The process

dynamic model, the sensor model and tuning matrices are the same as mMHE. We

tested five random initial guesses and the average estimation error is e = 2.9233. Fig-

ure 70 shows a typical estimated states and variance. Again, EKF yielded acceptable

result by using both the process dynamic model and the sensor model.

5.2 Sensor model mismatch

5.2.1 Single-wavelength reflection on smooth surface

In the previous section, we found that even if there is process dynamic model mis-

match, most of the time RLS can still yield a reasonable estimate. This is because

RLS is solely dependent on the sensor model and the sensor model in the previous

section is assumed to be correct. In this section, we study a worse but common

scenario, when there is sensor model mismatch. As we have shown in Chapter 3,

the EMA model may be less accurate at longer wavelength and there is a systematic

error of around 150% at 950 nm. Inspired by that, we consider a sensor model that
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Figure 70: Estimation result by EKF from the reflectance measurement in Fig. 65.
The initial guess is 10% offset from the true initial state. (top) true and estimated
states (bottom) variance of estimated states.
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simply multiplies the reflectance calculated from Eq. (5) by 1.5. The process dynamic

model is the same as in the previous section and is expressed by Eq. (28). The initial

state used to simulate the process is xi = [0, 15, 1.9054, 0.05]T . The parameters used

to simulate the process are the same as in the previous section of single-wavelength

reflection on smooth surface. The simulated measurement and states are shown in

Fig. 71. Notice that the reflectance is about 1.5 times larger than that in Fig. 51.

We first use RLS to estimate the states from the simulated reflectance measure-

ment. The process dynamic model and the sensor model are the same as in the

previous section of single-wavelength reflection on smooth surface. Strictly speaking,

there are actually both process dynamic model mismatch and the sensor model mis-

match. The initial guess is expressed by x1 = xi×normrnd(ones(4, 1), 0.1). We tested

four different horizon sizes, 10, 20, 30 and 40 and for each horizon size, we tested five

random initial guesses and calculated the mean estimation error. The resulting esti-

mation errors are summarized in Table 5 (row of Single Smooth). Figure 72 shows a

typical estimation result at N = 10, 20 and 30. As shown, the horizon size effect on

RLS is different from the case of process model mismatch. In this case, RLS yielded

more reasonable estimates at longer horizon size. As shown in Fig. 72, at N = 10, the

reflectance is perfectly fitted even though the sensor model has mismatch. At longer

horizon size, however, the reflectance in the latter part of the curve is fitted better

than that in the beginning part of the curve. This suggested that at a longer horizon

size, the fitting algorithm sacrificed the early part of the reflectance to obtain an over-

all good fit. Because the reflectance at latter part decreases due to light absorption,

the absolute value of the error is small and thus easy to fit. In all cases, comparing the

estimation error to the case without sensor model mismatch (Table 3), the estimation

errors in Table 5 dramatically increase due to the sensor model mismatch.

Next we use mMHE to estimate the states from the same reflectance. The process

dynamic model and the sensor model are the same as RLS. The initial guess is also
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Figure 71: Simulated film growth process with decreasing growth rate. The sensor
model simply times the reflectance calculated from Eq. (5) by 1.5 (top) reflectance at
950 nm (bottom) states.
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Figure 72: Estimation result by RLS from the reflectance measurement in Fig. 71.
The initial guess is 10% offset from the true initial state. (top) fitted output (bottom)
true and estimated states.
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Table 5: Average estimation error by RLS and mMHE with different horizon size.
Sensor model mismatch

N 10 20 30 40
Single Smooth RLS 63.7467 18.6942 15.7699 12.6263

mMHE 14.3809 13.5225 12.5319 12.2089
Dual Smooth RLS 23.6251 15.8848 13.3726 12.3946

mMHE 14.9746 14.7775 13.4799 N/A

expressed by x1 = xi × normrnd(ones(4, 1), 0.1). In this simulation, we choose R =

10−3 to represent the large uncertainty of the sensor model and 10−3 corresponds to

an error in the second decimal place. Q and R are kept the same as in the previous

study, i.e. Q = diag([10−1, 10−1, 10−6, 10−6]) and P1|0 = diag(xi) × 10−2. With the

chosen P1|0, R and Q, we tested four different horizon sizes, 10, 20, 30 and 40 and

for each horizon size, we tested five random initial guesses and calculated the mean

estimation error. The resulting estimation errors are summarized in Table 5 (row of

Single Smooth). Figure 73 shows a typical estimation result at N = 10, 20 and 30.

As shown, mMHE did not yield significant improvement over RLS except at N = 10

because the a priori estimate prevents the optimal solution to be far from the initial

guess. This is confirmed by the poor fit of the reflectance at the early part of the

curve. Figure 74 shows the evolution of variance of each state after the measurement

update in mMHE when N = 20. Compared to Fig. 55, the variance of all states

become larger by two orders of magnitude indicating much less confidence on the

estimated states.

5.2.2 Dual-wavelength reflection on smooth surface

From the above simulation, we can see that if there is a sensor model mismatch, either

RLS and mMHE will give good estimate, although mMHE performs significantly

better than RLS for short horizon. We have shown in Chapter 3 that the EMA

model is accurate at shorter wavelength like 470 nm. Therefore in the last simulation
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Figure 73: Estimation result by mMHE from the reflectance measurement in Fig. 71.
The initial guess is 10% offset from the true initial state. (top) fitted output (bottom)
true and estimated states.
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Figure 74: Variance of estimated states in Fig. 73 when N = 20.

study, we considered dual-wavelength reflection on a smooth surface, in which the

reflectance at 950 nm is 1.5 times larger than that calculated by Eq. (5) while the

reflectance at 470 nm is accurately calculated by Eq. (5). The simulated measurement

and states are shown in Fig. 75. Notice that 950 nm reflectance is even larger than

470 nm in the beginning due to the amplification of 1.5.

We first use RLS to estimate the states from the simulated reflectance measure-

ment. The process dynamic model and the sensor model are the same as in previous

section of dual-wavelength reflection on smooth surface. The initial guess is expressed

by x1 = xi × normrnd(ones(6, 1), 0.1). We tested four different horizon sizes, 10, 20,

30 and 40 and for each horizon size, we tested five random initial guesses and calcu-

lated the mean estimation error. The resulting estimation errors are summarized in

Table 5 (row of Dual Smooth). Figure 76 shows a typical estimation result at N = 10,

20 and 30. As shown, by including the reflectance at 470 nm, improved estimates are
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Figure 75: Simulated film growth process with decreasing growth rate. 950 nm
reflectance is 1.5 times of that calculated from Eq. (5) and 470 nm reflectance is
calculated from Eq. (5) (top) reflectance at 950 nm and 470 nm (bottom) states.
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obtained even at N = 10.

Next we use mMHE to estimate the states from the same reflectance. The

process dynamic model and the sensor model are the same as RLS. The initial

guess is also expressed by x1 = xi × normrnd(ones(6, 1), 0.1). In this simulation,

we choose R = diag([10−3, 10−6]) with the first element of 10−3 representing the

large uncertainty at 950 nm and the second element of 10−6 representing more con-

fidence on 470 nm. Q and R are kept the same as in the previous study, i.e.

Q = diag([10−1, 10−1, 10−6, 10−6, 10−6, 10−6]) and P1|0 = diag(xi) × 10−2. With the

chosen P1|0, R and Q, we tested four different horizon sizes, 10, 20, 30, 40 and for

each horizon size, we tested five random initial guesses and calculated the mean es-

timation error. The resulting estimation errors are summarized in Table 5 (row of

Dual Smooth). Figure 77 shows a typical estimation result at N = 10, 20 and 30.

As shown, mMHE had slightly improvement on the estimate at N = 10. At other

horizon sizes, there is no significant improvement. Figure 78 shows the evolution of

variance of each state after the measurement update in mMHE when N = 20. Again,

compared to Fig. 74, the variance of all states become smaller due to the additional

measurement at 470 nm, which indicates improved confidence on the estimated states.

From the above simulations, we learned that when there is a sensor model mis-

match, either state estimator will give good result. However, relatively speaking,

mMHE is still a better state estimator in that it utilizes the information from both

process dynamic model and sensor model. In the limiting case, if we know the process

dynamic model perfectly, we can ignore the measurement and predict states solely

based on the process model. This can be done by simply making R infinitely large.

The nice thing about mMHE is that it provided a general framework for least-squares-

based estimation. Plus it explicitly considers the uncertainty and correlation between

the estimated states. In all cases, mMHE works at least as well as RLS and in many
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Figure 76: Estimation result by RLS from the reflectance measurement in Fig. 75.
The initial guess is 10% offset from the true initial state. (top) fitted output (bottom)
true and estimated states.
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Figure 77: Estimation result by mMHE from the reflectance measurement in Fig. 75.
The initial guess is 10% offset from the true initial state. (top) fitted output (bottom)
true and estimated states.
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Figure 78: Variance of estimated states in Fig. 77 when N = 20.

cases, especially for shorter horizon, it provides significant improvements. It requires

no more computation than RLS and it is more robust to change in horizon size. It does

require designing reasonable weighting matrices, which requires some understanding

of the uncertainties in the process and sensor model.
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CHAPTER VI

EXPERIMENTAL

In this chapter, we compare the performance of the state estimators discussed in

Chapter 4 using experimental reflectance data. The experimental data is different

from the simulation data in that it is less ideal and has uncontrolled uncertainties.

Therefore in the first section, we briefly discuss the acquisition of experimental re-

flectance data and some of the nonidealities. Then we choose one experimental data

set as a benchmark to compare the state estimators. For this data set, we con-

sider two sensor models. One is dual-wavelength reflection on a smooth surface and

the other one is dual-wavelength reflection on a rough surface. The estimated film

properties are compared with ex situ film characterization results. Finally we show

some additional data sets obtained under different deposition conditions to study the

robustness of the state estimators.

6.1 Practical issues in the experimental data

The in situ sensor in our CVD testbed is an emissivity-correcting pyrometer (ECP)

[SVT Associates. Model: In-Situ 4000]. The ECP measures thermal radiation inten-

sity at 950 and 850 nm and normal reflected light intensity at 950 and 470 nm. The

bandwidths of both thermal radiation and reflection channels are around 15 nm. In

this project, we only consider the reflectance measurement. The reflectometer mea-

sures reflected light intensity in millivolts using a photodiode and this raw data must

be calibrated to obtain reflectance. The calibration is done by using a zero reflectance

(low point) and the known reflectance of the silicon substrate (high point). The zero

reflectance can be obtained when the heater assembly is removed from the chamber

so that there is no object in the chamber to reflect light back. This case represents
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a baseline measurement in which stray light is accounted for. The reflectance of the

silicon substrate is used as the calibration high point and can be calculated from the

complex refractive index of silicon by

R =

(

ns − 1

ns + 1

)2

(33)

where ns is the complex refractive index of silicon [18]. The calculated room temper-

ature reflectance of silicon at 950 nm and 470 nm are 0.326 and 0.419, respectively.

The calibration established a linear relationship between the raw intensity data and

the reflectance. The slope of the calibration line contains the information about the

relative geometric position between the substrate and the reflectometer. However, we

have found that during heating up the silicon substrate, the substrate experienced

thermal deformation due to temperature nonuniformity across the heater surface and

this caused the geometric position to change. Therefore in practice, we do not use

room temperature reflectance of silicon to calibration high point. Instead, we wait

until the reflected light intensity stabilizes after reaching the desired deposition tem-

perature and then calibrate the reflectance using the reflectance of silicon at that

temperature. The deposition temperature is measured by the pyrometer channel of

the ECP and the reflectance of silicon at high temperature can be calculated from

Eq. (33) using the high temperature refractive index of silicon [66, 67, 140]. The cali-

bration step could introduce error to the reflectance measurement because the surface

temperature measured by ECP may not be accurate and thus the calculated high tem-

perature reflectance of silicon may not be accurate. However, a simple calculation

indicated that this error should not be significant. At a wavelength of 470 nm, the

refractive index of silicon at 600 oC and 800 oC are 4.9206-0.1868j and 5.0742-0.2791j,

respectively. Using Eq. (33), the reflectance of silicon at 600 oC and 800 oC are 0.4391

and 0.4511, respectively. This means that the temperature error of 200oC only caused

an error of 2.7% in the reflectance. The error for 950 nm reflectance is even less be-

cause the refractive index of silicon at 950 nm is less sensitive to temperature and the
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calculated error is about 2.1%.

The major nonideality in our experimental data is caused by film nonuniformity.

Figure 79 shows the schematic of a typical nonuniform film deposited on our CVD

testbed. As shown, the film appears to have three distinct zones. Zone 1 and 3 appear

darker and zone 2 appears brighter with naked eyes, indicating different thickness.

The average thickness measured by an ellipsometer in zone 1, 2 and 3 are 388.6 nm,

478.3 nm and 511.3 nm, respectively. As shown, the thickness in different zones are

quite different. The film in zone 2 is averagely 89.7 nm thicker than that in zone 1,

corresponding to a difference of 17.8%. On the other hand, the thickness in each zone

appear to be quite uniform with variance less than 4%. There are two reasons for

film nonuniformity. One is the temperature nonuniformity of the substrate and the

other one is the nonuniformity of the mass transfer. Figure 79 shows that thickness

isoline is close to a ring shape with the same center of the substrate. Considering the

same shape of the thermal isolines in Fig. 9 by COMSOL simulation, it is reasonable

to belive that the temperature nonuniformity caused different growth rate and thus

different thickness on the substrate. The shifting of zone 1 toward right-hand side

may have been due to the flow toward vacuum pump on the left-hand side. As shown

in Fig. 5, the material inside the chamber has a tendency of moving toward the pump

side and this may have caused more material to be deposited on the left-hand side.

Therefore we believe that the substrate temperature nonuniformity is the major cause

of film nonuniformity and gas flow contributes to the shifting of the nonuniformity

pattern.

As we have discussed in Chapter 3, the film nonuniformity can affect the re-

flectance and make in situ sensor data interpretation difficult. Figure 80 shows an

experimental reflectance curve of a nonuniform film (cirlces). The average thickness

is measured ex situ by an ellipsometer and is around 270 nm. The growth time is

87.3 min and thus the average growth rate is around 3.1 nm/min. Using the average
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Figure 79: Schematic of different growth zones on a nonuniform film (Date acquired:
5/30/2006).

growth rate, we calculated temporal reflectance based on Eq. (5) and is shown as solid

line in Fig. 80. As shown, the oscillation period of the calculated reflectance matches

well with experimental data. However, the amplitude especially at the second trough

has a large offset. If we use a mean growth rate of 3.1 nm/min with a variance of

13%, then the calculated temporal reflectance can match the experimental data quite

well, as indicated by the dash line in Fig. 80. This simple example indicated the

importantance of film nonuniformity in the experimental data. That is why we have

made significant efforts to improve film uniformity. These efforts include making a

thermal diffuse plate and a sensor shutter, which have been discussed in details in

Chapter 2.

The nonideality of experimental data also occurs at the early stage of the growth,

in which there are only discrete islands formed on the substrate and these islands

have not yet coalesced to form an optically smooth film. However, the sensor model

in Chapter 3 all assume that optically smooth film is formed from the very beginning

of the growth. Therefore there may be some problems when interpreting the sensor

data at early stages of growth. Other causes of the nonideality of the experimental
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Figure 80: Experimental reflectance curve of a nonuniform film and fitting result
with and without assumption of film nonuniformity (Date acquired: 4/26/2007).
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Table 6: Experimental conditions. Ar2 is main carrier argon, Ar3 is precursor carrier
argon, Ar5 is dummy argon. See Fig. 1 for details.

Date 10/1/2007 10/3/2007
Pressure (torr) 2 2
O2 flow rate (sccm) 50 50
Ar2 flow rate (sccm) 20 20
Ar3 flow rate (sccm) 120 120
Ar5 flow rate (sccm) 140 140
Voltage (V) 18 20
Current (A) 8.1 8.7
Evaporator temp (oC) 175 177

data include the bandwidth of the sensor, non-normal incidence and possible wobbling

of the substrate during the growth. With these nonidealities in mind, we now consider

a specific experimental data set and use state estimators to interpret the sensor data.

6.2 Dual-wavelength reflection on smooth surface

Figure 81 shows an experimental reflectance curve at 950 nm and 470 nm. The sam-

pling interval is 20 seconds and total deposition time is 73 minutes. The deposition

conditions are summarized in Table 6 (column of 10/1/2007). An Inconel thermal

diffuse plate was used to improve temperature uniformity. The reflectance was cal-

ibrated using the reflectance of silicon at 650 oC. This temperature was measured

by the pyrometer channel of the ECP. The refractive indices of silicon at 650 oC are

3.8231-0.0379j for 950 nm and 4.9590-0.2065j for 470 nm, respectively [66, 67, 140].

Using Eq. (33), the reflectance of silicon at 650 oC is calculated to be 0.3427 at 950 nm

and 0.4421 at 470 nm, respectively. Notice that the first trough of the 470 nm re-

flectance curve did not go to zero, which indicates either absorption or partially

destructive interference. This may have been partly due to the calibration error and

should be further investigated.

Following the same logic as in the simulation study in Chapter 5, we first use
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Figure 81: Experimental reflectance at 950 nm and 470 nm (Date acquired:
10/1/2007).
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BLS to estimate the states from the experimental reflectance measurement. The

process dynamic model used in BLS assumes constant growth rate and is expressed

by Eq. (30). The sensor model is based on dual-wavelength reflection on a smooth sur-

face, as discussed in Chapter 5. The initial guess is x1 = [0, 8, 1.9054, 0.05, 1.9455, 0.1]T .

The initial guess of growth rate 8 nm/min is obtained from a calibration run. The

initial guess of the refractive index and extinction coefficient of the film are the same

as in the simulation study in Chapter 5. Figure 82 shows the estimated states and

fitted measurement. As shown, the fitted reflectance curve does not match all the

peaks in the experimental curve. This is because the fitting algorithm tries to fit a

constant growth rate while the true growth rate is slowly decreasing, as indicated by

the gradually increasing oscillation period. Notice that the amplitude of the fitted

reflectance at 470 nm decreases much faster than that of the experimental data. This

seems have caused large error between the fitted estimates and the experimental data.

We decreased the initial guess of extinction coefficient at 470 nm from 0.1 to 0.05 but

the fitting algorithm converged to the same solution.

Next we use RLS to estimate the states from the same experimental reflectance.

The process dynamic model, the sensor model and the initial guess are the same as in

BLS. We have found that for the experimental data, some states like the extinction

coefficient have frequently been estimated to be negative, which is not physically

possible. Therefore in the experimental study, we apply positive constraints on all

states when solving the optimization problem. We have tested three different horizon

sizes, 10, 20 and 30 and the estimation results are shown in Fig. 83. The estimated

states at the end of the growth are summarized in Table 7. Compared to BLS, the

fitted reflectance curve matches all the peaks in the experimental curve. The growth

rate is estimated to decrease at all horizons. However, the estimated states at the

shortest horizon are more oscillatory than at the longer horizons. This is consistent

with what we have observed in the simulation study (in the case of sensor model
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Figure 82: Estimation result by BLS from reflectance measurement in Fig. 81. The
sensor model is based on dual-wavelength reflection on a smooth surface. (top) fitted
reflectance at 950 nm and 470 nm (bottom) estimated states.
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Figure 83: Estimation result by RLS from the reflectance measurement in Fig. 81.
The sensor model is based on dual-wavelength reflection on a smooth surface. (top)
fitted output (bottom) true and estimated states.
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Table 7: Estimated states at the end of the growth and ex situ ellipsometry char-
acterization. The sensor model is based on dual-wavelength reflection on a smooth
surface. This film was deposited on 10/1/2007.

RLS mMHE EKF ex situ

10 20 30 10 20 30 ellipsometry
h (nm) 498.6 464.2 466.2 567.2 562.9 564.4 559.2 540.1
n1 2.1659 2.3103 2.2997 1.8716 1.8846 1.8814 1.8940 1.8315
k1 0 0.0879 0.0846 0.0429 0.0449 0.0444 0.0462 0.0012
n2 2.2541 2.4521 2.4424 2.0125 2.0354 2.0241 2.0355 1.8828
k2 0.0355 0.0888 0.0885 0.0342 0.0449 0.0406 0.0704 0.0092

mismatch). Because of the positive constraints, k1 and k2 constantly bounce between

zero and some positive value.

Next we use mMHE to estimate the states from the same experimental reflectance.

The process dynamic model, the sensor model and the initial guess are the same as in

RLS. The only difference is that mMHE requires three additional tuning matrices. For

this particular data set, we choose R = diag([10−4, 10−3]) with the first element being

smaller to represent more confidence on 950 nm reflectance because the reflectometer

has stronger signal level on 950 nm channel. Furthermore, the film appears smoother

at longer wavelength so the sensor model based on reflection on a smooth surface

is more accurate. We use 10−4 to indicate a larger uncertainty in the sensor model

because we know the sensor model is not perfect, as in the case of sensor model

mismatch in Chapter 5. 10−4 corresponds to an error in the second decimal place.

We choose Q = diag([10−6, 10−6, 10−6, 10−6, 10−6, 10−6]). The last four elements are

the same as in the simulation study because we know that the refractive index and

the extinction coefficient of the film will not change a lot. The first and second

element are much smaller than 10−1 which is used in the simulation study. In the

simulation study, the sampling interval and horizon size are in units of minutes and

the growth rate has a unit of nm/min. But in the experimental system, the sampling

interval and horizon size are in the unit of second and the growth rate is converted
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to nm/sec in mMHE. Because the growth rate in experimental is smaller than that

in simulation by two orders of magnitude, we need to decrease the variance as well.

We choose P1|0 = diag(x1)× 10−6 to indicate more confidence on the initial guess. It

has been shown that with a calibration run, one could obtain a quite accurate initial

guess [20]. With the chosen P1|0, R and Q, We tested three different horizon sizes, 10,

20 and 30 and the estimation results are shown in Fig. 84. The estimated states at

the end of the growth are summarized in Table 7. As shown, the estimation results

are not as sensitive to horizon size as RLS does and this is consistent with what we

have observed in the simulation study. The estimated states are much less oscillatory

than RLS due to the a priori estimate. The positive constraint is not necessary in

mMHE because the a priori estimate limits the search space for the optimal solution.

Compared to the estimation result by BLS, we notice that k2 is estimated to decrease

so that the peak of 470 nm reflectance can be now matched. As expected, the 950 nm

reflectance is better fitted than 470 nm reflectance. Notice that there is a large offset

for the trough of 470 nm reflectance indicating that the sensor model cannot explain

the rise of the trough. This could be due in part to the surface roughness and will be

discussed in the next section. The variance of estimated states are shown in Fig. 85

and are in a reasonable range.

Finally we used EKF to estimate the states from the same reflectance. The process

dynamic model, the sensor model and tuning matrices are the same as mMHE. Fig-

ure 87 shows the estimated states and variance. The estimated states at the end

of the growth are summarized in Table 7. As shown, EKF also yielded acceptable

results by using both the process dynamic model and the sensor model, although it

is more oscillatory compared to mMHE.

The deposited film was characterized ex situ using an ellipsometer. The ellip-

someter data can be fitted well with a three layer model of rough/Cauchy/Silicon.

The fitted ellipsometry data are shown in Fig. 86 and the fitted result is summarized
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Figure 84: Estimation result by mMHE from the reflectance measurement in Fig. 81.
The sensor model is based on dual-wavelength reflection on a smooth surface. (top)
fitted output (bottom) true and estimated states.
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Figure 85: Variance of estimated states in Fig. 84 when N = 20.

in Table 7. The thickness reported by ellipsometer is equal to the thickness of the

Cauchy layer plus half of the rough layer thickness. As shown, the estimated thickness

by RLS are all smaller than ex situ characterization and accordingly the refractive in-

dices are estimated larger. The estimated thickness and refractive indices by mMHE

and EKF are more reasonable. This suggested that by using both process dynamic

model and the sensor model, mMHE and EKF successfully decoupled thickness and

refractive index which are highly correlated in the sensor model. The estimated re-

fractive indices in mMHE and EKF are larger than ex situ measurements. This is

expected because the ex situ characterization is done at room temperature but the

estimation is done using high temperature reflectance measurements. It has been ob-

served that the refractive index of yttria increases with temperature and at 632.8 nm,

the temperature coefficient is dn/dT = 8.1 × 10−6 [106, 107, 145]. Therefore at the

deposition temperature of 650 oC, dn = 8.1× 10−6 × (650− 25) = 0.005. Considering
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Figure 86: Ellipsometer data and fit of yttria film deposited on 10/1/2007.

that the refractive index of yttria at 632.8 nm is 1.9291, this is about 0.26% increase.

In Table 7, however, the estimated refractive index by mMHE at N = 10 are 2.2%

larger for 950 nm and 0.69% larger for 470 nm. Considering the large discrepancy, it

may be arguable that this is solely caused by temperature difference. However, con-

sidering the uncertainties involved in both estimation and ex situ characterization,

we think the slightly higher refractive index estimated by mMHE and EKF are ac-

ceptable. Comparing the data in Table 7, it is clear that mMHE consistently yielded

better estimation results. Figure 84 shows there is still quite large oscillation in n

and k indicating partial correlation. We think with more measurements like spectral

reflectance, further improvement can be achieved.

6.3 Dual-wavelength reflection on rough surface

Figure 84 shows that there is a large mismatch at the troughs of 470 nm reflectance.

This suggested that the sensor model of reflection on smooth surface cannot de-

scribe the measurement data. This may be due to the effect of surface roughness,
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Figure 87: Estimation result by EKF from the reflectance measurement in Fig. 81.
The sensor model is based on dual-wavelength reflection on a smooth surface. (top)
true and estimated states (bottom) variance of estimated states.
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as suggested by Fig. 47 in Chapter 3. In fact, the ex situ ellipsometer and AFM

characterization also suggested that the surface is rough. We now consider the sensor

model of dual-wavelength reflection on a rough surface using the EMA model and

attempt to estimate roughness in addition to the other states.

We first use RLS to estimate the states from the experimental reflectance in

Fig. 81. The process model is shown in Eq. (32), which assumes constant film growth

rate and constant roughness layer growth rate. The sensor model is based on dual-

wavelength reflection on a rough surface, as discussed in Chapter 5. The initial guess

is x1 = [0, 8, 0, 1, 1.9054, 0.05, 1.9455, 0.1]T. The additional two states (the second and

the third element) are the thickness and growth rate of the roughness layer. Again, all

states are constrained to be positive. We have tested three different horizon sizes, 10,

20 and 30 and the estimation results are shown in Fig. 88. The estimated states at the

end of the growth are summarized in Table 8. As shown, by including two additional

states, the estimation results by RLS become significantly worse. This is the same as

what we observed in the simulation study, because adding states created additional

coupling and correlation between states. Without additional constraints, the fitting

algorithm tends to overfit especially at shorter horizon, as shown by the excellent

agreement between the estimated and measured reflectance in Fig. 88. When horizon

size increases to 30, there are enough data for the fitting algorithm to converges to a

more reasonable solution.

Next we use mMHE to estimate the states from the same experimental reflectance.

The process dynamic model, the sensor model and the initial guess are the same as

in RLS. For the tuning matrices, we keep R and P1|0 the same as in the smooth

case, i.e. R = diag([10−4, 10−3]) and P1|0 = diag(x1) × 10−6. We choose Q =

diag([10−6, 10−6, 10−8, 10−8, 10−6, 10−6, 10−6, 10−6]). Notice that the variance of the

original six states are kept the same as in the smooth case. The only difference is the

additional two elements, the second and the third, which represents the variance of
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Figure 88: Estimation result by RLS from the reflectance measurement in Fig. 81.
The sensor model is based on dual-wavelength reflection on a rough surface. (top)
fitted output (bottom) true and estimated states.
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Table 8: Estimated states at the end of the growth and ex situ ellipsometry char-
acterization. The sensor model is based on dual-wavelength reflection on a rough
surface. This film was deposited on 10/1/2007.

RLS mMHE EKF ex situ

10 20 30 10 20 30 ellipsometry
h (nm) 562.2 537.9 596.4 540.3 536.8 536.2 534.1 510.0
he (nm) 206.2 116.2 61.8 73.4 71.7 71.6 73.5 60.4
n1 1.4661 1.7261 1.6930 1.8479 1.8551 1.8562 1.8612 1.8315
k1 0 0.0138 0.0204 0.0143 0.0187 0.0194 0.0158 0.0012
n2 1.5513 1.8127 1.8062 1.9753 1.9847 1.9862 1.9847 1.8828
k2 0.0130 0.0190 0.0046 0.0025 0.0018 0.0017 -0.0002 0.0092

he and Ge, respectively. The reason for choosing 10−8 is the same as in the simulation

study, i.e. because he and Ge are smaller than h and G by one order of magnitude.

With the chosen P1|0, R and Q, we tested three different horizon sizes, 10, 20 and 30

and the estimation results are shown in Fig. 89. The estimated states at the end of

the growth are summarized in Table 8. As shown, the troughs of 470 nm reflectance

curve can now be fitted much better than with the smooth assumption in the sensor

model. This suggests that by adding roughness, the sensor model can describe the

measurement data well. The inclusion of roughness also helped to estimate other

states more accurately. For example, the film thickness is estimated to decrease and

accordingly the roughness layer thickness increases. The extinction coefficients are

also estimated to be smaller and become closer to ex situ measured value, because the

fitting algorithm can now use the roughness layer to account for the amplitude change

instead of using a large extinction coefficient. This suggested that for this particular

film, the roughness is the main factor that affects the reflectance amplitude, especially

at 470 nm. The estimated refractive indices also decrease from those in Table 7. The

offset from the ex situ room temperature refractive indices now become 0.89% for

950 nm and 0.49% for 470 nm, respectively. Considering the discrepancy of 0.26%

caused by the temperature difference, we can now be more confident to claim that
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Figure 89: Estimation result by mMHE from the reflectance measurement in Fig. 81.
The sensor model is based on dual-wavelength reflection on a rough surface. (top)
fitted output (bottom) true and estimated states.
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Table 9: Estimated states at end point by mMHE at N = 10 with different P1|0, Q,
and R

h he n1 k1 n2 k2

mean 571.2 69.6 1.7791 0.0215 1.8952 0.0167
std 38.9 30.2 0.1654 0.0195 0.1894 0.0217

ex situ 510.4 60.4 1.8315 0.0012 1.8828 0.0092
RLS 562.2 206.2 1.4661 0 1.5513 0.0130

the slightly higher estimated refractive indices are in fact caused by a temperature

difference. We tested the sensitivity of mMHE to tuning matrices P1|0, Q, and R

by scaling the matrices by 1/10 and 10. The estimated states for different tuning

matrices are shown in Fig. 90. The mean of estimated states at end point and the

standard deviation are shown in Table 9. Compared to the simulation study, mMHE

appears more sensitive to tuning matrices. However, in all cases, the mean estimated

states are reasonably close to ex situ characterization and are better than RLS at

N = 10. In most cases, the estimated states have a correct trend. The standard

deviation shows that extinction coefficient and effective layer thickness are the most

sensitive to the tuning matrices.

We have also measured RMS roughness using AFM. Figure 91 shows the AFM

images of the deposited film with a scan size of 5µm × 5µm. The RMS roughness is

26.1 nm. According to the linear relationship in Fig. 35, the EMA thickness of 60.4 nm

corresponds to RMS roughness of 21.6 nm, which is quite close to 26.1 nm measured

by AFM, considering the fluctuation in the data used to establish the linear fit. The

variance of the estimated states are shown in Fig. 92 and are in a reasonable range.

Compared to Fig. 85, there is no significant decrease in the estimated variances.

Finally we used EKF to estimate the states from the same reflectance. The process

dynamic model, the sensor model and tuning matrices are the same as mMHE. Fig-

ure 93 shows estimated states and variance. The estimated states at the end of the

growth are summarized in Table 8. As shown, EKF also yielded resonable result by
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Figure 90: Estimated states by mMHE from the reflectance measurement in Fig. 81
with different tuning matrices. N = 10.
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Figure 91: AFM image of yttria film deposited on 10/1/2007.
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Figure 92: Variance of estimated states in Fig. 89 when N = 20.

147



using both the process dynamic model and the sensor model, although it is more

oscillatory compared to mMHE. Also notice that the extinction coefficient at 470 nm

was estimated to be negative which is not physically possible. However in this study,

we have not encountered many cases that the EKF estimates negative states. How-

ever, this is not uncommon in the literature especially for some highly nonlinear

systems [58]. One of the advantages of mMHE over EKF is that it can handle state

constraints. In this sense, mMHE is a more robust estimator than EKF.

6.4 Additional example

To show the robustness and general applicability of the state estimators, we now

consider another set of experimental reflectance data, which is shown in Fig. 94. The

sampling interval is 10 seconds and total deposition time is 21.6 minutes. The depo-

sition conditions are also summarized in Table 6 (column of 10/3/2007). As shown,

the conditions are the same as 10/1/2007 except that the heating voltage is increased

to 20 volts. The higher heating voltage causes higher substrate temperature and thus

higher growth rate. The average growth rate in a calibration run is around 12 nm/min

which is 1.5 times of that on 10/1/2007. Another interesting point about this exper-

iment is that we know we are running out of precursor and so we anticipate that

the growth rate should decrease quickly. This is confirmed by the rapidly increasing

oscillation period in Fig. 94.

We first use RLS to estimate the states from the experimental reflectance in

Fig. 94. The process model and the sensor model are the same as in 10/1/2007

case. The initial guess is x1 = [0, 12, 1.9054, 0.05, 1.9455, 0.1]T . The positive con-

straint is applied to all states. We have tested three different horizon sizes, 10, 20

and 30. When N = 30, the fitting algorithm did not converge. This is because for

this particular data set, the growth rate changes quickly and thus N = 30 is too long

for the assumption of constant growth rate. The estimation results at horizon size
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Figure 93: Estimation result by EKF from the reflectance measurement in Fig. 81.
The sensor model is based on dual-wavelength reflection on a rough surface. (top)
true and estimated states (bottom) variance of estimated states.
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10/3/2007).
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Table 10: Estimated states at the end of the growth and ex situ ellipsometry char-
acterization. The sensor model is based on dual-wavelength reflection on a smooth
surface. This film was deposited on 10/3/2007.

RLS mMHE EKF ex situ

10 20 30 10 20 30 ellipsometry
h (nm) 254.4 310.5 N/A 251.6 251.8 252.8 249.8 257.4
n1 1.8934 1.5433 N/A 1.8964 1.8956 1.8962 1.8988 1.7904
k1 0.07 0.0406 N/A 0.0693 0.0689 0.0685 0.0697 0.0008
n2 1.9340 1.5880 N/A 1.9564 1.9565 1.9562 1.9561 1.8314
k2 0.0240 0.0154 N/A 0.0261 0.0264 0.0261 0.0282 0.0060

of 10 and 20 are shown in Fig. 95. The estimated states at the end of the growth

are summarized in Table 10. As shown, the estimated states at N = 10 are more

reasonable than N = 20. Again this is most likely due to the rapid change of growth

rate in this data set.

Next we use mMHE to estimate the states from the same experimental reflectance.

The process dynamic model, the sensor model and the initial guess are the same as

in RLS. For the tuning matrices, we keep R and P1|0 the same as in 10/1/2007, i.e.

R = diag([10−4, 10−3]) and P1|0 = diag(x1) × 10−6. We choose

Q = diag([10−4, 10−4, 10−6, 10−6, 10−6, 10−6]).

Compared to Q in 10/1/2007, the variance of h and G are set larger to indicate our

anticipation of fast growth rate decay. With the chosen P1|0, R and Q, we tested three

different horizon sizes, 10, 20 and 30. mMHE had no problems with convergence even

at N = 30. The estimation results are shown in Fig. 96. The variance of estimated

states are shown in Fig. 97. The estimated states at the end of the growth are

summarized in Table 10. As shown, mMHE yielded almost identical results for all

horizon sizes indicating strong robustness of the estimator.

Finally we used EKF to estimate the states from the same reflectance. The process
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Figure 95: Estimation result by RLS from the reflectance measurement in Fig. 94.
The sensor model is based on dual-wavelength reflection on a smooth surface. (top)
fitted output (bottom) true and estimated states.
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Figure 96: Estimation result by mMHE from the reflectance measurement in Fig. 94.
The sensor model is based on dual-wavelength reflection on a smooth surface. (top)
fitted output (bottom) true and estimated states.
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Figure 97: Variance of estimated states in Fig. 96 when N = 20.

dynamic model, the sensor model and tuning matrices are the same as mMHE. Fig-

ure 98 shows estimated states and variance. The estimated states at the end of the

growth are summarized in Table 10.

The deposited film was characterized ex situ using an ellipsometer. The ellip-

someter data can be fitted well with a three layer model of rough/Cauchy/Silicon.

The fitted ellipsometry data are shown in Fig. 86 and the fitted result is summarized

in Table 10. The thickness reported by ellipsometer is equal to the thickness of the

Cauchy layer plus half of the rough layer thickness. Table 10 clearly indicates that

mMHE consistently yield more reasonable results indicating strong robustness.

Similar to 10/1/2007, we have also estimated roughness from the reflectance mea-

surement in Fig. 94. For RLS, the initial guess is x1 = [0, 12, 0, 1, 1.9054, 0.05, 1.9455, 0.1]T.

All states are constrained to be positive. We have tested three different horizon sizes,

10, 20 and 30 and the estimation results are shown in Fig. 99. When N = 30, the
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Figure 98: Estimation result by EKF from the reflectance measurement in Fig. 94.
The sensor model is based on dual-wavelength reflection on a smooth surface. (top)
true and estimated states (bottom) variance of estimated states.
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Table 11: Estimated states at the end of the growth and ex situ ellipsometry char-
acterization. The sensor model is based on dual-wavelength reflection on a rough
surface. This film was deposited on 10/3/2007.

RLS mMHE EKF ex situ

10 20 30 10 20 30 ellipsometry
h (nm) 240.4 242.8 N/A 242.2 242.5 243.6 239.6 241.9
he (nm) 39.2 38.2 N/A 21.4 21.4 21.4 21.4 31.0
n1 1.8590 1.8543 N/A 1.8967 1.8959 1.8962 1.8990 1.7904
k1 0.0473 0.0478 N/A 0.0636 0.0634 0.0631 0.0636 0.0008
n2 1.9069 1.9020 N/A 1.9556 1.9557 1.9554 1.9552 1.8314
k2 0.0001 0 N/A 0.0186 0.0189 0.0187 0.0211 0.0060

fitting algorithm still had difficulty in converging. The estimated states at the end of

the growth are summarized in Table 11. Compared to smooth case, estimation result

at N = 20 improved significantly. This is different from the case of 10/1/2007, in

which adding roughness made the estimation result worse.

For mMHE, we keep R and P1|0 the same as in the smooth case. We choose

Q = diag([10−4, 10−4, 10−8, 10−8, 10−6, 10−6, 10−6, 10−6]). Again, the variance of the

original six states are kept the same as in the smooth case. The only difference is

the additional two elements, the second and the third, which represents the variance

of he and Ge, respectively. With the chosen P1|0, R and Q, we tested three different

horizon sizes, 10, 20 and 30 and the estimation results are shown in Fig. 100. The

estimated states at the end of the growth are summarized in Table 11. The variance

of estimated states are shown in Fig. 101 and are in reasonable range. Compared to

Fig. 97, there is no significant decrease in the estimated variances.

Finally for EKF, the estimated states at the end of the growth are summarized

in Table 11. As shown, EKF also yielded acceptable result by using both the process

dynamic model and the sensor model, although it is more oscillatory compared to

mMHE.

By comparing all the estimation results in Table 7 to 11, it is clear that mMHE
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Figure 99: Estimation result by RLS from the reflectance measurement in Fig. 94.
The sensor model is based on dual-wavelength reflection on a rough surface. (top)
fitted output (bottom) true and estimated states.
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Figure 100: Estimation result by mMHE from the reflectance measurement in
Fig. 94. The sensor model is based on dual-wavelength reflection on a rough sur-
face. (top) fitted output (bottom) true and estimated states.
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Figure 101: Variance of estimated states in Fig. 100 when N = 20.

consistently yielded better estimates for processes under quite different deposition

conditions. This indicated that mMHE is a useful and robust state estimator for in

situ sensor data interpretation. By using the information from both the process and

the sensor model, one can obtain a better estimate. The nice thing of mMHE is that

it provides such a versatile framework to organize all these useful information and

gives a user the opportunity to interact with fitting and make wise decision in the in

situ sensor data interpretation.
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Figure 102: Estimation result by EKF from the reflectance measurement in Fig. 94.
The sensor model is based on dual-wavelength reflection on a rough surface. (top)
true and estimated states (bottom) variance of estimated states.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this project, we systematically studied the application of state estimators in in situ

sensor data interpretation for a chemical vapor deposition process. We have studied

optical models for light reflection on both smooth and rough surfaces. The model

validation results indicate that the effective medium model is better than the scalar

scattering model when the surface is microscopically rough, i.e. the mean height

and correlation length of the irregularities are both much less than the wavelength

of light. Based on the sensor model, we studied the effect of film parameters on

the reflectance. The results indicate that extinction coefficient, roughness and film

nonuniformity can have similar effect on the reflectance, which suggests difficulty in

separately estimating these parameters. We studied the observability based on the

sensor model and a simple process dynamic model. We found that for a nonlinear

system, the local observability does not always guarantee the global observability. For

a nonlinear system, one must consider the specific system and mathematical form,

because no general approach and practical tools exist, as they do for linear systems.

We have studied several state estimation techniques including batch least squares

fitting (BLS), recursive least squares fitting (RLS), extended Kalman filter (EKF),

and moving horizon estimation (MHE). It has been shown that MHE is the general

least-squares-based state estimation and BLS, RLS, and EKF are special cases of

MHE. The advantage of MHE is that it can handle state constraints and it explicitly

considers uncertainty and the correlations between the states. To reduce the com-

putational requirement of MHE, we developed a modified moving horizon estimator
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(mMHE) that combines the advantage of the computational efficiency in RLS and

the a priori estimate in MHE.

We compared the performance of the state estimators using simulated film growth

processes. When there is a process model mismatch but the sensor model error is

negligible, both RLS and mMHE work well in the case of single and dual-wavelength

reflection on a smooth surface. There exists an optimum horizon size for both RLS

and mMHE, although mMHE is less sensitive to the horizon size and performs better

than RLS at all horizon sizes. In the case of dual-wavelength reflection on a rough

surface, RLS failed to give a reasonable estimate due to the strong correlation between

roughness and the extinction coefficient. However, mMHE successfully estimated the

extinction coefficient and surface roughness by using the a priori estimate. We also

found that there is no significant improvement using full MHE. When there is a sensor

model mismatch, either state estimator will give a good result. However, relatively

speaking, mMHE is still a better state estimator. In the case of both single and dual-

wavelength reflection on a smooth surface, mMHE works at least as well as RLS and

in many cases, especially for shorter horizon, it provides significant improvements.

mMHE requires no more computation than RLS and it is more robust to change in

horizon size. It does require designing reasonable weighting matrices, which requires

some understanding of the uncertainties in the process and sensor model.

To test the state estimators in a real world environment, we built a cold-wall

low-pressure chemical vapor deposition testbed with an in situ emissivity-correcting

pyrometer. We developed a fully automatic data-acquisition and instrument-control

software for the CVD testbed using LabVIEW. We successfully used the CVD testbed

to deposit yttria thin film on silicon substrate, as verified by the ex situ characteriza-

tion. We compared the performance of the state estimators using two experimental

reflectance data sets acquired from the CVD testbed under different deposition condi-

tions. The estimated film properties are compared with ex situ film characterization
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results. We considered the cases of dual-wavelength reflection on both smooth and

rough surface. In all cases, mMHE consistently yielded better estimates for processes

under quite different deposition conditions. This indicated that mMHE is a useful

and robust state estimator for in situ sensor data interpretation. By using the infor-

mation from both the process and the sensor model, one can obtain a better estimate.

A good feature of mMHE is that it provides such a versatile framework to organize

all these useful information and gives a user the opportunity to interact with fitting

and make wise decisions in the in situ sensor data interpretation.

7.2 Future work

For the future work, first, we can make further improvements on the CVD testbed to

obtain more reliable experimental data. For example, we can use a more thermally

conductive material to make a thermal diffuse plate so that the temperature unifor-

mity on the substrate can be improved. We can also make a shower head to distribute

process gases more uniformly. Currently, the pump port is on the side of the chamber.

As we have shown, this arrangement caused nonuniform flow inside the chamber. If

possible, we should move the pump port to the bottom of the chamber. The heater

assembly should not be inserted from the bottom of the chamber. Instead it should

be fixed inside the chamber and the substrate can be loaded into the chamber from

a side window. In this way, we can have better repeatability in terms of geometric

position between the substrate and the reflectometer. The evaporator in current de-

sign is difficult to be disconnected for repacking. It also takes a long time to heat up

the evaporator using the convective oven. In fact, it is the most time-consuming step

in one CVD experiment. If possible, the evaporator should have its own temperature

control system and should be designed such that it can be easily disconnected for

repacking.

The current in situ ECP sensor has a large field of view and film uniformity could
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be a problem because it affects reflectance measurement and makes it more difficult

for sensor data interpretation. If possible, we should consider a laser reflectometer

which samples small area and we can use multiple channels to sample different areas to

obtain the thickness profile. On the other hand, with the current sensor, we can try to

estimate film nonuniformity directly from the in situ reflectance measurement, if the

effect of nonuniformity is important. In this project, we only consider the reflectance

measurement. For future work, we should utilize the pyrometer measurement to

complement the estimation of film properties. We should also consider to measure

spectral reflectance because with more independent measurements, we can obtain

better estimates as we have demonstrated in this study. The spectral wavelength

can be chosen in such a combination that longer wavelength is used to measure

thickness and growth rate, and shorter wavelength is used to measure roughness and

other microscopic properties. We can even consider use multiple sensors such as

combination of ellipsometer and reflectometer. In fact, in our view, the real-time

sensing in the future is most likely to be a combination of different types of sensors.

The nice thing about the state estimator is that it provide a framework to incorporate

different types of measurement and makes a balanced estimation. In this project, we

only consider slowly drifting CVD processes. To broaden the application of the state

estimators, we should also test them in rapid changing processes, for example, a

process during which a sudden change in the deposition condition occurs. This can

be easily done in simulation first.

The sensor models used in this project only consider thickness, complex refractive

index and roughness. In order to estimate more film properties from optical measure-

ments, further work need to be done to develop a more detailed sensor models. In

this project, we only consider a very simple process dynamic model. Ideally, the more

we know about a process, the better we can estimate the film properties. Therefore,

in the future, we should work to develop more detailed process dynamic model. In
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general, a detailed process dynamic model for thin film growth is inherently multi-

scale and multi-dimensional in nature. Our group has separate projects in model

reduction to obtain a reduced order process model with aim of rational design and

control of the process. It could be a possible direction to combine the reduced order

process model with in situ sensing based on state estimation. Recently some other

novel state estimators, such as unscented Kalman filters and particle filters, are re-

ceiving more attention. They seem to perform much better than conventional state

estimators like EKF. Therefore, in the future, we should also explore the possibility of

applying these novel state estimators to in situ data interpretation. Finally with the

progress in state estimator based in situ sensing, we now have improved visibility of

the process. Then a natural direction for future work should be process monitoring,

fault detection and eventually feedback control of the thin film deposition process.

One immediate direction is to combine the in situ sensing with run-to-run controller

which is commonly employed in the semiconductor industry.
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APPENDIX A

IN-SITU 4000 COM PORT PROTOCOL

SVT Associates In-situ 4000 Serial Interface using RS-232

Baud rate: 9600 bytes/second

Framing: 8 bit, no parity, 1 stop bit

A.1 DATA SENT TO THE Instrument

Sending 1 byte equal to 128 (hex 80) starts sending data.

Sending 1 byte equal to 0 stops sending data.

Sending 1 byte equal to 16 (hex 10) turns on the LED.

Sending 1 byte equal to 0 turns off the LED.

Sending 144 (hex 90) starts sending data and turns on the LED.

A.2 DATA SENT FROM THE Instrument

Each data group has four 16-bit integers. These 4 values correspond to the following

4 channels

• Temp-950-Channel

• Temp-850-Channel

• Refl-950-Channel

• Refl-470-Channel

Once the instrument starts sending data, it keeps doing so. If you poll data once

every second, you will get about 88 bytes of data on each read. It will help a lot

to read each time a number of bytes equally divisible by 8. Otherwise, partial data
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groups must be dealt with. Just by looking at the raw data, you cannot tell which

byte does what. Hence, the only way to synchronize is to stop the data (send 0 or

16) and then restart the data (send 128 or 144). Then you know that the 1st 8 bytes

are a data group, followed by more data groups.

The 16-bit integer values are converted to volts by volts = int value/3.2768. In-

tensity is then equal to volts for all channels. The many other conversions performed

in the RoboMBE software are beyond the scope of this writeup.
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APPENDIX B

CVD PROCEDURE

This CVD procedure is written by Derek Jamrog who worked in our group as an

undergraduate research assistant in summer semester 2007. He wrote this procedure

from the perspective of a brand new user.

B.1 Start procedure

1. OPEN Labview

2. TURN ON precursor oven (Default 150 F - precursor heats SO slowly)

3. TURN ON pump

4. OPEN Ar, O2 and N2 containers

5. RAISE the pressure in the reactor by flowing Dummy Ar into the reactor (Use

3000-4000 sccm)

6. PUT ON gloves

7. REMOVE heater from the reactor

8. PLACE previously grown film into a case, and date it

9. CLEAN new wafer

• FILL one beaker with DI water

• PUT ON heavy duty black gloves over regular gloves

• FILL second beaker with roughly 10ml H2O2 and 30ml H2SO4
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• PLACE wafer into the acid solution

• WAIT 8-10 minutes

• TAKE wafer out of the acid solution and drop it in the water beaker

• RINSE wafer with DI water

• DRY wafer with N2

• Remember to CLEAN and DISPOSE of waste properly

10. SAVE file

11. CLICK the Comm On and LEDs On under the Engine Tab in Labview

12. CLICK Calibrate Low under the Reflectance Tab

13. LOAD new wafer on the heater and PLACE it in the reactor

14. REMOVE gloves (optional)

15. TURN ON voltage device

16. REATTACH thermocouple and voltage wires

17. TURN ON the TV

18. PUMP down the reactor to ¡ 1 torr

19. ADJUST the camera so the spots appear in the center of the TV screen.

20. FLOW Dummy Ar at specified amount (Default: 100 sccm)

21. CALIBRATE high reflectance by clicking that button in the Reflectance Tab

22. CALIBRATE UV Cell

• TURN ON UV Lamp. Flip switch on UV cell panel
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• TURN ON Master, Slave 1, and Slave 2 under the Ocean Optics Tab

• TAKE out UV cord from the source

• COVER the cord end with your finger and click Store Dark

• SCREW cord back in and click Store Reference

23. TURN ON main oven (Default: 400 F)

24. TURN ON fan and blow it on the valve (side with N2 Trap)

25. SET voltage and ramp rate (Default: 15 V at 0.5 V/min)

26. SET actuator temperature, the green numbers next to the low pressure meter

(Default: 150-200 C)

27. WAIT for system to heat up (Time: 60 min)

28. FLOW O2 (Default: 50 sccm)

29. FILL N2 trap

• WEAR big blue gloves

• PLACE tank tube into the liquid N2 container

• SLOWLY open liquid N2 tank, then once gas has passed and it cools down

open it more

• SLOWLY pour liquid N2 into the catcher on the left side of the oven

30. FLOW Carrier Ar (Default 120 sccm)

31. PUT ON white heat resistant gloves

32. OPEN precursor chamber exit valve

33. OPEN valve leading into the precursor chamber
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34. FLOW Precursor Ar (Default: 20 sccm)

35. CHECK absorbance in the Ocean Optics Tab to ensure precursor is flowing

36. *If necessary, ADJUST Ar flow rates and valve openings to achieve desired

absorbance

37. SWITCH solenoid valve to Yes to start deposition

38. WAIT as film grows

• WATCH absorbance to make sure precursor doesn’t run out

• WATCH Ar and O2 flow rates to make sure they are present

• MONITOR Labview for any problems

B.2 Shut down procedure

1. SWITCH solenoid valve to No to stop precursor flow to the reactor

2. TURN OFF Precursor Ar flow

3. PUT ON white heat resistant gloves

4. CLOSE valve entering the precursor chamber

5. CLOSE valve exiting the precursor chamber

6. TURN OFF precursor oven

7. WAIT for Absorbance to go down then TURN OFF Carrier Ar

8. WAIT for reflectance to stabilize indicating the end of deposition

9. DISABLE the master and slaves under the Ocean Optics Tab

10. TURN OFF the UV Lamp
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11. TURN OFF the main oven

12. STEP the voltage to zero

13. SET the actuator temperature to 25 C

14. DISABLE Comm and LEDs under the Engine Tab

15. TURN OFF the TV

16. TURN OFF the voltage source

17. TURN OFF O2

18. OPEN the ovens and MOVE the fan to blow into oven (Fastest fan spd. is 3)

19. WAIT until heater temp ¡200 C (Time: 20-30 min)

20. TURN OFF Dummy Ar

21. CLOSE Ar, O2 and N2 tanks

22. CLOSE Pump Valve on Labview

23. TURN OFF the Pump

24. QUIT Labview

25. TURN OFF the Fan

26. GO HOME. You deserve it!!

B.3 Evaporator repack procedure

1. Take out the evaporator

2. Open the evaporator

3. Weight precursor
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4. Grind precursor and coat on ball bearings

5. Load ball bearings into the evaporator

6. Close the evaporator

7. Install evaporator back to the system

8. Open inlet and outlet valves of the evaporator, pump down the system

9. Close both inlet and outlet valves to keep the evaporator under vacuum

Reflectance calibration is performed with the following steps: 1) Remove the wafer

so that the LED reflection is no longer visible on the video image. Wait at least 3

seconds for the reading to stabilize. 2) Calibrate reflectance as zero 3) Load the wafer

so that the LED reflection is visible on the video image. Wait at least 3 seconds

for the reading to stabilize. 4) Calibrate reflectance as reflectance of silicon at room

temperature.
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