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SUMMARY

Colloidal self-assembly is widely studied as a promising route to manufacture

highly ordered structures for applications as metamaterials. While near-equilibrium

self-assembly could produce defect-free crystal, the time required is usually unmanage-

able in practical applications. On the contrary, rapid assembly via out-of-equilibrium

approaches could reduce the amount of process time, but the assembled structure

is usually terminated in defective states. Therefore, a gap exists between the speed

and the quality of the structure in a colloidal self-assembly system. To overcome

this challenge, this thesis proposes a model-based optimization framework for op-

timal feedback control over a colloidal self-assembly process for rapid assembly of

defect-free two-dimensional crystals.

The proposed framework features: first, the use of an externally applied electric

field as a global actuator to influence the particle movement; second, the use of two

order parameters to represent the high-dimensional system in a reduced dimension

state space; third, the use of the Markov state model to capture the stochasticity in the

system; fourth, the use of dynamic programming to design the optimal control policy;

and fifth, the use of an optical microscope for in situ measurements as feedback.

The feasibility of the framework is first demonstrated with a static optimal control

policy, and its performance is evaluated against fast quench and near-equilibrium

approaches. The framework is then expanded to construct a time-dependent optimal

control policy, and the performance is compared with widely used time-varying control

strategies in both simulation and experiments. The refinement of the framework,

more specifically, the construction of the Markov state model is also revisited for

better efficiency.

xiii



The major contributions of this thesis include: (1) it proposes a novel approach

to rapidly control colloidal self-assembly processes for perfect crystal with optimal

control theories; (2) it demonstrates for the first time in lab, the realization of optimal

feedback control of a colloidal self-assembly process; (3) it reveals the benefits of

feedback in a stochastic process control, not only to compensate for model inaccuracy,

but also to shorten the process time; (4) it also investigates the Markov state model

accuracy and provides a more efficient construction of accurate Markov state models.

The framework in this study is built on first-principle concepts, and it can be

generalized to any molecular, nano-, or micro-scale assembly process where there

exists a global actuator to affect the dynamics, a model to represent the relation

between the actuator and the system, and a measurement of system state for feedback.

Since micron-sized colloidal particles also serve as model systems to study the phase

transition behavior and crystallization kinetics for atomic and molecular crystals, the

framework can also be extended to these systems for optimal control.

xiv



CHAPTER I

INTRODUCTION

Natural colorful materials, from flowers to butterfly wings to beetle and gem opals

(Figure 1), demonstrate their iridescent color not by absorption or pigmentation alone,

but via interactions with light due to the periodic design of their constituent elements

[124]. The ability to manipulate and control the interactions of materials with pho-

tons, via material design, could potentially open doors for new materials with novel

properties. Therefore manufacturing materials with highly ordered structures has

received intensive research interest.

Metamaterials are artificial electromagnetic materials with sub-wavelength struc-

tures that can be designed to exhibit strong coupling with the magnetic and/or electric

component of an incident electromagnetic wave [112]. With a negative refractive in-

dex, metamaterials allow us to surmount obstacles of nature to present new materials

with novel properties for applications in photonics, biomaterials, energy harvesting,

and communications [14, 21, 22, 30, 67].

Contrary to materials whose physical properties depend on the intrinsic proper-

ties of the elemental constituents, the properties of metamaterials depend on their

internal, specific structures instead, or in addition. However, control of the structure

is challenging. Currently available manufacturing methods can generally be defined

into two categories: top-down and bottom-up approaches [15]. Top-down fabrication

such as lithography, is achieved largely by patterning features. It starts from larger

dimensions and reduces to the required structures [39]. The top-down approach has

shown success as reported in [15] and its references, and is the basis for microelec-

tronics manufacturing. However, it is usually costly to use top-down approaches for

1



Figure 1: Natural colorful materials with periodic constituents elements: (A) 1-D
grating in natural flowers; (B) 1-D periodicity in the form of multilayers; (C) some
discrete 1-D periodicity in butterflies and iridescent plant leaves; (D) natural surfaces
with 2-D gratings used for anti-reflection and self-cleaning;(E) natural 2-D periodicity
in the form of cylindrical voids embedded in high-refractive-index solid mediums, such
as in the iridescent hairs of Aphrodite; (F) close-packed spheres of solid materials
in gem opals and in beetles; (G) inverse opal analogous nanostructures in exotic
butterflies, such as the Parides sesostris [124]. Reproduced by permission of The
Royal Society of Chemistry.

mass production, and it usually has no control of the defects formed along the pro-

cess. On the other hand, bottom-up fabrication builds up assemblies from smaller

components. This could potentially provide a more promising fabrication method for

large quantities with less waste and better quality control [7, 15]. One example is the

colloidal self-assembly.

Colloidal particles are microscopic solid particles suspended in a fluid [64]. Self-

assembly refers to the formation of organized structures from many discrete compo-

nents due to direct or indirect interactions with each other and their environment

[44, 45]. Self-assembly of nano-meter and/or micro-meter objects, including parti-

cles, colloids, and folded proteins, into ordered structures could enable metamaterials

with exotic properties that are otherwise unattainable. Thus, self-assembly has been

deemed as the most practical strategy for making regular periodic crystals at nano-

and micro-scales. In particular, colloidal self-assembly has received tremendous at-

tention since colloidal nano- and micro-spheres are in the length scale from several
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Figure 2: Defects formed in colloidal self-assembly processes: (A) and (B) SiO2

assembly with polycrystalline and grain boundary formed in an electric field [104];
(C) disallignment and vacancies formed in spin coating assembly [46]; (D) lattice
of point defects introduced in a PMMA thin film opal by selectively removing PS
spheres [38]. Reprinted image (c) with permission from [46]. Copyright(2010) by the
American Physical Society. Image (d) is reprinted with permission from [38].

micrometers to tens of nanometers, which is close to the resolution limit of conven-

tional patterning techniques [123].

Colloidal particles at the micron scale, by virtue of their size, can be monitored

in real time and real space without requiring advanced measuring techniques as in

atomic systems. The fundamental dynamics of colloidal particles at a wide range of

length scales does not differ dramatically, such that knowledge on one system could

potentially be applied to other length scale systems. Additionally, understanding the

behavior and the control of micro-sized colloidal self-assembly processes could also

shed light on systems with molecular and nano-scaled components, since micro-sized

colloidal particles also serve as model systems to study the phase transition behavior

and crystallization kinetics for atomic and molecular crystals [5, 90].

One long standing problem associated with colloidal self-assembly process is the
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Figure 3: Proposed framework for optimal control: 1. Reducing system dimen-
sionality with initial sampling; 2. Clustering state space for Markov state model
construction; 3. Resampling the original system to cover a common state space un-
der each input levels; 4. Construction Markov state models with collected samples;
5. Calculating the optimal control policy via dynamic programming; 6. Evaluating
the policy performance on the original system.

difficulty in rapid production of perfect crystals. A perfect colloidal crystal is the ther-

modynamic ground state, which theoretically can be reached after an infinitely long

process without external inference. Assembly in finite time accelerates the process.

Operation in an out-of-equilibrium mode leads to meta-stable defective structures,

which have higher energy but may be persistent (Figure 2). In rapid colloidal self-

assembly process, defect formation and migration are stochastic, thus making it hard

to predict and control the structure of assemblies. Therefore to bridge the gap be-

tween rapid production and low defect density, a robust control over the formation

of defects is desired.

This thesis focuses on a micron-sized colloidal self-assembly process in an exter-

nally applied electric field to understand and control the defects for rapid production
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of perfect two-dimensional crystals. Specifically, an optimization framework is pro-

posed with a reduced-order Markov decision process, to design an optimal feedback

control policy to eliminate the grain boundary formed along the assembly process.

The key steps of the proposed framework are presented in Figure 3, and are

summarized as follows:

1. Conducting dimensionality reduction analysis to identify lower system dimen-

sions (e.g. with order parameters) with initial sampling from the original high

dimensional system;

2. Clustering the continuous lower dimensional state space into discrete states for

the construction of Markov state models;

3. Generating additional samples from the original high dimensional system to

cover a common state space under each of the control input levels;

4. Building Markov state models with the collected samples to approximate the

transition probabilities between different discrete states;

5. Solving for the optimal control policy in the format of lookup tables based on

the Markov state models, via dynamic programming;

6. Evaluating the performance of the control policy on the original system.

The whole process or part of the procedure could be repeated until satisfying

results are achieved.

This thesis is organized as follows: Chapter 2 provides the background of current

advances and progress in modeling and controlling colloidal self-assembly processes;

Chapter 3 summarizes the experimental setup and preparation, the basics of dynamic

programming, and the fundamentals of Markov state models; Chapter 4 provides the

proof-of-principle for the proposed framework on a colloidal self-assembly process
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with a time-invariant optimal control policy; Chapter 5 extends the study for a more

comprehensive comparison with both open-loop and closed-loop control strategies;

Chapter 6 investigates the improvement of the framework for more efficient construc-

tion of the MSMs; Chapter 7 concludes the findings and provides an outlook on the

topic of colloidal self-assembly.
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CHAPTER II

BACKGROUND

Colloidal self-assembly of nano- and micro-meter particles is a stochastic process,

in which particle movements, defect formation and migration are random. A solid

understanding of the system dynamics is required to design experiments to control and

eliminate the defects, in order to achieve highly ordered structures. Studying system

dynamics directly from experiments can provide the most accurate information, but

is usually costly and challenging to generate a sufficient amount of samples to account

for statistical effects in a stochastic process. In particular, if meta-stable states exist,

the time required to observe meaningful dynamics can be beyond an experimentally

achievable timescale. Alternatively, computer simulations provide a more efficient

approach to understand the underlying dynamics of colloidal self-assembly processes.

This chapter summarizes the most widely used simulation techniques for colloidal

self-assembly processes, and provides a background on the current studies on control.

2.1 Simulation of Colloidal Self-Assembly

The development of mathematical models to simulate colloidal self-assembly systems

is a subject of intense interest and research. Understanding the equilibrium and

steady-state structures is important. However, meta-stable states and kinetics bot-

tlenecks could prevent the system from reaching equilibrium states within accessible

time scales. In this chapter, the two main approaches used to simulate the dynamic

behaviors are presented. Specifically, the simulation based on detailed force balance

analysis, and the simulation with reduced-order models using order parameters are

studied.
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2.1.1 Brownian Dynamics Simulation

Micron-sized colloidal particles are subjected to Brownian motion. The random move-

ment of each particle is the result of the collision between the particles and the

surrounding molecules. In other words, the motion of the particle is subjected to

stochastic forces on the system. Therefore, using Newton’s second law to analyze

the forces each particle experiences in the system enables the simulation of particle

movements. One such an example is the Brownian dynamics simulation.

The Brownian dynamics simulation framework is usually built on a differential

equation, such as the Langevin equation, which is integrated forward in time to

describe the motion of the Brownian particles.

The general form of a Langevin equation to describe a particle with mass M that

undergoes stochastic forces is given as [31]:

M r̈ = −(r)− ζM ṙ + ζMκ(r) + F(b) (1)

where r is the particle position, e.g. Cartesian coordinates, ζ is the specific friction

coefficient, U is the net particle interaction potential, κ is the homogeneous velocity

gradient, and F(b) is the Brownian force experienced by the particle. Assuming a

Gaussian process behavior, F(b) can be further defined as:

Ft
(b) =

√
2kBTζM

d(W)t
dt

(2)

with kB being the Boltzmann’s constant, T being the absolute temperature, and (W)t

a Wiener process at time instant t.

Neglecting the inertia effects on the particle, the Brownian dynamics equation of

a Brownian particle is then described as:

0 = −(r)− ζM ṙ + ζMκ(r) +
√

2kBTζM
d(W)t
dt

(3)

Further introducing the definition of friction coefficient ς = Mζ and the diffusion

coefficient of the particle D = kBT/ζ, the Brownian dynamics simulation equation
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Figure 4: (A) XZ cross sectional contour plot of analytic solution for electric field
between coplanar thin films electrodes; (B) XZ cross sectional contour plot of ID-IF
potential; (C) XY cross sectional contour plot of ID-ID potential [53]. Reprinted from
[53], with the permission of AIP Publishing

for the instantaneous particle velocity can then be presented as:

ṙ =
−(r)

ς
+ κ(r) +

√
2D

d(W)t
dt

(4)

With specified potential U(r), friction coefficient ς, and diffusion coefficient D for

a particular system, the Brownian dynamic simulation can be tailored to simulate

specific colloidal self-assembly systems.

For example, in Ref. [53], the authors reported the use of a Brownian dynamics

simulation to study the quasi-two-dimensional configuration of micron-sized silica

colloids in an externally applied electric field between coplanar thin films electrodes.

Figure 4 shows the simulated forces in Brownian dynamics [53].

When the electric field is applied, colloidal particles become induced dipoles, which

can interact with each other and the field to generate movement. The net interaction

potential that drives the assembly of the system in the electric field is presented as the

sum of particle-particle, particle-wall, and particle-field interactions. Mathematically,

it is given as u(net) = u(pp) + u(pw) + u(pf), where u(pp) is the particle-particle potential

which includes an electrostatic interaction and a dipole-dipole interaction, u(pw) is the

particle-wall potential which only includes the electrostatic interactions, and u(pf) is

the particle-field potential which includes the gravitational potential energy and the
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interaction of the induced dipole with the induced field [53].

Using inverse statistical mechanical analyses to calculate these interaction poten-

tials, Juárez et al . demonstrated the ability of the Brownian dynamics simulation

to quantify interactions in the electric field and describe the dynamics of the silica

colloidal self-assembly process [53].

Tracking particle coordinates to define the system state as in Ref. [53] is usu-

ally computationally demanding. In addition, for systems where overall system level

properties, such as ordering, are of more interest than individual particle locations,

a set of aggregate variables, i.e. order parameters, is often used to characterize the

assembly. Sometimes they are also used to model the dynamics.

2.1.2 Dimensionality Reduction and Order Parameters

Dimensionality reduction can be implemented with either numerical methods or phys-

ical interpretations, or a combination of both. Numerical approaches include both

linear techniques like Principal Component Analysis and its extensions [84, 119], fac-

tor analysis [109]; and nonlinear techniques like diffusion maps [28, 29] and other

manifold dimensionality reduction methods [37, 109]. Numerical algorithms are gen-

erally straightforward to implement using widely distributed software. However, the

resulting variables from numerical dimensionality reduction usually bear no physical

meaning, and this makes it challenging to uncover a physical phenomenon.

Alternatively, constructing aggregate variables with domain knowledge can po-

tentially provide physically meaningful parameters to better illustrate the complex

system dynamics. Taking the colloidal system as an example, if the feature of interest

is the compactness of the particles, then radius of gyration, Rg, which quantifies the

root-mean square distance between particles within an ensemble, can be used; if the

local order of a structure is of interest, then the averaged number of nearest neighbors

can be used, such as C6 for a 2-D hexagonal structure; if the global order is needed,
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then global orientation parameters which describe the particle-particle bond orien-

tation, like ψ6, can be used. Other examples include pair-correlation or distribution

functions [89], volume fraction [92], and dihedral angles [86].

The use of physically meaningful parameters tremendously mitigates the difficulty

of relating the numerical values to a physical phenomenon, however this approach not

only requires domain knowledge, it also requires extensive validation. Sometimes, a

combination of the numerical approach and physical interpretation could be used.

For example, in Ref. [13], diffusion map is used to verify the use of Rg and C6 to

quantify defect formation in a depletion force mediated colloidal self-assembly process.

A combination of physical interpretation and numerical techniques could not only

provide physically meaningful order parameters, it could also provide mathematical

justification to the selection.

2.1.3 Fokker-Planck and Smoluchowski Equation

Instead of tracking particle locations, if a stochastic process can be characterized with

order parameters, then simulation can be achieved by modeling the evolution of the

probability density P (x, t) of the order parameters, where x is the order parameter(s),

and t is the time instant. Further if the system dynamics can be classified into fast and

slow modes [61], and can be approximated as a Markovian process, the probability

density can then be described by low-dimensional stochastic differential equations like

the Fokker-Planck and the Smoluchowski equation [61, 82].

Derived from the Kramers-Moyal expansion for the density distribution function

P (x, t), the Fokker-Planck equation is one of the most widely used mathematical

frameworks for stochastic dynamical self-assembly systems. For example, in Ref.

[61], the authors presented the derivation of the general Fokker-Planck equation for

a one-dimensional stochastic process, and its application on the study of micelle

11



formation

∂P (x, t)

∂t
= [− ∂

∂x
v(x) +

∂2

∂x2
D(x)]P (x, t) (5)

where v(x) is the drift coefficient, D(x) is the diffusion coefficient, and x is the mi-

celle size for this particular application. The coefficients were reconstructed from

short-time kinetic Monte Carlo simulations, and were calculated with linear fitting

techniques. The authors concluded that the use of Fokker-Planck equation can suc-

cessfully represent the Monte Carlo dynamics of micelle formation for a Larson model

[61].

As a special form of the Fokker-Planck equation, the Smoluchowski equation is

another popularly used description of a stochastic process [61, 82]. The Smoluchowski

equation in terms of order parameter x is [82],

∂P (x, t)

∂t
=

∂

∂x

{
D(x)e−W (x)/kT ∂

∂x
[eW (x)/kTp(x, t)]

}
(6)

where P (x, t) is the probability, D(x) is the diffusivity landscape which captures the

mobility of trajectories in terms of order parameter x, same as in Eqn. 5, and W (x) is

the free energy landscape which describes the free energy difference between different

states defined by x. Similar to the Fokker-Planck equation, the coefficients in the

Smoluchowski equations can also be estimated with short-scale trajectories instead of

long-scale dynamics. This is favorable in systems where meta-stable states exist and

it is challenging to obtain long-scale dynamics.

One application of the Smoluchowski equation in the study of colloidal self-

assembly can be found in Ref. [118], where Yang and co-authors reported the con-

struction of a low-dimensional Smoluchowski equation and the simulation of an elec-

tric field mediated colloidal self-assembly process. With order parameters Rg and

C6 to quantify the global system condensation and the local ordering of the parti-

cles, they demonstrated in simulation that with such a reduced-order Smoluchowski

equation, the formation and migration of the grain boundary formed in the assembly
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process can be accurately captured. Other applications of the Smoluchowski equation

in colloidal self-assembly systems include Refs. [10, 35].

2.2 Control of Colloidal Self-Assembly

A highly regular arrangement of colloidal particles is needed to realize many novel

properties of metamaterials. However, manufacturing highly periodic colloidal crys-

tals is challenging due to the existence of kinetic bottlenecks and meta-stable states.

Colloidal self-assembly systems trapped in meta-stable states, i.e. defective states,

could take a practically inaccessible amount of time before evolving into a fully or-

dered structure, assuming no human interference. Therefore, one control objective is

to avoid or reduce the amount of time spent in these defective states.

One approach to defect mitigation is called template-assisted self-assembly, where

physical templates are introduced to design the positions that particles can occupy,

therefore guiding the assembly to a specific structure. Template-assisted assembly

relies on the physical constraint on particle location to exclude irregular arrangement,

with reported success [51, 88, 114]. However, assembly with templates often lacks the

capability of eliminating defects formed along the process.

On the other hand, template-free assembly via particle-particle and particle-

environment interaction manipulation can potentially provide control over the defect

formation. Without the use of a physical template, assembly can be enabled with

attractive interactions between each particle. For systems with repulsive particle-

particle interactions, self-assembly can be achieved with a global driving force, cre-

ated with externally applied fields, to drive particles together. Template-free assem-

bly holds promise for scale-up, the manipulation of particle-particle and particle-field

interactions also provides the opportunity for a reversible assembly process.

The following sections discuss in general, the type of control that manipulates

these particle-particle and particle-field interactions by either modifying the intrinsic

13



Figure 5: Colloidal kagome lattice after equilibration. (a) Triblock Janus spheres,
hydrophobic on the poles and charged in the middle section, are allowed to sediment
in deionized water. Then NaCl is added to screen electrostatic repulsion for short-
range hydrophobic attraction. (b) Fluorescence image of a colloidal kagome lattice
and its fast Fourier transform image (bottom right). The top panel in (c) shows an
enlarged view of the dashed white rectangle in (b). Dotted red lines in c highlight two
staggered triangles. The bottom panel in c shows a schematic illustration of particle
orientations [25]. Reprinted by permission from Macmillan Publishers Ltd: [Nature]
[25], copyright (2011).

properties of each particle, or using external fields for global driving forces. Review

articles on colloidal self-assembly approaches include Refs. [44, 57, 59, 75].

2.2.1 Control by Particle Surface Property Modification

Colloidal particle surface properties significantly affect the inter-particle, and particle-

field interactions, thereby the structure of the assembly. Thus, one control strategy

is to modify the particle surface with engineered properties for specific interactions

and configuration. Coined by Casagrande in 1988, Janus particles are particles whose

surfaces have two or more distinct physical properties [47]. Research over the past

few decades has demonstrated the potential of manufacturing high quality crystals
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with Janus particles. In Ref. [47], Hong et al . reported the use of amphiphilic col-

loidal spheres, whose two hemispheres are hydrophobic and charged respectively, to

form wormlike strings in both simulation and experiments. The interaction potential

between particles switches from the extreme of attraction when the hydrophobic sides

face one another to an extreme of repulsion when the charged sides face one another,

and exhibits intermediate properties depending on the angle between particle orienta-

tion. The range of the angle between particles becomes greater with an increasing slat

concentration. The authors demonstrated that, with increased salt concentration to

reduce the electrostatic screening length, they were able to observe compact clusters

and to produce ordered worm-like objects. They further concluded the clustering is

a free energy minimization process and indicated that, potential extensions could be

achieved with more complicated design of the sphere’s surface chemistry [47].

In another example [25], Chen et al . reported the feasibility of directing “triblock

Janus” particles into a colloidal kagome lattice. Different from Ref. [47], “Triblock

Janus” latex particles were fabricated through a sequential deposition of titanium

and gold to have two hydrophobic poles and a middle electrically charged band.

Such a surface decoration enables neighboring particles to attract each other at their

hydrophobic poles while avoiding contacts between the charged middle bands. When

salt is added in the deionized water to screen electrostatic repulsion, ordering of the

assembly is then achieved due to the attractions between particle hydrophobic poles.

Using fluorescence imaging, the authors illustrated a two-step assembly mechanism

where, particles first cluster with their neighbors into kinetically favored triangles,

strings or a combined structure; and then coordinate with additional particles on

a slower timescale to rearrange into better ordered structures (Figure 5). Other

applications of Janus particles in self-assembly can be found in a recent review paper

[33].

Precise design of the coating area on a Janus particle is critical to achieving a

15



Figure 6: Schematic of experimental design to show the assembly process under dif-
ferent thermal and structural conditions. (a) The assembly system of DNA-capped
nanoparticles, the aggregates show structural changes under various thermal condi-
tions. (b) DNA linkages between nanoparticles with recognition sequences for the
A (blue) and B (red) sets of DNA capping. bp stands for base pairs. b stands for
bases and s stands for thiol termination of DNA [71]. Reprinted by permission from
Macmillan Publishers Ltd: [Nature] [71], copyright (2008).

specific structure. Assembly in Janus particle systems is always enabled by slowing

increasing salt concentration to screen electrostatic repulsion, and this makes the

process generally irreversible.

On the other hand, DNA strands disassemble when heated up, and assemble

specifically via Watson-Crick base pairing information. The structure of assembly

and particle interactions are subjected to the length and the specific sequence of the

DNA strand. Therefore modifying particles with DNA could introduce both flexibility

and reversibility in self-assembly for ordered structures.

In Ref. [71], Nykypanchuk et al . demonstrated the formation of three-dimensional

crystalline assemblies of DNA modified gold nanoparticles. The authors reported

that heating up the system to its melting temperature reduces the DNA interaction,

therefore providing the opportunity for particle rearrangement into the equilibrium

structure; while cooling down the system enhances the DNA interactions to enable

particle assembly. The study indicates that with a simple heating-cooling cycle, a

reversible formation of nanoparticle crystals is observed. The results in Ref. [71]
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indicate that the structure of the assembly can be manipulated via the length of the

DNA sequence, since a longer DNA sequence allows larger local rearrangements in

the structure with a lower energy penalty for the deformation of DNA [71].

DNA coated particles interact with each other due more to the complementary

DNA base pair sequence than the particle material or shape. Varying the combina-

tions of the base pair and the lengths of the DNA sequence on the particle surface

makes it seem possible to produce limitless colloidal structures [113]. Given these

advantages, programming DNA-guided self-assembly has been extensively studied for

ordered structures. Refs. [85, 106] provide excellent review summaries of recent

development and progress on this topic.

2.2.2 Control by Global Driving Forces

Instead of manipulating particle interactions via modifying intrinsic particle proper-

ties, self-assembly process can also be controlled with global driving forces created by

external fields including magnetic and electric fields.

In an external field mediated self-assembly system, assembly dynamics is primar-

ily influenced by particle-field interactions which can be adjusted by changing the

system settings, i.e. global actuator(s). Self-assembly systems possess different free

energy properties corresponding to different morphology, under different global actu-

ator settings. The idea of changing global actuator is to create an out-of-equilibrium

approach that breaks kinetically trapped structures for rapid assembly of perfect crys-

tals. Based on system dynamics under different settings, controlling self-assembly is

equivalent to designing the global actuator(s) trajectory (i.e. control input profile)

to avoid kinetic bottlenecks and meta-stable states. Such control strategies can be

obtained from either heuristic experience, or model-based simulations as open-loop

or closed-loop control policies.
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2.2.2.1 Open-loop control

Open-loop control policies are recipes designed beforehand, and the control action is

updated according to the process time, independent of system state. The design of

open-loop control policies usually does not require complicated calculations, and can

be achieved with experimental observations or model-based simulations.

One such open-loop control policy is to control the self-assembly of nano-scaled

superparamagnetic particles, in a magnetic field in Ref. [101], developed heuristi-

cally. When the magnetic field is turned on, particles interact with the field to first

form chains parallel to the magnetic field lines and then start aggregating laterally.

In a constant magnetic field, the lateral aggregation arrests the particle motion and

forms defective structure that could not evolve into ordered state, due to the strong

attractive force between the particles. In contrast, when the field is turned off, the

attractive force is suppressed such that particles can diffuse to rearrange into a crys-

talline structure. Given this observation, the open-loop policy is designed with a

toggling scheme, where the magnetic field is periodically turned on and off at specific

frequencies.

The authors pointed out that the toggling frequency is the key parameter in the

performance, since the field should be turned off long enough to eliminate defects, but

not too long that particles diffuse too far where a complete disassembly occurs. They

further demonstrated that with a toggling frequency of around 0.66 Hz, well-ordered

crystal can be formed after about 2000 s (Figure 7) [101].

Open-loop control is welcome given its simplicity. Strategies like the toggling

scheme have also shown success in a variety of self-assembly processes in both experi-

ments and simulations [52, 92]. In addition, open-loop control is the only option when

system state measurement is challenging or unobtainable. However, in a stochastic

process, such as the colloidal self-assembly, system dynamics are unique every time
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Figure 7: The suspension evolution after the pulsed magnetic field is applied as a
function of the pulse frequency. Particle-rich regions of the suspension appear dark
on the bright background of transmitted light. The field strength is 1500 Am. After
2000 s in the pulsed field all suspensions appear to have reached their terminal or at
least slowly evolving state. While suspension condenses into large magnetic domains
near 0.66 Hz, high pulse frequencies (≥ 5 Hz) make the suspension remains percolated
and the lowest pulse frequency makes the kinetics of depercolation appear to slow
significantly [101]. Reproduced from [101] with permission form The Royal Society
of Chemistry.
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a new process is conducted. The loss of system state information makes an open-

loop control strategy less robust compared to a closed-loop (i.e. feedback) control.

Therefore, when system state measurement is available, closed-loop control could

potentially improve the control performance.

2.2.2.2 Closed-loop control

In closed-loop control policies, instant system information is measured and integrated

into the control rules to identify the next step control input. Feedback control policies

can be designed either with heuristic experiences, or model-based simulations.

In Ref. [54], a simple proportional controller is designed to experimentally con-

trol an electric field mediated colloidal self-assembly process for a defect free two-

dimensional crystal (Figure 8). Each silica particle position is monitored with an

optical microscope to calculate the order parameter C6 which quantifies the local

crystallinity of the system, and serves as feedback to the controller. Low C6 indicates

a disordered fluid configuration, and a high C6 value indicates an ordered hexagonal

close packed structure, which this is the objective of the control.

The C6 evolution is manipulated by tuning the electric potential in the system via

changing the input voltage level, V and the AC field frequency, ω. When switched

to low frequencies, the structure disassembles at a faster than diffusion speed, while

a high frequency enables particle assembly at the center of the field, which is the

free energy minimum of the system. The magnitude of the voltage determines to the

strength of the compressing force, which drives the assembly of the particles. Thus

the idea of the proportional control is to design the voltage and frequency in time,

based on the instant C6 value, to navigate the system along a pre-specified C6SP set

point trajectory. The detailed proportional controller is given as,

[V, ω] =


[−K∆C6, 0.1 MHz], ∆C6 < ∆C6T

[K∆C6, 1 MHz], ∆C6 ≥ ∆C6T

(7)

20



Figure 8: Experimental setup and top view of particle configurations under a micro-
scope. System demonstrates opposite free energy landscape under different electric
field frequencies, and the order parameter trajectories possess different characteristics
under different voltage levels [54]. Reprinted from [54] with permission from John
Wiley and Sons.
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where K = 4V is the proportional gain determined with experimental observations,

and ∆C6 is the difference between the objective set point and the current system

value, defined as ∆C6 = C6SP − C6PV . The authors reported that with the feedback

proportional control policy, they were able to guide the assembly and disassembly of

a 130 particle system along the predefined order parameter trajectories as in Figure

9 [54].

The study in Ref. [54] demonstrated the application of a classic control approach

in an electric-mediated colloidal self-assembly process, with order parameters used to

describe the system state. The success of the proportional controller also indicates

that the control policy might be further improved for an optimal control if advanced

control theories to be used.

One such advanced optimal control example is the application of model predictive

control for rapid assembly of a two-dimensional SiO2 crystal in Ref. [105]. Model

predictive control falls into the category of optimal control, where the control action

is obtained by online computation. The basic concept of MPC is to use a dynamic

model to forecast system behavior over a prediction horizon, and optimize the forecast

to produce the best control move over the control horizon [81]. In MPC, an optimized

input trajectory is designed at each control interval based on the current system state

and the prediction from the model, subject to the constraints of the system. However,

only the first control input is applied to the system at the next time step. This

strategy ensures that the latest update of the actual measured output is considered

in the optimization and accounts for the disturbance introduced by any uncertainties

in the system [80, 81].

The system studied in Ref. [105] is similar to that of Ref. [54], with 210 particles.

The dynamics of the system are modeled with a one-dimensional Langevin equation
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Figure 9: Dynamic feedback controlled assembly and disassemble of a colloidal crystal
in terms of order parameter C6. Experimental optical video microscopy images and
particle trajectories for the assembly process with values of (A) 2, (B) 3, (C) 4, (D) 5,
and (E) 6. The top image pane shows individual particle C6 with color scaling white
for C6 = 1 and blue for C6 = 6. Particle trajectories by linear spectrum scaled with
red for t = 0 and violet for t = 40 s. Dynamic assembly and disassembly trajectories
showing (top) C6SP in solid blue line, C6PV in shaded blue points vs. time and
(bottom) electric field voltage, V, (green) and frequency, ω (orange) vs. time [54].
Reprinted from [54] with permission from John Wiley and Sons.
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using C6 as the state representation [105]. To achieve the optimal control, a time-

discrete objective function J is defined and minimized,

J(x, u) =
N∑
k=1

Jk(x(k), u(k)) (8)

where Jk(x(k), u(k)) is defined as the cost at each time point k as following:

Jk(x(k), u(k)) = (x(k)− xtarget)2 (9)

where xtarget = C6target = 6 indicates a perfect hexagonal crystal in a two-dimensional

case, which is the objective of the control. The optimization is solved online using

simulated annealing when a new measurement is available. The simulation results

indicate that, with the online optimal control approach, a rapid assembly of a two-

dimensional defect-free colloidal crystal can be achieved.

The optimal control action is calculated online, using the averaged prediction

of several individual simulations. The optimization over an expected prediction is

reasonable, considering the stochasticity of the system. However, as pointed out by

the authors, the computational time of online optimization is prohibitively high to

be implemented in experiments, which is a common issue with online computation.

Alternatively, optimal control policies can also be calculated offline. Examples

of offline calculated optimal control policies for colloidal self-assembly include Ref.

[13, 115]. In Ref. [13] a depletion-force mediated colloidal self-assembly process is

studied. The osmotic pressure is manipulated as the global driving force for assembly.

Two order parameters Rg and D∗cc are used to describe the system states, and the

control objective is to drive the system to a state with both a low D∗cc and a low

Rg value. Instead of MPC, a Markov decision process based optimization problem is

formed, and dynamic programming is used to solve for the optimal control policy in

the form of a lookup table. The Brownian dynamic simulation results demonstrate

the feasibility of rapid assembly of ordered crystalline state with the offline computed

optimal control policy [13].
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2.3 Summary

Theoretical and simulation studies on colloidal self-assembly systems provided the

foundation of accurately modeling the system with reduced system dimensions, such

as order parameters. Representing systems with lower dimensions opens up the pos-

sibility of designing model-based control strategies. Imaging techniques enable real-

time monitoring of the system dynamics evolution, which can provide not only an

in situ measurement for control performance evaluation, but also a feedback in the

closed-loop control. Current studies on colloidal self-assembly control with simple

and advanced control theories also indicate the potential of an optimal control. The

challenge addressed in this thesis is how to design an optimal control strategy that is

applicable to experiments, and can also be generalized for a wide range of applications.
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CHAPTER III

METHODS

3.1 Colloidal System

The experiment is set up at Johns Hopkins University as in Figure 10, where 300

micron-sized SiO2 particles are suspended in a batch container with four electrodes

to generate the electric field inside the system [104].

Coplanar quadrupole Au thin film electrodes were patterned on glass microscope

coverslips as shown in Figure 10(a). The coverslips were prepared by 30 minutes

sonication in acetone, 30 minutes sonication in isopropanol (IPA), and then were

rinsed with deionized (DI) water, followed by 1 hour soak in Nochromix (Godax),

then rinsed with DI water, sonicated in 0.1 M KOH for 30 minutes, rinsed again with

DI water, and then were dried with N2.

The electrodes were fabricated by spin coating photoresist (S1813, Shipley) onto

the microscope cover slips, treated with UV exposure through a chrome photomask,

and physical vapor deposition of a 15 nm chromium adhesive layer and a 35 nm

gold layer. The photoresist liftoff was accomplished with agitation in 1165 Remover

(Shipley). The electrode tips are separated by ∼100 µm. Before experiments, the

coverslips with patterned electrodes were sonicated for 30 minutes in each of IPA,

acetone, and IPA. Then were rinsed in DI water, suspended in Nochromix for 20

minutes, and rinsed with DI water again before they were dried with N2.

Experiments were performed in batch cells consisting of Viton O-rings. To con-

struct batch cells, O-rings were coated with vacuum grease and sealed between the

coverslip with the electrode and a glass coverslip. 22 gauge copper wires were attached

to the electrode using conductive carbon tape. The electrode was then connected in
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Figure 10: Experimental setup at JHU. (a) batch container with four electrodes
attached to generate the electric field; (b) top view of 300 SiO2 colloidal particles
suspended in 1.0 mM NaOH solution under a microscope; (c) Single particle-field
potential (blue-red scale: 0-100 kT [104]. Reprinted with permission from [104].
Copyright (2016) American Chemical Society.

series with a function generator (Agilent 33220a) with one lead attached to the north-

south poles and another to the east-west poles. For experiments in Chapter 4, 100

µL of the colloidal particle dispersion was dispensed into the batch cell and allowed

to sediment for 5 minutes prior to sealing with a coverslip to obtain approximately

300 particles in the quadrupole. For experiments in Chapter 5, the dispersion was

allowed to sediment for 15 minutes instead.

Microscopy was performed on an inverted optical microscope with a 63× Zeiss

air objective lens (0.6 numerical aperture) at 1.25 magnification. A 12-bit CCD

camera captured 336 pixel × 256 pixel (104 µm × 79 µm) digital images at rate

of 10 frames/s. Image capture and analysis were performed using MATLAB Image

Processing and Image Acquisition Toolboxes. Image analysis algorithms coded in

MATLAB were used to simultaneously locate and track particle centers, as well as

compute the order parameter values in real time. Figure 10(b) shows a top view of

the particle configuration under a microscope.

Two order parameters, ψ6 and C6 are used to capture the formation of grain
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boundary in the system. The global orientation parameter ψ6 describes the particle-

particle bond orientation and is defined as,

ψ6 =

∣∣∣∣∣ 1

N

N∑
j=1

ψ6,j

∣∣∣∣∣ (10)

where N is the number of particles and ψ6,j is the local six-fold bond orientation order

of particle j defined as:

ψ6,j =
1

NC,j

NC,j∑
k=1

ei6θjk (11)

where NC,j is the number of neighbors within the first radius of gyration peak of

particle j, and θjk is the angle between particle j and each neighboring particle k

with an arbitrary reference direction.

Connectivity between crystalline particles, χ6,jk is defined as,

χ6,jk =
|Re[ψ6,jψ

∗
6,k]|

|ψ6,jψ∗6,k|
(12)

where ψ∗6,k is the complex conjugate of ψ6,j. The connectivity χ6,jk is used to compute

the local order parameter for 6-fold connectivity C6,j as,

C6,j =

NC,j∑
k=1

[ ∣∣∣∣∣∣∣
1 χ6,jk ≥ 0.32

0 χ6,jk < 0.32

]
(13)

The local order parameter C6 is the averaged number of nearest neighbors over

all the particles, and is defined as,

C6 =
1

N

N∑
j=1

C6,j〈
C6

〉
HEX

(14)

where C6,j is the local order six-fold connectivity, and
〈
C6

〉
HEX

is the C6 value for

2D hexagonal close packed particles with a hexagonal morphology writes,

〈
C6

〉
HEX

= N−16(3S2 + S) (15)

S = −(1/2) + [(1/3)(N − 1) + (1/4)]1/2 (16)
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Combination of these two order parameters is able to capture the system evolution

and quantify the ordering of the assembly. A state with both a low ψ6 and C6 value is

the dispersed fluid state; state with high C6 but low ψ6 value is a defective state, with

either vacancies or grain boundaries, or both; state with high ψ6 values automatically

comes with a high C6 due to the physical meaning of the two order parameters, and

this is the desired ordered crystalline state to be achieved.

3.2 Brownian Dynamics Simulation

System dynamics is simulated with detailed force balance analysis with Brownian

dynamics simulation using the Cartesian coordinates of each particle, and Figure

10(c) shows the single particle-field potential at kT -scale. At the core of this BD

simulation is a Langevin equation given for a particle with mass m as,

m
dU

dt
= FH + FP + FB (17)

where U is the velocity vector, FH is the dissipative hydrodynamic forces, FP is the

conservative forces due to the potential field, and FB is the Brownian forces, which

is characterized with a mean and variance given by,

〈FB〉 = 0〈FB(0)FB(t)〉 = 2(kT )2(D−1)(t) (18)

where D is a diffusivity tensor for finite number of particles above a no-slip plane

that can be related to the resistance tensor via Stokes-Einstein relation [102].

Setting FH = −kY (D−1) ·U, and use a midpoint algorithm to integrate the above

equation gives the particle displacement equation as, with superscript “0” indicates

quantities at the start of time,

r = r0 + (O ·D0)∆t+ (kT )−1D0 · (FP,0 + FB,0)∆t (19)

The net conservative forces FP are calculated using the total conservative force

acting on each particle i as,

Fi
P = −Ori

[
uppde,i + uppdd,i,j

]
(20)
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where uppdd,i,j(r) is the electrostatic potential between particle i and j, writes,

uppe,i,j(rij) = 32πεma

(
kT

e

)2

tanh2 eψ

4kT
exp[−κ(rij − 2a)] (21)

with rij being the particle center-to-center distance, e the element charge, and ψ the

colloidal surface potential. The dipole-field, upfde,i and dipole-dipole, uppdd,i,j interactions

are defined as,

upfde,i(ri) = −2kTλf−1
CM

(
E(ri)

E0

)2

(22)

uppdd,i,j(r) = −kTλP2(cosθij)

(
2a

rij

)3(
E(ri)

E0

)2

(23)

where P2(cosθij) is the second Legendre polynomial, θij is the angle between the line

connecting two particle centers and the electric field, and
(
E(ri)
E0

)2

characterizes the

radially electric varying field approximated with L = (x2 + y2)0.5 as,∣∣∣E(L)

E0

∣∣∣ =
4L

dg
[2.081×10−7L4−1.539×10−9L3+8.341×10−5L2+1.961×10−5L+1.028]

(24)

The parameter used in this Brownian dynamics simulation is given in Table 1 to

show: (a) colloidal particle size, (b) absolute temperature, (c) Debye screening length,

(d) particle and wall Stern potential, (e) input levels, (f) Clausius-Mosotti factor for

an AC field frequency at 1 MHz, (g) medium dielectric permittivity, and (h) electrode

spacing. The detailed construction and validation of the BD simulation is given in

Ref. [35].

The input λ is a dimensionless representation of the voltage, indicating the strength

of the compressing force in the system. It is related to the voltage by [34],

λ(N, κ−1) = πεma
3 [fCME0(N, κ−1)]2

kT
(25)

E0(N, κ−1) = 8−0.5Vpp
dg

(26)

V (N, κ−1) = a0(κ−1)−b0(κ−1) (27)
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a0(κ−1) = 7.15 + 4.10 · 10−3κ−1 (28)

b0(κ−1) = 0.219 + 4.24 · 10−4κ−1 (29)

where κ, fCM , εm, E0, and dg are the same as in Table 1, and k is Boltzmann’s

constant. The peak-to-peak voltage, Vpp, is defined as Vpp = αV (N, κ−1), where

α ∈ [0, 1], and V (N, κ−1) is the voltage at which all particles crystallize in a system

of N particles.

3.3 Markov State Model

The use of particle coordinates in the BD simulation makes the simulation time con-

suming, and makes the design of control policies challenging. Therefore, Markov state

models using order parameters ψ6 and C6, are constructed with simulated samples

from the Brownian dynamics simulation to approximate the system dynamics, and

to compute the optimal control policy.

A Markov state model (MSM) is a stochastic model, which describes a memoryless

time series, in which the future dynamics only depend upon the current state [19].

The MSM is characterized by a set of system states S, a set of feasible actions A, a

probability transition time ∆t, and a probability transition matrix P (a) composed of

the transition probability P (a)ij for the system to be in state j given the current state

i under an input a ∈ A, after a transition time ∆t. When the system state and the

Table 1: Parameters for BD simulations.
Parameter Value
2a (nm)a 2870
T (K)b 298
κ−1 (nm)c 10
ψ (mV)d -50.0

λe 0.2, 0.9, 2.0, 19.7
fCM

f -0.4667
εm/ε0

g 78
dg (µm)h 96
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control action are continuous, the number of feasible control policies are infinite, this

will cause computational issues in solving for the optimal control policy, i.e. “curse of

dimension” in dynamic programming. Therefore, in this study, we discretize both the

system state defined by the two order parameters, and the control action space defined

by the voltage, or its dimensionless representation λ. Besides, assuming the dynamics

in the system does not differ significantly over time, a time-invariant transition matrix

is used, where the transition probability P (a) does not change over time.

The time-invariant transition matrix is estimated with order parameter trajec-

tories from Brownian dynamics simulation. To calculate the transition probability

P (a)ij, the number of transitions ending in state j starting from state i is counted

and divided by the total number of transitions from state i. Let dk = (i0, i1, ..., ik)

denotes the history of the process up to time k, and N the total number of the discrete

state, then the Markov transition probability satisfies the following relationship:

P (a)ikj = P (a)dkj (30)

j=N∑
j=1

P (a)ij = 1 (31)

If there are no transitions observed coming out from a state i, that state is deemed

as an absorbing state, in which once the system gets in there, it will not transit to

any other states. Mathematically, the probability of the system in an absorbing state

i satisfies,

P (a)ij =


1, if j = i

0, other wise

(32)

3.4 Dynamic Programming

3.4.1 Markov Decision based Optimization Framework

To compute the optimal control policy, a Markov decision process based optimization

process is formulated. A MDP is characterized by T, S,A, P (A), where S, A, P (A) are

32



defined previously, and T is the set of the discrete time epoch k [79]. If T is infinite,

the process is called an infinite-horizon MDP, and the resulting control policy has

a static structure. Otherwise, a finite-horizon MDP, and the corresponding control

policy has a time-dependent structure. In this thesis, both infinite- and finite-horizon

MDP are studied.

In the infinite-horizon MDP, the optimization is achieved over an infinite number

of time steps, and the policy is designed to maximize the objective function at each

state:

Jπ(x) = E

{
∞∑
k=0

γkR(xk, ak)

}
(33)

where E is the expectation operator, and π : S → A, is a feasible policy composed

of control actions ak ∈ A, xk ∈ S is the discrete state, k is the discrete time instant,

and γ ∈ (0, 1) is the discount factor introduced to ensure the convergence of the

optimization [12]. The one-stage reward function R(xk, ak) : S × A→ R is obtained

when the system is in state x and control action a is taken. The design of the objective

function is aimed to obtain the highest possible reward at each time step.

In the finite-horizon MDP, the optimization is achieved over a finite number of

time steps, with the objective function defined as:

Jπ(x) = E
{
R(xtf , atf )

}
(34)

where R(xtf , atf ) denotes the reward at the terminal time point tf . The design of the

policy is aimed to maximize the reward at the end of process.

The one-stage reward function R(x, a) for both the finite- and the infinite-horizon

MDP policy is defined the same as R(xk, ak) = ψ6
2. Order parameter C6 was not

explicitly included in the objective for several reasons: first, a high ψ6 state au-

tomatically ensures a high C6 value, due to their physical relationship; second, C6

contributes more toward state classification and its inclusion in the objective function

does not significantly affect the control policy, according to our investigations.

33



Figure 11: A backwards conduction algorithm in dynamic programming for finite-
horizon Markov decision process based optimization.

The optimal value function J∗ and the optimal policy π∗ for both the finite- and

infinite-horizon MDP control policies are defined as,

J∗(x) = sup
π∈Π

Jπ(x) (35)

π∗(x) = arg{sup
π∈Π

Jπ(x)} = arg J∗(x) (36)

where “sup” indicates the supremum, and Π is the set of all feasible control policies.

3.4.2 Algorithms for Dynamic Programming

The finite-horizon MDP option is solved with a backwards conduction algorithm, and

the infinite-horizon MDP optimization is solved with a policy iteration algorithm.

Both algorithms are provided in the MATLAB MDP Toolbox [23].

The backwards conduction algorithm starts at the last time period T , computes

the value function for each feasible state and then step back another time period until

it reaches the initial time (Figure 11). The outline of one such algorithm is given as

following, with Vt(St) is the reward or value function obtained in state St which is

the set of all feasible states at time t [77].

1. Initialization:

• Initialize the terminal contribution VT (ST ).
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• Set t = T − 1.

2. Calculate:

Vt(St) = max
at
{Ct(St, at) + γ(s′|St, at)Vt+1(s′)}

for all St ∈ S.

3. If t > 0, decrement t and return to step 1. Else stop.

The policy iteration algorithm starts with an initial feasible policy π, and calcu-

lates the associated value function and updates the action in the current policy in

each iteration to achieve the maximum reward/value function. Below is one example

of the policy iteration [77].

1. Initialization:

• Select a policy π0.

• Set n = 1.

2. Given a policy πn−1:

• Compute the one-step transition matrix P πn−1
.

• Compute the contribution vector cπ
n−1

where the element for state s is

given by cπ
n−1

(s) = C(s, Aπ
n−1

).

3. Let vπ,n be the solution to:

(I − γP πn−1
)v = cπ

n−1

4. Find a policy πn defined by

an(s) = arga∈A max(C(a) + γP πvn)

This requires computing an action for each state s.

5. If an(s) = an−1(s) for all states, then set a∗ = an; Else set n = n+ 1 and return

to step 1.
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CHAPTER IV

PROOF-OF-PRINCIPLE

Perfectly ordered states are targets in diverse molecular to micro-scale systems involv-

ing for example atomic clusters, protein folding, protein crystallization, nanoparticle

superlattices, colloidal crystals, etc. However, there is no obvious approach to con-

trol the assembly of perfectly ordered global free energy minimum structures; near-

equilibrium assembly is impractically slow, and faster out-of-equilibrium processes

generally terminate in defective states.

In this chapter, the application of the proposed framework in Figure 3 is demon-

strated on a colloidal system elaborated in Section 3.1 for a proof-of-concept purpose.

An infinite-horizon MDP based optimal policy is computed with dynamic program-

ming featuring four inputs: λ = 0.2, λ = 0.9, λ = 2.0, and λ = 19.7. The results in

this chapter demonstrate that by tracking real-time stochastic particle configurations

and adjusting the applied fields with feedback, the evolution of the assembly process

can be guided through polycrystalline states into single domain crystals an order of

magnitude faster than the near-equilibrium approach.

4.1 Introduction

Perfectly ordered nano- and micro- colloidal structures possessing exotic properties

can be used as metamaterials for multidisciplinary applications [8, 36, 73, 99]. How-

ever, obtaining perfect structures is non-trivial at any scale (e.g., atomic clusters,

nanoparticle superlattices, folded proteins), either due to the unmanageable amount

of time needed or the formation of defects in a fast assembly process.

Crystallization kinetics depends on how constituents collectively assemble via dif-

fusion in the solution. When the diffusion rate is fast enough to be experimentally
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manageable, perfect crystals can be formed via near-equilibrium assembly. Examples

include directional growth from a seed crystal and single small protein crystals for

X-ray crystallography via combinatorial screening. These near-equilibrium assem-

blies are usually achieved with the use of predefined processing recipes, based on

slow nucleation, growth, and annealing to allow the constituents gradually assem-

ble and relax into global free energy minimum perfect crystals. When the diffusion

rate is too slow to be experimentally accessible, like in the micron-sized colloidal

self-assembly systems, such near-equilibrium is usually impractical. However, rapid

out-of-equilibrium assembly, like using externally applied electric force to compress

particles, usually results in meta-stable states and persistent defective structures.

Here, a static feedback optimal control strategy is developed to control the defects

formed in an out-of-equilibrium colloidal self-assembly system (Figure 12) for rapid

production of two-dimensional perfect crystals. Specifically, a quadrupolar electric

field is used to generate a tunable compressing force between the particles for as-

sembly. The system under different compressing force possesses different free energy

landscapes and renders different particle configurations. Therefore the problem to

solve here is equivalent to using a global thermodynamic variable (i.e., electric field)

to change the relative free energy of all configurations, thus guiding particles to as-

semble via thermal motion to minimize their free energy.

To enable feedback control in real-time and real-space, the essential capabilities

include: (1) system state monitoring via image analysis with microscopy, (2) particle

interaction manipulation to navigate energy landscapes via field mediated potentials

(i.e changing the field amplitude), and (3) actuator settings assignment based on feed-

back via an optimal policy as lookup table. This approach provides defects correction

in real-time to produce perfect crystals experimentally for the first time.
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Figure 12: Quasi-2D colloidal crystal assembly in electric fields. (a) Microfabricated
quadrupole electrode. (b) Optical microscopy image of particles within quadrupole.
(c) Single particle-field potential (blue-red scale: 0-100 kT). Images of 300 particles
with centers colored to visualize reaction coordinates for local hexagonal order, C6 in
blue, and global hexagonal order, ψ6 in red, at electric field amplitudes of λ = (d) 0.2,
(e) 0.9, (f) 2.0, and (g, h, i) 19.7. Representative micro-structures include bicrystals
with, (g) large grain boundary (similar sized domains near max misorientation angle),
(h) small grain boundary (dissimilar sized domains with smaller misorientation angle),
(i) no grain boundary i.e., perfect crystal [104]. Reprinted with permission from [104].
Copyright (2016) American Chemical Society.
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4.2 Methods

4.2.1 Experimental Control

Radius of gyration, Rg defined in Eqn. 37, was used to measure the degree of melting

between individual cycles. After a perfect crystal was obtained or 1000 s had elapsed,

the system was melted at λ = 0.2 until Rg = 25.5 µm before the next cycle was

started.

Rg = 0.5N−1

[∑
|ri − rj|

]0.5

/Rg,HEX (37)

where Rg,HEX is the radius of gyration for 2D hexagonally close packed particles with

regular polygon morphologies given by,

Rg,HEX = 50.53−1aN0.5 (38)

The particle location is identified as the brightness maxima within an image taken

under the optical microscope, and this is deemed as the centroid of the particle. The

accuracy of the particle location detection is affected by the variation in the lighting

intensity over the image, the variation in the particle size and shape, as well as the

resolution of the measurement. To account for the particle tracking errors in the

experiments, order parameter ψ6 is normalized by ψ6,max = 0.8, and C6 is normalized

by C6,max = 0.95 before use in the lookup table for updating λ. All the experiments

in this chapter were conducted by Brad Rupp at Johns Hopkins University.

4.2.2 Markov State Model Construction

The set of control actions in the Markov state model in this chapter is composed

by the four λ’s. The state space defined by (ψ6, C6) is discretized evenly into 6000

discrete states, with ψ6 into 50 intervals and C6 into 120 intervals after trial-and-error

inspection.

Four MSMs are constructed and for each model, BD simulations are initialized

in different discrete states to cover a commonly visited region of the state space.
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The parameters used in the BD simulation are summarized in Table 1 in Section 3.2

of this thesis. The simulations were repeated to ensure the important states have

enough samples to account for stochastic effects. Simulations were conducted under

both constant and time-varying inputs to enrich sampling, with voltage switching at

intervals of ∆t = 100 s, corresponding to the transition time used in the MSM.

4.3 Stochastic Polycrystal Assembly

Assembly is performed with 300 SiO2 colloids (radius, a = 1.4 µm) confined by gravity

into a quasi-2D layer within a quadrupole electrode, as shown in Figure 12(a) (also

refer to Section 3.1 of this thesis). A function generator controls the amplitude of

a 1 MHz AC field, which determines the degree of localization of colloids at the

field minimum in the quadrupole center, as shown in Figure 12(b), monitored with

a microscope. In the electric field, shown in Figure 12(c), particles are induced into

dipoles, and the driving force for the assembly is characterized by the dipole-field

potential as [55],

u(r) = −λf−1
CM [E(r)/E0] (39)

where λ = πma
3(fCME0)2/(KT ) characterizes how strongly the radially varying field,

E(r)/E0, confines particles relative to thermal energy, kT , r is the particle location.

The Clausius-Mosotti factor for an AC field fCM depends on the particle dielectric

property, εp, and the medium dielectric property εm [2]. The detailed information on

the experiments are given in Table 2. where (a) colloidal particle size, (b) absolute

temperature, (c) Debye screening length, (d) particle and wall Stern potential, (e)

peak-to-peak voltage, (f) input levels, (g) Clausius-Mosotti factor for an AC field

frequency at 1 MHz, (h) medium dielectric permittivity, and (i) electrode spacing.

A balance of the field confinement against the quasi-2D dispersion osmotic pres-

sure determines, for systems with a given particle number, whether a fluid or solid

phase, as shown in Figure 12(d)-(i), will form versus λ [34]. As system size increases,
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polycrystallinity, i.e. misoriented crystal domains with grain boundaries shown in

Figure 12(g) and (h), becomes increasingly prevalent under rapid assembly with a

stronger compression force; this is the defect to be repaired.

Order parameters ψ6 and C6 are used to capture different states include: amor-

phous states with both a low C6 and ψ6 value in Figure 12(d), polycrystals in Figure

12(g) with high C6 but low ψ6 value, and the perfect crystals in Figure 12(h) with a

ψ6 value close to 1. C6 captures emergence of crystallinity during condensation and

distinguishes the amorphous (low C6) and the polycrystalline (high C6) states, that

both have a near to 0 ψ6 value.

4.4 Results

4.4.1 Uncontrolled Simulations with Ramp

To understand the tradeoff between slow near-equilibrium assembly and rapid out-of-

equilibrium processes, simulations are conducted with four open-loop ramp schemes

and a quench scheme where λ = 19.7 is used along the process. Four ramps are

considered where input λ increases from 0.2 to 19.7 in: 1000 s, 2000 s, 5000 s, and

10000 s respectively, to include both slow near-equilibrium ramp and rapid out-of-

equilibrium ramp.

Assembly trajectories are reported for N = 300 particles in Brownian Dynamic

Table 2: Parameters for Experiments.
Parameter Value
2a (nm)a 2870
T (K)b 293
κ−1 (nm)c 10
ψ (mV)d -50.0
Vpp/V

e 0.2, 0.4, 0.6, 0.95
λf 0.2, 0.9, 2.0, 19.7

fCM
g -0.4667

εm/ε0
h 78

dg (µm)i 96
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Figure 13: Ramping electric field at different rates without feedback control. Electric
field amplitude, λ (long-dash gray), ramped from 0.2 to 19.7 over (a) 0 s (blue), (b)
1000 s (cyan), (c) 2000 s (red), (d) 5000 s (green), and (e) 10000 s (black). Local
order, C6 (dotted lines), emerges before global order, ψ6 (solid lines). Equilibrium ψ6

values (open circles) vs. λ approach ψ6 ramp trajectories only for the 10000 s ramp
case. Reprinted with permission from [104]. Copyright (2016) American Chemical
Society.
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(BD) simulations matched to experiments [35]. Non-equilibrium order parameter tra-

jectories averaged over 100 simulations are shown alongside the equilibrium ψ6 values

(i.e., free energy minima values at each λ) in Figure 13. To obtain the equilibrium

ψ6 values, BD simulations starting from fluid states are conducted under each λ to

construct free energy landscapes in the order parameter space via linear fitting a

Smoluchoski equation coefficients. The free energy minimum on each landscape is

deemed as the equilibrium ψ6 for that λ. The detailed fitting is provided in supple-

mentary information of Ref. [104].

According to Figure 13, local ordering always precedes global ordering, and in

order to achieve a 100% perfect crystals out of the 100 simulations, a near-equilibrium

ramp of 10000 s is needed. Note that ramped ψ6 approaches equilibrium ψ6 values at

long ramp times. On the contrary, as the ramp time reduces, more defective crystals

form since faster ramps produce non-equilibrium polycrystals that do not relax to

single crystals in the allotted times.

4.4.2 Feedback Control Policy

The (ψ6, C6) coordinates quantitatively capture non-equilibrium stochastic trajecto-

ries between states, and provide a dynamic model to close the feedback control loop.

A (ψ6, C6) based model quantifies the field mediated crystallization dynamics via a

Smoluchowski equation given as [35],

∂p(x, λ, t)

∂t
= 5(x, λ) · 1

kT
(x, λ) +5]p(x, λ, t) (40)

where p(x, λ, t) is probability, x = (ψ6, C6), D is a diffusivity landscape, and W

is a free energy landscape. With this dynamic model, an optimal control scheme

based on free energy gradients in W and hydrodynamic mediated friction in D can

be formulated [35].

Controlling the colloidal self-assembly is thus conceptually the navigation of free
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energy landscapes, W , at each electric field amplitude, λ, as shown in Figure 14(a).

The equilibrium ramp in Figure 13(e) can be interpreted as slowly increasing λ(t)

to guide the configuration evolve near the free energy minimum on each W . Faster

ramps in Figure 13(a)-(d) cause sampling of non-equilibrium polycrystalline states on

each W instead. In these non-equilibrium states, vanishing gradients in W provide

minimal driving force for relaxation, therefore more defective states are formed.

The more sophisticated approach here is to determine the optimal λ(t) based

on current (ψ6, C6) coordinates to maximize the probability of moving from the

initial fluid state to the perfect crystal. The particle and grain boundary motion

are stochastic such that each process is unique, no one λ(t) is best every time the

process is conducted. Therefore closed-loop control is required to obtain the optimal

actuation.

A Markov decision process based dynamic programming optimization framework

is formulated to compute for the optimal control policy. Markov state model [19],

a discretized version of the Smoluchowski equation, characterized by a “probability

transition matrix” to quantify the transition probability between all states during a

time step, ∆t, is constructed for each λ. The optimal control policy, π∗(x) is solved

by maximizing an infinite-horizon objective function given in Egn. 41, and is defined

as in Eqn. 42, with the optimal value function J∗ defined in Eqn. 43.

Jπ(x) = E

{
∞∑
t=0

γiR(xi, λi)

}
(41)

π∗(x) = arg{sup
π∈Π

Jπ(x)} = arg J∗(x) (42)

J∗(x) = sup
π∈Π

Jπ(x) (43)

where E is the expectation operator and R(xi, λi) is the reward function at time i
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defined as R = ψ6
2 to maximize the crystallinity on each stage. The discount factor

γ = 0.99 is used to ensure the convergence of the policy calculation.

The optimal policy π∗(x) was solved using a MATLAB policy iteration algorithm

[23]. It provides a mapping from the current measured state, x, to the next step

action, λ, i.e. λi+1 = π∗(xi), where i is the discrete time instant, and is given in

the form of a look-up table in Figure 14(b), indicating the λ to use when assembly

trajectories pass through each (ψ6, C6) coordinate.

A typical single experimental trajectory is plotted in Figure 14(a) and (b) to

illustrate the mechanism of the control policy. System state (ψ6, C6) coordinates

plotted as trajectories on the W at each λ in Figure 14(a), are updated every 100 ms

using image analysis to locate each particle centers. The current values of the (ψ6,

C6) coordinates are used in the look-up table in Figure 14(b) to update λ every 100 s,

which is shown by the trajectories jumping between the W in Figure 14(a). The

policy update time of ∆t = 100 s was determined by considering actuation times

comparable to the inherent system response time.

The policy update time and inherent system response time depends on the coop-

erative short-range motion of particles necessary for grain boundary motion [95, 121],

which can be estimated from the long time self-diffusivity as, DL
S = DS

S [1+2φg(2a)]−1,

where DS
S is the short time self-diffusivity, φ is the particle area fraction, and g(2a)

is the radial distribution function contact value within the quasi-2D colloidal mono-

layer [6]. Using DS
S=0.5D0 where D0 is the Stokes-Einstein value, to account for

particle-wall hydrodynamics [40], and the hard disk fluid radial distribution function

for g(2a) [120], the time for particles to diffuse over a distance comparable to their

own radius, τ = a2/DL
S is about 100 s at low concentrations. By considering how

the soft electrostatic repulsion between particles significantly decrease g(2a) [6], DL
S

becomes a weak function of φ, therefore τ ≈100 s captures the characteristic structure

relaxation time scale for all configurations and λ. Estimating DL
S based on dense fluid
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Figure 14: Assembly trajectory on energy landscapes under control. (a) Free energy
landscapes of 300 particles at the four λs in policy. Example trajectory (black) with
coordinates on policy (b) and corresponding images (c-h). (b) Optimal policy calcu-
lated using Markov decision process. Images showing representative configurations
with the same coloring scheme as in Figure 12(d)-(i) at: (c) λ = 0.2 before com-
pression, (d) first compression to λ = 19.7 with grain boundary, (e) relaxation at λ
= 0.9, (f) re-compression at λ = 19.7 with new grain boundary, (g) relaxation at λ
= 2.0, (h) perfect crystal at λ = 19.7 [104]. Reprinted with permission from [104].
Copyright (2016) American Chemical Society.
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properties can be rationalized since motion within grain boundaries has been com-

pared to concentrated melt dynamics [4, 69, 122]. In addition, the different λ values

in conjunction with the inhomogeneous field cause the dynamics to vary significantly

from the concentrated interior of the particle ensemble to the vanishing density at its

periphery [34]. Moreover, the 100 s update time worked better than faster or slower

times, consistent with the above analysis.

The single experimentally controlled trajectory indicates that low λ’s are used for

particle rearrangement only when defective states are formed, and λ = 19.7 is used

for rapid compression. Depending on the severity of the grain boundary, different low

levels of λ are used to relax the assembly.

4.4.3 Controlled versus Uncontrolled Assembly

To collect sufficient statistics for a fair comparison of the uncontrolled (i.e. quench)

and controlled processes, 200 alternating uncontrolled and controlled cycles were con-

ducted in a fully automated experiment over 31 hr (see Section 3.1 of this thesis).

Each cycle used feedback control to: (1) ensure initial disassembly, (2) execute either

a step-quench without intervention or 100 s control updates, and (3) terminate the

process after either a perfect crystal is obtained or 1000 s elapsed.

The first 10 cycles of the alternating experiments (even cycles for controlled and

odd cycles for uncontrolled) illustrate several scenarios (Figure 15a) that: (1) quick

relaxation for small grain boundaries to form perfect crystal in the uncontrolled cycle

#3, #7, and #9; (2) slow relaxation within 1000 s to form a perfect crystal in uncon-

trolled cycle #1; (3) formation of meta-stable crystals that never relax in uncontrolled

cycle #5; (4) formation of perfect crystals either without (#4, #10) or with (#2, #6,

#8) several feedback corrections.

The controllers success at producing perfect crystals is better illustrated via analy-

sis of all the 200 ψ6 versus time trajectories as shown in Figure 15(b), and the number
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Figure 15: Controlled vs. uncontrolled crystal assembly processes. 100 uncontrolled
and 100 controlled trajectories shown as: (a) first 10 cycles with C6 (blue), ψ6 (red),
λ (black) vs. time, (b) ψ6 vs. time for 1000 s for all experiments colored to indicate
ensemble average (bold red), no grain boundary (red: ψ6 > 0.7, C6 > 0.95), small
grain boundary (orange: 0.7 > ψ6 > 0.4, C6 > 0.95), large grain boundary (peach:
0.4 > ψ6, C6 > 0.95), (c) perfect crystals vs. time as cumulative number (dark red)
and instantaneous number (bars) with same color scheme as (b) [104]. Reprinted
with permission from [104]. Copyright (2016) American Chemical Society.
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of perfect crystals versus time as shown in Figure 15(c). Perfect crystals form imme-

diately under the strong compression at λ = 19.7 without grain boundaries in a small

portion of the 200 cycles (17 uncontrolled vs. 19 controlled), by bypassing slow grain

boundary motion on free energy plateaus, i.e. W at λ = 19.7 in Figure 14(a).

The remaining trajectories confirm the interpretation, made with the single tra-

jectory in Figure 14(a), of how control removes grain boundaries by choosing lower

λ. In cycles where small grain boundaries form, perfect crystals are obtained in 100%

(52/52) of trajectories after 1–2 corrective steps using the optimal control policy,

whereas 78% (37/47) of small grain boundary bicrystals are able to relax for perfect

crystals in the uncontrolled cycles. In cycles where large grain boundaries form, per-

fect crystals are obtained in 93% (27/29) of controlled trajectories after 3–4 corrective

steps with the control policy; while only 18% (6/34) of uncontrolled processes reached

a perfect crystal. In sum, with the control policy, processes produced perfect crystals

98% of the time while uncontrolled processes were 60% successful.

4.4.4 Conclusion

This chapter proves the success of the proposed framework in controlling the colloidal

self-assembly to rapidly produce perfect 2-dimensional crystal. Building on under-

standing of the free energy landscape at different global actuator input levels and

the corresponding particle configurations, the optimal control policy is able to navi-

gate the assembly process in order parameter space to achieve a ∼40% improvement

in the yield of perfect crystals compared to the simple quench scheme. The out-of-

equilibrium assembly approach resulted from the optimal control policy also reduced

an order of magnitude amount of process time compared to the near-equilibrium

assembly.
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CHAPTER V

EXPANSION OF THE FRAMEWORK

The previous chapter demonstrated the feasibility of the proposed framework and

the benefits of the static model-based optimal feedback policy compared to quench

and near-equilibrium assembly approaches. This chapter widens the scope of the

previous chapter to compare closed-loop optimal policies with the commonly used

open-loop “toggling” approach, where the input is periodically switched between the

high and low levels. In addition, the MDP optimization framework is also expanded

beyond the infinite-horizon closed-loop policy, to include a finite-time policy, where

the policy structure is time-dependent. The time-dependent policy enables a more

direct comparison to toggling and more directly incorporates the objective of achieving

crystalline assembly at the end of the process.

5.1 Introduction

Directed self-assembly describes a process in which directing agents, external fields,

or templates are intentionally manipulated to influence the assembly process [44].

As described in the previous chapters that, there is a tradeoff between the speed of

the assembly and the crystallinity of the assembled structure in a directed colloidal

self-assembly process. To address this issue, time-varying assembly has been used

including slow voltage ramps to anneal to the perfect crystal [107], and toggling of

the magnetic field to periodically relax out defects [101]. However, these open-loop

strategies do not address the stochastic nature of defect formation. If the formation of

a defect could be detected early and healed locally and quickly before getting locked

in, it might be possible to achieve rapid assembly without the inefficiency of unneeded
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relaxations that slow down the assembly. There has been limited application of closed-

loop feedback control in colloidal assembly, including heuristic switching rules applied

in simulation [60], and proportional control applied in experiments [54], as well as the

previous simulation [13, 115], and experimental [104] approaches for model-based

control underpinning the results presented in the previous chapter.

To understand the similarities and the differences between the open-loop and the

closed-loop control strategies, five strategies are compared in this chapter, with three

open-loop strategies including a heuristic time-invariant strategy, a heuristic time-

varying strategy, and a model-based time-varying strategy; together with two model-

based closed-loop strategies including a policy with a time-independent structure,

and a policy with a time-dependent structure. All the strategies use the same update

time step of 100 s and the same two voltage levels. All strategies run for 900 s, which

is long enough to achieve the desired crystalline state. The design of these strategies

is aimed to understand the effects of time-varying actions and the use of system state

as feedback in controlling this stochastic self-assembly process. To provide a fair

comparison, all the MSM-based policies in this study use the same MSM.

5.2 Methods

5.2.1 Experimental Control

Radius of gyration, Rg defined as in Eqn.37, was used to measure the degree of

melting between individual cycles. A new experimental cycle was initiated when Rg

= 25.5 µm is reached after melting the system at λ = 0.2.

To prepare for the experiments, 100 µL of the colloidal particle dispersion was

dispensed into the batch cell and allowed to sediment for 15 minutes prior to sealing

with a coverslip, to obtain approximately 300 particles in the system. Same as in

Chapter 4, to account for particle tracking errors, experimental values of the system

metrics ψ6 and C6 in this chapter were calibrated, normalized by constants of ψ6max
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= 0.85 and C6max = 0.98, before use as feedback in the closed-loop strategies.

5.2.2 Markov State Model Construction

The set of control actions in the Markov state model in this chapter is composed

by the two λ’s. The state space defined by (ψ6, C6) is discretized evenly into 6000

discrete states, with ψ6 into 50 intervals and C6 into 120 intervals after trial-and-error

inspection.

To estimate the transition probabilities, we used a time-varying input trajectory,

where the input is switched (uniformly) randomly between λ = 0.2 and λ = 19.7

every 100 s, to generate samples from the detailed Brownian dynamic simulation.

The parameters used in the BD simulation are summarized in Table 1 in Section 3.2

of this thesis.

The design of a dynamic input is aimed to reach states excited by the switches

that are challenging to obtain under either of the constant input values. Simulations

were initiated and repeated in about 400 different discrete states to ensure sampling

of the commonly visited state space under each of the two input levels. Samples

from constant inputs were also included to enrich the sample set. We then estimated

the transition matrix P (a) using a moving window strategy elaborated as Counting

Method 1 in Ref. [74], for each of the two input levels. A total of about 1600 BD

simulations including both short time (900 s) and long time (∼5000 s) runs were

used in the transition matrix estimation. It took about 4 hours to finish a 900 s BD

simulation realization using.

5.3 Order Parameters and Control Policies

To make a direct comparison with a periodic toggling strategy [101], we consider two

voltage levels: 0.1V and 0.95V , where V is the lowest voltage to completely crystallize

the system within a 2-dimensional planar space as defined in [34]. The corresponding

dimensionless representations of the two input levels are defined as λ = 0.2 and λ
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= 19.7 respectively, to indicate the strength of the electric compression force in the

system [53, 104].

Markov state models are constructed for the two input levels using two order

parameters ψ6 and C6 as the system state representation. With these two order

parameters, we are able to distinguish: the fluid state in Figure 16(a), which only

exists under λ = 0.2; defective states in Figure 16(b) and (c), formed due to the

strong compression force under λ = 19.7; and the ordered state in Figure 16(d),

which could only be achieved and maintained under high voltage (i.e. λ = 19.7). The

ultimate goal of the control is to achieve a grain boundary free state as in Figure

16(d). Detailed information on the λ-voltage conversion and the order parameters is

given in Chapter 3 of this thesis.

5.3.0.1 Open-loop policies

The first open-loop strategy is the Constant policy, where λ = 19.7 is used from

the beginning to the end of the process, since a highly crystalline state can not be

achieved when λ = 19.7 is used. The second open-loop strategy is the Periodic policy,

where the input is switched between the two input levels every 100 s, starting and

ending with λ = 19.7. The third open-loop approach is calculated with Markov

chain Monte Carlo simulation using the MSMs as follows: first, we enumerated all

the possible combinations (29) of the actions over the nine time steps (900 s/100 s).

Then we used the MSMs to predict and identify the policy that gives the highest

final crystallinity according to its ψ6 value. This input series is the optimal open-loop

control policy. This policy is referred as “Optimal OL” for short.

5.3.0.2 Closed-loop control strategies

The two closed-loop control policies were solved to include a finite-horizon policy

(i.e. “FinCL”), and an infinite-horizon policy (i.e. “InfCL”), with the formulation

described in Chapter 3 of this thesis. The control policy was solved with dynamic
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Figure 16: Typical assembly configurations with order parameter values from sim-
ulation under different input levels: (a) fluid-like state, which only exists under low
input λ = 0.2; (b) and (c) polycrystalline and grain boundary states, formed under
high input λ = 19.7; (d) the desired defect-free structure only achievable under high
input λ = 19.7.
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programming via a backwards conduction algorithm for the finite-horizon MDP op-

tion, and via a policy iteration algorithm for the infinite-horizon MDP optimization.

Both policies were calculated using the MATLAB MDP Toolbox [23]. For both cases,

solving for the optimal control policy takes only a few seconds on a 3.40 GHz Intel(R)

Xeon(R) CPU with 16.0 GB memory.

5.4 Results

5.4.1 Calculation of Control

Figure 17(a) shows the infinite-horizon optimal closed-loop control policy in the re-

duced state space and Figure 17(b) shows the three open-loop control strategies.

Figure 4 shows the 900 s finite-horizon optimal closed-loop control policy, with each

panel representing the policy for the corresponding 100 s time interval. Since λ =

19.7 is used for the 800 s to 900 s period to maintain the structure, it is not shown for

simplicity. In the finite- and infinite-horizon control policies, states with a C6 value

higher than about 5.5 are not reachable in either experiments or simulation [54]. How-

ever, to provide a complete presentation, actions in these states were extrapolated

given information on nearby states.

The input in the open-loop strategies is updated only according to time, regardless

of system state. In contrast, to use the closed-loop control policies, a picture of the

colloidal system is taken under the microscope and analyzed to calculate first the

intensity centroid of each particle, and then the two order parameter values. From

the order parameters, the input λ level for the next 100 s is found directly from

the look-up tables in Figure 17(a) or Figure 18. Control actions for each of the five

strategies are updated every 100 s.

5.4.2 Performance in Brownian Dynamic Simulation

The open-loop and closed-loop policies were evaluated by performing 100 realizations

of the BD simulations for each of the five control strategies. Specifically, ten different
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Figure 17: (a) infinite horizon control policy shown as a lookup table in order pa-
rameter space; (b) three open loop schemes with optimal open-loop control policy
developed from MSM colored in blue, Periodic strategy in red, and Constant in green.

initial configurations were used, with each taken from the lower-left “fluid” region of

the state space. Ten different realizations (i.e. different initial seeds in the random

number generator) were conducted, beginning in each of the ten initial configurations,

for each control strategy. The results are illustrated in Figure 19, for 900 s long BD

simulations. The system is deemed to be a perfect assembly when the value of ψ6 is

greater than 0.95, and the yield is the fraction of the perfect assemblies at the current

time.

The use of a constant voltage led to significant defects, as quantified in Table 3 by a

final yield of 54%. However, the other four strategies, both open- and closed-loop, all

led to assembly yields greater than 90%. While the assembly under constant voltage

is highly stochastic, forming graining boundaries about half of the time, the other two

open-loop strategies employ time-varying inputs that create robust operating policies

without the need for feedback.

The values in Table 3 suggest that a closed-loop strategy might be somewhat
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Figure 18: 900 s finite horizon optimal control policy. Each lookup table presents the
control policy for its corresponding 100 s interval, with the last (9th) 100 s interval
using λ =19.7 to maintain the crystal structure.
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faster and more effective than an open-loop strategy. However, using a two-sided t-

test with a 95% confidence level, it is not possible to resolve any significant differences

in performance between the strategies, other than the constant input. Figure 20

provides additional qualitative insight on the potential differences between the open-

and closed-loop performance, by comparing individual realizations that use the same

initial configuration and the same seed for the random number generator. The system

successfully assembles without defects under all three strategies, as shown in Figure

20. Note that the input profile used for the periodic and closed-loop realizations

is identical up until 500 s, and therefore so are the corresponding trajectories. In

the closed-loop policy shown at the bottom, two relaxation periods are needed, but

the system is on a good path at 500 s, not requiring any additional relaxation. In

contrast, in the upper panel under periodic input, the system undergoes another

relaxation between 500 and 600 s that was not needed, unnecessarily delaying the

assembly process. Additional relaxation is applied from 700 to 800 s, taking the

system from the defect-free state to a relaxed state and then back to the crystalline

state by the end of the 900 s process.

Table 3: BD yield and assembly time of 100 realizations
>50% Time (s) >80% Time (s) Yield

Constant 500 N/A 54.0%
Periodic 260 640 92.0%

Optimal OL 330 590 92.0%
InfCL 260 560 91.0%
FinCL 260 560 95.0%

5.4.3 Performance in Experiments

The same five control policies were then applied to the experiments, and all the exper-

iments in this chapter were conducted by Jianli Zhang at Johns Hopkins University.

Due to time constraints, it was not practical to perform 100 repetitions of each

of the five strategies (it took over 30 hr to perform 200 experimental cycles [104]).

58



Time (s)
0 200 400 600 800

ψ
6

0

0.2

0.4

0.6

0.8

1

Time (s)
0 500

ψ
6

0

0.5

1

Time (s)
0 200 400 600 800

C
6

0

2

4

6

Time (s)
0 500

C
6

0

5

Time (s)
0 200 400 600 800

Y
ie

ld

0

0.2

0.4

0.6

0.8

1

Time (s)
0 500

Y
ie

ld

0

0.5

1

Constant
Periodic
Optimal OL

Time (s)
0 200 400 600 800

λ

0

5

10

15

20

InfCL
FinCL

(a)

(c) (d)

(b)

Figure 19: 100 realization averaged BD simulations with results from open-loop
strategies plotted in the insect figures. (a) ψ6 evolution over time; (b) C6 evolu-
tion over time; (c) cumulative yield of grain boundary free structures over time; (d)
averaged input profiles from closed-loop control strategies.
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Figure 20: Individual BD simulation runs from Periodic, Optimal OL, and InfCL
control strategies, showing the corresponding control mechanism. (a) ψ6 trajectories
over time; (b) control input profiles. All three simulations were initiated in the same
configuration and were simulated with the same seed.

Instead, ten repetitions were performed for each of the five strategies over the full

assembly time of 900 s. Moreover, 30 additional repetitions were performed for each

strategy, but each of these runs was stopped once the system had reached a perfect

crystal (i.e. ψ6 > 0.95), to save time. If a perfect crystal had not been obtained by

900 s, then that run was stopped.

Figure 21 shows the results averaged over the ten repetitions of the full 900 s pro-

cess. The closed-loop policies result in high yield, consistent with the BD simulation

results. At some point in the process, both of the closed-loop strategies can be seen

to achieve a yield of 10 out of 10, indicating that all of the runs did assemble and

could have been stopped at that point. However, under the high input level, particles

are still subject to Brownian motion, which leads to changes in particle positions that

contribute to a ±0.02 deviation from 0.95 in ψ6 value, even if a defect-free assembly

is present. Since we have used 0.95 as the criterion for a yield, this phenomenon even-

tually resulted in the fluctuations in the yield of the two closed-loop control results
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as in Figure 21(c). In contrast, the maximum yield observed for the constant input

is 0.7, suggesting that three of the ten runs had a persistent grain boundary.

The most striking difference between the BD simulations and the experiments is

seen in the other two open-loop policies. Although the yield for the open-loop optimal

policy reaches 0.8 early in the process, it subsequently degrades. The periodic policy

never reaches a yield above 0.6. This is a qualitatively different behavior than that

seen in the BD simulations, where a relaxation followed by a high voltage always

leads to a ratcheting up of ψ6 and thus the corresponding yield (see Figure 20 as an

example).

A closer inspection of individual runs in Figure 22 confirms this interpretation.

Under the periodic trajectory, the system reaches its highest value of ψ6 at 500 s. The

subsequent relaxations and assembly cycles result in reduced crystallinity. Similar

behavior is seen in the optimal open-loop run (middle plot). The level of crystallinity

at 600 s is lower than at 400 s. The system does recover somewhat at 800 s, but it still

fails to assemble by the end of the 900 s process. These typical results suggest that

the relaxation and re-assembly dynamics in the BD simulation are not fully capturing

what is actually occurring in the experiments—thus highlighting the need for feedback

to confer robustness to the assembly process to compensate for unmodeled dynamics.

However, the nature of the feedback that is required may potentially be simpler

than the closed-loop optimal policies that are presented here. A simpler alternative

for feedback is simply to stop the process once ψ6 exceeds a value of 0.95. By applying

a high voltage at the time when assembly is first detected, the crystalline structure

may be locked in. This simple feedback approach is referred to here as “endpoint

detection”.

This endpoint detection feedback strategy was applied in the experiments over 30

repetitions, as described previously. In addition, the ten repetitions that ran until the

full 900 s were also analyzed from this point of view, with the point of first assembly
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used as the endpoint of the process. The results based on all 40 repetitions of the

five strategies are summarized in Table 4. The endpoint detection did not really

help with the constant strategy. In this case, the grain boundaries are locked in by

the high voltage, and without relaxation of the voltage they are unlikely to heal.

However, a high final yield was achieved for the other four strategies. The open-loop

optimal policy achieves a fast time to 50% yield, due to its 200 s of high voltage

at the beginning of the process. However, this does not necessarily incur long-term

advantage, as the time to achieve 80% yield is not statistically distinguishable from

the other three policies. Overall, it appears that all four strategies use a similar

alternating pattern of high and low voltage to relax out grain boundaries. Feedback

is needed to determine when the system has achieved a highly crystalline assembly,

so that it is not destroyed by subsequent relaxations.

Table 4: Experimental yield and assembly time of 40 cycles
>50% Time (s) >80% Time (s) Yield

Constant 230 N/A 65.0%
Periodic 250 470 95.0%

Optimal OL 110 400 97.5%
InfCL 240 450 92.5%
FinCL 270 450 95.0%

5.4.4 Discussion and Conclusion

The periodic open-loop strategy that was considered here worked well, especially when

combined with endpoint detection. This is consistent with previous theoretical and

experimental studies, which showed “toggling” to be beneficial compared to constant

conditions [101]. The periodic strategy can be further optimized, by choosing the two

voltage levels, the frequency, and the duty cycle. Moreover, a periodic strategy with

more than two levels could be considered. As the number of parameters grows, this

“simple” strategy becomes more difficult to design and optimize. Fundamentally, it is

a special case of the open-loop optimal strategy presented here, in which periodicity
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Figure 21: 10 cycles averaged experimental results of the five strategies, with closed-
loop controlled results plotted in the main figure and the open-loop controlled results
in the insect figures. (a) ψ6 evolution over time; (b) C6 evolution over time; (c)
cumulative yield of grain boundary free structures over time; (d) averaged input
profiles used in the experiments.
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Figure 22: Individual experimental runs from Periodic, Optimal OL, and InfCL
strategies showing the corresponding control mechanism. (a) ψ6 trajectory over time;
(b) control input profile.

was not enforced. The calculation of the closed-loop strategies adds insight into the

toggling concept, which can be viewed as a switching in time. However, the closed-

loop policy reveals that the switching is really in space, not in time. This is seen in

the static policy in Figure 17(a), but is demonstrated most convincingly in Figure 18,

in which the policies do not change much in time, but maintain the same green and

blue regions, with only a slight shifting of the policy seen toward the final few panels.

In contrast, a truly time-varying toggling should appear in Figure 17 as an alternation

of the fully blue panels for the odd time intervals and the fully green panes for the

even intervals. The switching that is seen in the closed-loop optimal policies emerges

from the tendency of the system to form grain boundaries under strong compression,

and the efficacy of healing those grain boundaries under weak compression.

In the results presented here, feedback was an effective means to correct for un-

modeled effects. However, in any model-based control strategy, the policy is only opti-

mal for that particular model, and thus unmodeled dynamics result in sub-optimality
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of the policy. Although the policies applied here were effective in achieving defect-free

assembly with high yield, it would also be possible to apply robust control methods to

account for uncertain parameter values [11, 16], and this might be important in other

systems or operating regions. Alternatively, reinforcement learning could be applied

directly to the BD simulations, initialized with the model-based policies presented

here, to further refine the policy toward optimality [17]. In principle, reinforcement

learning could even be applied directly to the experiments, circumventing the need

to construct any model at all. However, the tradeoff would be a larger number of

experiments needed, and this might not be practical due to experimental budgets.

Feedback control requires in situ sensing, and this has been a major limitation

in applying control to self-assembly at small length scales. Optical video microscopy

was implemented here to enable full state feedback of the two-dimensional assembly.

Confocal microscopy could be used instead to image three-dimensional structures

[32, 68]. To extend down to nanometer length scales, in situ transmission electron

microscopy could be used, although this technology is not yet as mature [125]. How-

ever, in manufacturing practice, it may not be practical or desirable to use any of

these imaging-based approaches. What this study shows is that it is really only nec-

essary to measure the key state variables, which here are ψ6 and C6. These sorts of

overall averaged quantities could alternatively be measured by simpler non-invasive

sensors such as optical spectroscopy or Bragg diffraction, which are more amenable

to industrial implementation.

A time-varying voltage input is beneficial for assembling grain-boundary-free col-

loidal crystals, especially when combined with system state as feedback. The optimal

feedback control policy was calculated using a Brownian dynamics simulation and a

reduced-order Markov state model. These optimal policies were shown to be effective

in assembling crystals at high yield, both in the stochastic simulations and in the

experiments. The periodic and optimal open-loop policies were effective in achieving
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robust assembly performance when applied to the stochastic simulations, but they

did not perform as well in the experiments due to unmodeled effects. The open-loop

and closed-loop policies ultimately provided similar strategies, alternating between

high voltage to drive assembly and low voltage to relax out defects. Thus, a simple

feedback control strategy based on endpoint detection may be an effective middle-

ground for practitioners, which does not require a model-based computation of the

optimal policy, but still uses feedback to confer robustness.
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CHAPTER VI

REVISITING THE MARKOV STATE MODEL

Markov state models have been widely used to simulate time-sequential stochastic

processes in many fields, given their versatility of capturing the system stochasticity.

However, building a Markov state model is nontrivial. To improve the efficiency in

building an accurate Markov state model, this chapter investigates the effect of state

discretization, transition time ∆t, sampling approach, and the number of samples on

the accuracy of a Markov state model. The model accuracy is evaluated based on

the performance of the control policy, calculated with the framework in Figure 3, in

controlling a Brownian dynamics simulation to produce perfect crystals.

6.1 Introduction

Understanding the dynamics of complex time-sequential processes is important in

a wide range of disciplines including physics, biology, material science, engineering,

and economics. However, a comprehensive understanding of these dynamics can be

elusive due to the need for a large amount of information about the system dynamics,

which is challenging and sometimes even unobtainable via experiments. Therefore,

having a reliable mathematical model is highly valuable.

Colloidal self-assembly processes can be simulated with Monte Carlo simulation

[111], Molecular Dynamics [41, 110], and Brownian Dyanmics [24, 35]. In this work,

the focus is on a Brownian dynamics simulator. Based on first principle theories,

Brownian dynamics quantifies the interaction forces in the system and uses particle

coordinates for simulation. The resulting model has a high system dimension as

demonstrated in Ref. [35]. Although these detailed force balance models can provide

accurate approximations of the system dynamics, it can be time-consuming to conduct
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simulations with a high-dimensional system space [104], especially for systems where

the kinetics timescale spans from milliseconds to hours. Moreover, to account for

the statistical effects in a stochastic process, it is even more challenging to conduct

enough simulations to capture distributions. Alternatively, time-series models like

the Markov state model can be built using order parameters and can shorten the

amount of simulation time.

Markov state models have been widely used to simulate time-sequential stochastic

processes in many fields including biology [65, 93], economics [20], as well as colloidal

self-assembly processes [76, 115, 104]. A Markov state model can be formulated as

either a continuous or a discrete time model. A discrete-time Markov state model

is characterized by a set of discrete time points T , a set of system states S, and a

probability transition matrix P (a), which stores the transition probabilities between

different states under an input a [19]. Considering the computational challenge with

a continuous state Markov model, the system state is typically discretized.

The accuracy of a Markov state model requires an accurate transition matrix P (a),

which is mainly affected by the following three factors [18, 19, 74, 91]: (1) training

samples, based on which the transition probabilities are calculated; (2) transition

time ∆t, after which the transitions are counted; (3) state discretization, where a

continuous state space is discretized into discrete states. Although numerous studies

have been reported on the construction of Markov state models, efficiently building

an accurate Markov state model for a high-dimensional system is still challenging.

In this chapter, the focus remains on the SiO2 colloidal self-assembly process spec-

ified in Chapter 3, and the effects of the aforementioned three factors on the Markov

state model accuracy are investigated. Optimal control policies are calculated with an

infinite-horizon Markov decision process based dynamic programming optimization,

as specified in the Chapter 3 of this thesis. The model accuracy is evaluated based

on the performance of the Markov state model based optimal control policies, since
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the ultimate application of the model is to develop control for rapid assembly of a

perfect crystal. A perfect crystal is obtained when ψ6 reaches 0.95 (either during the

process or at the end of the process), and the yield is the percentage of simulations

that produce a perfect crystal. This definition of yield is also referred as “ednpoint

detection” in Chapter 5 of this thesis. For simplicity, and to facilitate comparison to

the previous chapters, two values of input a are considered in this chapter: λ = 0.2

and λ = 19.7. The order parameters C6 and ψ6 are again used to represent the system

dynamics in the Markov state model.

6.2 Markov State Model

6.2.1 Transition Time ∆t

The transition time is one important factor that affects the accuracy of a Markov state

model. The validity of Markov state models builds on the Markovian assumption of

a memory-free state. If the transition time is too short, it is possible that previous

history also has an effect on the future dynamics [48]. This phenomenon violates the

Markovian assumption that future dynamics only depends on current state instead

of previous history. The memory effects can be lessened with a longer ∆t [48, 78].

In addition, a transition time that is too short could also result in the system being

artificially trapped in meta-stable states or kinetic bottlenecks, that the system would

not be able to evolve to other states. This would cause absorbing states in the

transition matrix. On the other hand, if the transition time is too long, it will result

in a loss of intermediate information. In addition to limiting the time resolution of

the model, the performance of the model-based control policy will also suffer since

fewer switches in the input will be possible.

One way to identify the appropriate transition time is through trial-and-error. In

this approach, modeling errors from models built with different transition times are

compared, the one that gives the lowest model error is identified and the associated
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transition time is selected. Model error evaluation can be achieved with system

kinetics analysis-based approaches, such as mean first passage time analysis [65], or

spectral theory-based lag time test, such as implied timescale test and Chapman-

Kolmogorov test [19, 78].

Alternatively, if the characteristic time of a physical system is obtainable with

either domain knowledge, or experimental observations, then it can be used as the

transition time. In practice, the trial-and-error approach can be combined with phys-

ical interpretation to identify an appropriate transition time ∆t. Previous findings

suggest that the system in this study has a characteristic time of approximately 100 s

[104]. Given the fact that assembly takes only 1000 s, longer transition times are

not considered here, as they would not resolve the dynamics or enable much control

action. Consequently, models with ∆t = 10 s, 50 s and 100 s are studied in this

chapter.

6.2.2 Sampling

The Markov state model is data driven, and the accuracy of any data-driven model

depends on the training samples. For a deterministic process, the challenge in build-

ing a globally accurate model comes from generating samples to cover all feasible

system states, particularly for states that are rarely visited. The situation is more

challenging in a stochastic process like the colloidal self-assembly system. Due to

system uncertainties, multiple samples are required for each state to ensure a reliable

estimation of the transition probabilities.

To generate samples, constant input trajectories or time-varying input trajectories

can be used. Sampling with constant input is straightforward to implement. How-

ever it is often challenging to sample all the important states associated with all input

levels, using a single input level, confined by its specific thermodynamic landscape.

In addition, states that can only be reached by a dynamic input trajectory will not

70



be sampled with a constant input. These states can be important from the perspec-

tive of control, where switches between different inputs are specified. One challenge

associated with a dynamic sampling is the design of the switching frequency. The

switching time should be longer than the transition time in order to obtain a sample

that can be used for the construction of the transition matrix. For this reason, a

realization of simulated data with a fixed switching frequency can only be used for

transition times shorter than the switching time. When the transition time is not yet

determined, the switching frequency in a dynamic sampling scheme constrains the

maximum transition time that can be used.

Samples can be collected from either long time simulations or short time simula-

tions. Long time simulation trajectories include the long term behavior of the system,

thus it can provide information on the characteristic time of the system. However, for

systems with meta-stable states, long time simulation trajectories can be inefficient if

the simulation becomes trapped [74, 86]. As a result, long time molecular or detailed

dynamics simulations may require a large amount of storage space. To save storage

space, intermediate information is often discarded. With short simulations, one can

use constant inputs to run simulations from a predefined set of states. However, simu-

lation with constant inputs may not capture all the important dynamically accessible

states.

The main sampling pool in this study is constructed with BD simulations using

time-varying input trajectories that randomly switch between the two inputs every

100 s. Specifically, a total of 500 realizations with initial states from fluid, defec-

tive and highly crystalline regions are conducted, with each realization simulated for

2000 s. The rationale behind this sampling approach is to increase the number of

states visited, by exciting the system using random switches.
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6.2.3 State Discretization

State discretization is important and nontrivial. A discretization that is too coarse

could group together configurations that have different dynamics, and discretization

that is too fine could result in a prohibitively large number of states to sample in

transition matrix estimation [18, 19, 26, 78]. Moreover, if the system state is too

big, it could also cause difficulties in control policy calculation [79], which is known

as “curse of dimensionality” in dynamic programming. Therefore a tradeoff between

the coarse and fine discretization is needed.

States can be discretized according to their kinetic similarities, where states with

similar transition speeds are grouped together [26, 76, 91]. They can also be dis-

cretized geometrically using a distance metric. While kinetic based discretization

requires a solid understanding of the system kinetics, discretization with geometrical

distance metric could be easier [58].

One simple geometric discretization is to discretize the state space into evenly

spaced intervals. Here we call this approach as “gridding”. Gridding is particularly

useful if a region of state space is clearly defined, and the resolution of the distance

metric (i.e order parameters) needed to distinguish dynamically different states is

known. Another popular distance metric based discretization is clustering, which

groups together states that meet a predefined criterion such as the k-means clustering.

Other methods include hierarchical clustering, fuzzy clustering, and nearest neighbor

clustering [19, 50, 70, 103].

Gridding requires no initial samples, and it could help the design of experiments

by providing an exhaustive enumeration of the state space. If one can obtain samples

for each individual cell, gridding also holds the promise for a globally accurate model.

However, discretization with gridding can introduce infeasible states, and this will

lead to difficulties in sampling. On the other hand, discretization with clustering

algorithms is achieved using whatever samples are available, this guarantees that
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Figure 23: Control policies and controlled results with different transition times using
10000 samples. Control policy with (a) ∆t = 10 s; (b) ∆t = 50 s; (c) ∆t = 100 s. (d)
Yield and averaged input trajectories of 200 BD realizations.

all the defined states are reachable. However, the number and the coverage of the

samples affects the clustering results significantly. In this chapter, the effects of an

evenly-spaced gridding and a k-means clustering approach are investigated.

6.3 Results

6.3.1 Effect of ∆t

The goal of this first study is to understand the effects of different transition times

with the same number of samples. Three transition times are considered: ∆t = 10 s,

50 s and 100 s. In principle, a Markov state model built with a shorter ∆t value could

73



resolve more intermediate transition dynamics, compared to a model with a longer

∆t. Ideally, the control policy generated with the shorter transition time would lead

to the best performance, since more switches are possible. However, in practice the

model with the shorter transition time is often less accurate, and if the model is

inaccurate, the resulting control policy will also be suboptimal.

To build Markov state models for each of the three ∆t values, 10000 samples (i.e.

transition pairs) are used, taken from BD simulations generated under time-varying

input trajectories. The MATLAB k-means clustering function is used to discretize

the state space into 100 non-overlapping states.

As shown in Figure 23, all three control policies share the same pattern that λ

= 0.2 is used in the upper left defective region and λ = 19.7 is used in the fluid

and the highly crystalline states. As the transition time increases, more white space,

corresponding to unsampled states, appears in the upper left region of the control

policy. This is because the system travels a longer distance in the state space with a

longer transition time, and therefore the intermediate dynamics are not captured.

The control performance of the three policies is then evaluated with 200 BD

simulations and the results are summarized in Figure 23(d). All the simulations

are initiated from the same initial fluid-like states with the same set of seeds in the

random number generator, for each of the three policies.

The averaged input trajectories in Figure 23(d) indicate that all three policies

implement the same trend; after an initial use of λ = 19.7, λ = 0.2 is used to relax

the system for defect correction, and with increased crystallinity, λ = 19.7 is used to

maintain the structure. The yield trajectories indicate that policies with ∆t = 100 s

and 50 s gave a similar performance with a final yield of 96.5% and 97.5% respectively.

However, contrary to the expectation, the ∆t = 10 s policy gave the lowest yield of

87.5%, which is significantly different from that of the other two, according to a two-

tailed t-test with a 95% confidence interval. This phenomenon indicates that, the
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Figure 24: Averaged order parameter relaxation trajectories under λ = 0.2, starting
from assembled states in BD simulation (black), Markov chain Monte Carlo simulation
with model built with ∆t = 10 s (red), ∆t = 50 s (blue), and ∆t = 100 s (magenta).

Table 5: BD yield and assembly time of 200 realizations for policies with different
∆t and different numbers of samples

Sample# ≥50% Time (s) ≥80% Time (s) Yield (%)
∆t 50 s 100 s 50 s 100 s 50 s 100 s
100 450 300 N/A 600 72.5 89.0
500 300 300 N/A 650 78.0 90.0
1000 250 250 450 550 97.0 95.0
5000 200 150 400 450 97.5 98.5
10000 200 150 400 400 97.5 96.5

model built with ∆t = 10 s is less accurate than the other two.

A mean first passage analysis in Figure 24 confirms the above interpretation by

showing that, the ∆t = 10 s Markov state model was not able to accurately quantify

the relaxation from highly crystalline states, as compared to the other two models.

The averaged C6 and ψ6 trajectories from the Markov chain Monte Carlo simulation

with both the ∆t = 50 s and 100 s models are similar to that of the BD simulations,

but the trajectories predicted with the ∆t = 10 s model differ significantly from the

other three.

Further investigations into the ∆t = 50 s and 100 s models indicate that the

accuracy of model built with a longer ∆t value might be more robust to the number
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Figure 25: 100-state clustering-based control policies with different transition time
and different number of samples. Policy for (a) ∆t = 50 s with 100 samples; (b) ∆t
= 100 s with 100 samples; (c) ∆t = 50 s with 1000 samples; (d) ∆t = 100 s with 1000
samples.

of transition samples used, and a long ∆t could potentially compensate for inadequacy

in sampling.

According to Table 5, when sampling is not a limiting factor (more than 1000

samples), both ∆t= 50 s and ∆t= 100 s policies give similarly satisfying performance.

Additional sampling does not show improvements in the yield, but a faster assembly

to reach 50% and 80% yield is observed. When sampling is a limiting factor with 100

and 500 samples, additional samples dramatically improves the performance of the

policy with 1000 and more samples for the ∆t = 50 s cases. However, less degradation

was observed in the ∆t = 100 s models, as the number of samples was reduced.
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Comparison of the control policies for the ∆t = 50 s and 100 s models, as shown in

Figure 25, reveals that, additional sampling reduces the amount of noise in the control

policy, which is resulted from under-sampling. The control policy is calculated based

on the reward of using a particular action in each state. If a state is under-sampled,

the reward of using either λ level in this state can be similar, and this is indicated

as the noise in the control policy. If a state is only sampled under one input, this

input is selected in the optimal control policy for that state, since the reward of using

this input is higher than the other input (the state in the Markov state model for the

other input is deemed as an absorbing state). Because of this, the use of λ = 0.2 is

also observed in the highly crystalline states in Figure 25(a) and (b), and this could

result in destroying a perfect crystal at the end of the process. Indeed, if the yield is

calculated based on the crystallinity at the end of the 900 s process, only 50% and

60% of the 200 BD simulations were able to produce a perfect crystal, with policies in

Figure 25(a) and (b) respectively. However, the yield here is calculated based on the

endpoint detection strategy. This further indicates that using feedback to terminate

the process can improve the control performance by reducing the process time and

avoiding destroying a perfect crystal.

Another observation in Figure 25 is that, when the transition time is shorter than

the system characteristic time (∼100 s) [104], the system does not move very far

within the short transition time, as indicated by the white space in the upper left

region of Figure 25(a). All the samples are collected from BD simulations that started

from the lower left region in the state space. With a limited number of samples and a

shorter than system characteristic transition time, the upper left defective states are

not visited in Figure 25(a). Therefore, a transition time that is similar to the system

characteristic time is suggested, and the following study focuses on ∆t = 100 s Markov

state models.
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6.3.2 Effect of Discretization

To understand the difference between the clustering and the gridding approaches,

Markov state models with a transition time of 100 s are built with different numbers

of samples. In the clustering approach, the state space is grouped into exactly 100

states; with the gridding approach, the system is discretized to give approximately

100 effective states. Note that an effective state is defined as a state that receives at

least one sample under any input.

The clustering-based discretization is achieved by grouping states with similar

order parameter values, via a k-means algorithm, and the resulting discrete states

are all defined and reachable in the system. Therefore, the control policy from the

clustering-based Markov state model assigns control action for every state in the

system. When a new state is encountered, this state is assigned with the control

action of its nearest cluster. Thus, all states have a control action defined in the

control policy.

On the contrary, states discretized with gridding include reachable but not sam-

pled states, as well as unfeasible states. If a reachable state is not sampled under

either input, it is necessary to modify the control policy to define an action for these

states. In this section, three modifications are considered: 1. applying λ = 0.2 as

the default action (i.e. GL); 2. applying λ = 19.7 as the default action (i.e. GH);

3. using extrapolation and interpolation based on the neighboring states’ actions to

design the control action (i.e. GE).

Figure 26 shows the gridding-based control policies computed with the same

Markov state model, built with the same 1000 samples used for the policy in Fig-

ure 25(d). While the control actions in the sampled states remain unchanged, actions

for the unsampled states (e.g. region of C6 between 5 and 4) are subjected to the

modification approaches. When the policy is modified with extrapolation and interpo-

lation, the structure of the final control policy resembles that of the clustering-based
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Table 6: BD yield and assembly time of 200 realizations for policies computed with
gridding-based models using different policy modifications

Sample# ≥50% Time (s) ≥80% Time (s) Yield
discretization GL GH GE GL GH GE GL GH GE

100 300 250 250 650 800 550 90.0% 82.0% 92.5%
500 250 150 250 550 600 550 95.0% 91.0% 95.0%
1000 150 150 150 450 450 450 94.5% 95.5% 96.5%
5000 150 150 150 450 450 450 97.0% 97.0% 97.0%
10000 150 150 150 450 450 450 97.5% 97.5% 97.5%

control policy in Figure 25(d), where the majority of the upper left region uses the

low input level, and the rest is dominated by λ = 19.7.

Although the difference among the three gridding-based control policies is evident,

the 200 controlled BD simulation realizations indicate no significant difference in

terms of yield, as shown in Figure 26(d). According to the yield trajectories, all three

gridding-based policies gave the similar yield. The clustering-based control policy

gave a lower yield at the beginning, but reached the similar final yield at the end

of the 900 s process. The histogram distribution in Figure 26(d) shows the time

distribution of the yield.

A more detailed investigation with different numbers of samples confirms the

similarity between the different discretization approaches. Results in Table 6 indicate

that with additional sampling, both the yield and time required to reach a high yield

can be improved. However, with the same number of samples, the four cases do not

result in a statistically significant difference. One explanation for this phenomenon

is that the majority of the important states are sampled, such that the actions used

in the less important and unreachable states do not affect the performance of the

control.

However, when the system is significantly under-sampled (using 100 samples), the

yield of the gridding-based policy indicates a difference between the default use of λ =

19.7 and the other modifications. One explanation is that the use of λ = 19.7 results
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Figure 26: Control policies computed with gridding-based Markov state models, with
policy modified to have: (a) default action as λ = 0.2, i.e. GL; (b) default action
as λ = 19.7, i.e. GH;(c) modified with extrapolation and interpolation, i.e. GE. (d)
Averaged yield of 200 controlled BD simulations, using control policies in Figure 4(d)
and the three gridding-based policies.

in a lower chance of relaxation, due to the strong compressing force. As a results,

when a defective but unsampled state is encountered, it has a lower chance of being

eliminated. This further indicates the importance of using physical understanding in

designing the default action.

6.3.3 Effect of Numbers of States

To understand the effects of different number of states, Markov state models with

100 s transition time and different number of states are studied. Since there is no
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significant difference between the three policy modifications with more than 1000

samples, for simplicity, the gridding-based policies in this section are modified with

a default input of λ = 19.7.

The state space is discretized into 10, 100, and 1000 clusters in the clustering-

based policies, and is discretized to have about 10, 100, and 1000 effective states in

the gridding-based policies. Markov state models are built with a set of 1000 and

10000 BD simulation samples respectively, to include the sampling effects as well.

Therefore, a total of 12 Markov state models are constructed and compared.

The twelve optimal control policies, corresponding to the 12 Markov state models,

are computed and evaluated with 200 realizations of 900 s BD simulations. The

percentage yield of the controlled BD simulations are summarized in Table 7.

Table 7: BD yield of 200 realizations with policies adaptive to different numbers of
states

# states 1000 samples 10000 samples
discretization Cluster Gridding Cluster Gridding

10 97.0% 79.5% 93.5% 90.0%
100 95.0% 95.5% 96.5% 97.5%
1000 82.5% 81.5% 92.5% 86.5%

In general, policies with the clustering-based models are more robust to the num-

ber of states, compared to that of the gridding-based models, indicated by the varia-

tions among the yields.

One important observation is that, with 1000 states and 1000 samples, policies

from the clustering and the gridding-based models gave a decent yield of 82.5% and

81.5% respectively. On average, only half (500) of the states are sampled under

each λ, given that the total amount of the transition pairs is 1000. The high yield

achieved here is again due to the use of the endpoint detection strategy, and the fact

that random toggling lead to good assembly at some point during the process.

Surprisingly, with a coarse discretization of 10 states and 1000 samples, policies
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from the clustering and the gridding-based models gave a yield of 97.0% and 79.5%

respectively. This indicates that if the state space is discretized appropriately (clus-

tering rather than gridding), the model errors introduced by a coarse discretization

can be mitigated with adequate sampling (here, 50 samples per state on average).

Moreover, the results in Table 7 indicate that, in order to reach a yield of over

90%, i.e. a highly accurate model, at least an average of five samples per state are

needed. Note that the averaged samples per state are calculated as the total number

of samples divided by the number of states divided by the total number of λ’s (two).

6.3.4 Effect of Sample Sources

Results in the previous section indicate that a higher than 95% yield can be achieved

with 1000 samples using the clustering approach with ∆t = 100 s. However, the

characteristics of the samples also matter in the model accuracy. Therefore, in this

section, we study the accuracy of the 100-state models built with 1000 samples from

the following four sampling approaches: first, 500 samples from each of the constant

input of λ = 19.7 and λ = 0.2, i.e. Constant; second, 1000 samples from a tog-

gling scheme which uniformly switches between the two input levels every 100 s, i.e.

Toggling; third, 1000 samples from the controlled results using previously developed

control policies, i.e. Optimal; fourth, 1000 samples generated with randomly switched

input trajectories, i.e. Random. All the simulations for samples are initiated in the

same fluid states.

Samples generated with the constant use of λ = 0.2 are confined in the fluid

states due to the small compressing force, while the majority of samples generated

with λ = 19.7 are from the assembled states, i.e. states with high C6 value, due

to the strong compression. Therefore, two distinct sets of states are sampled under

each λ. The unsampled fluid states in λ = 19.7 and the unsampled high C6 states in

λ = 0.2 are deemed as absorbing states, where no transition to other states is observed
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Figure 27: Control policies for 100-state models with 1000 samples from BD simu-
lations under (a) constant input; (b) toggling input; (c) optimal control policy; (d)
randomly switched input.

from these states, in their corresponding Markov state models. The existence of the

absorbing states due to under-sampling results in the use of λ = 0.2 in the fluid states

and λ = 19.7 in the compact states in the control policy, and this eventually leads to

the lowest yield of 17.0%.

The toggling scheme starts the simulation with 100 s application of λ = 19.7, and

switches with λ = 0.2 every 100 s, with the last 100 s using λ = 19.7. This design

enables sampling in the assembled states under λ = 0.2 and sampling in the fluid

and the final highly crystalline states under λ = 19.7. As a result, the policy uses

λ = 0.2 in the assembled states with λ = 19.7 used in both the fluid-like and the
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Table 8: BD yield and assembly time of 200 realizations for policies with samples
generated under different input trajectories

≥50% Time (s) ≥80% Time (s) Yield
Constant N/A N/A 17.0%
Toggling 250 650 90.0%
Optimal 150 N/A 72.5%
Random 250 550 95.0%

highly crystalline state.

The control policy built with samples from the optimally controlled BD simula-

tions in Figure 27(c) shows that, both λ = 19.7 and λ = 0.2 are used in the assembled

as well as the fluid states. This is also observed in the policy with samples from BD

simulations using randomly switched input trajectories, as shown in Figure 27(d),

except that more states have used λ = 0.2 in Figure 27(d). The use of both actions

in both regions are usually desired, for reasons that some fluid states need a further

relaxation to prevent a potential formation of defect; while some defective states can

evolve into ordered states under λ = 19.7, without an immediate relaxation. However,

the use of a specific λ in these states are particularly important; and this is why the

difference in the two policies results in a different final yield of 72.5% for the policy

in Figure 27(c), and 95.0% for the policy in Figure 27(d) respectively.

Another important observation in Table 8 is that, policy calculated with samples

from optimal controlled simulations required the shortest amount of assembly time

to reach a 50% yield, but ended up with a low yield of 72.5%. This is because

the actions used on the samples are already optimized that, a further optimization

leads to the fastest assembly. However, as the crystallinity increases in the controlled

simulations, where the samples are collected, λ = 19.7 is used for the remaining of

the 900 s process. Therefore, the majority of samples from the later process are

generated under a constant use of λ = 19.7. This further leads to states only being

sampled under λ = 19.7, and they are deemed as absorbing states under λ = 0.2. As
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a consequence, policy in Figure 27(c) shows a rapid assembly at the beginning but

was not able to reach a similar final yield compared to that of the policy in Figure

27(d).

Results in Table 8 also indicate a similar performance between the policies built

with samples from the toggling scheme and the randomly switched input trajectories,

in terms of both assembly time and the final yield. The high yield with the policy

using toggling samples confirms our previous understanding that, the defect correction

mechanism is essentially relaxation and reassembly. However, samples generated

with randomly switched input trajectories include richer dynamics than that of the

toggling scheme, therefore the policy with randomly switched samples gave the best

performance among all the cases.

6.4 Discussion

A globally accurate model is valuable, but for systems with a large amount of rarely

visited, or dynamically unimportant states, it would make more sense to focus on

the more relevant states. For these systems, sampling schemes that focus more on

the states of interest could potentially accelerate the estimation process, as well as

providing a useful model. One such approach is adaptive sampling [94], where initial

sampling is generated using available states as starting points. Based on the weighting

of the clustered states on the model uncertainty, a weighted sampling starting with the

updated states are conducted for additional samples. This process is repeated until

a satisfying model is achieved. The biased sampling algorithm could be particularly

beneficial when conducting a global sampling is costly.

To design a control policy, it is important for each input to cover a common state

space, in order to enable a reliable switch between different inputs. However this

can be challenging, especially when system dynamics are dramatically different under

different inputs. Instead of modifying the calculated policies, one can use estimation
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techniques, such as interpolation or extrapolation, to estimate the transition prob-

abilities in the unsampled states, before used in policy calculation. The underlying

assumption is that, dynamics for the neighboring states do not differ significantly.

With such a modified transition matrix, one can avoid defining a default action in

the control policies for unsampled states with the gridding-based discretization.

Another observation from this study is that, to achieve the same amount of effec-

tive states, gridding defined a large total number of states. The total number of states

are 20, 500, and 12000 for the 10-, 100-, and 1000-effective state models built with

gridding in Section 6.3.3 respectively. These extra states make it more challenging to

build an accurate model, considering the amount of additional sampling needed. It

is also challenging to modify the control policy to deal with unsampled states. One

alternative is to discretize the states unevenly to group together the infeasible and less

important states. However, to find an appropriate uneven discretization can still be

nontrivial. Clustering may be a better and simpler approach, compared to gridding.

6.5 Conclusion

The results demonstrate the effect of state discretization, transition time ∆t, sampling

approach, and the number of samples on the accuracy of a Markov state model. Opti-

mal control policies are computed with dynamic programming based on the reduced-

order Markov state model. The model accuracy is evaluated based on the performance

of the control policy in controlling a Brownian dynamics simulation for perfect crys-

tals.

According to the results, in order to efficiently build an accurate Markov state

model, the following settings are suggested: (1) a transition time that is similar to

the system characteristic time, (2) a dynamic sampling approach, such as the time-

varying input trajectory, (3) a clustering algorithm based on the metric distance for

state space discretization, and (4) a discretization that ensures on average, at least
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five samples per state, to balance the number of states and the number of samples.

The conclusion can also be made that, with the Markov state model based op-

timal control policy, rapid assembly of a highly crystalline two-dimensional colloidal

crystal can be achieved. With the dynamic sampling approach and the clustering

discretization, a 97% yield of the perfect crystal is achieved, even if the state space

is coarsely discretized into 10 states. The study of this chapter can be extended to

other systems that can be approximated with Markov state models.
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CHAPTER VII

CONCLUSION AND OUTLOOK

7.1 Conclusion

This thesis illustrated the formulation and application of the optimization framework

proposed in Figure 3, to compute an optimal control policy for a colloidal self-assembly

process. A tunable AC electric field is used as a global actuator to control the particle

movement. Order parameters, selected based on domain knowledge, are used to

reduce the system dimension and quantify the ordering of the structure. Actuator-

parameterized Markov state models with time-invariant transition matrices are built

using samples from a Brownian dynamics simulation. Dynamic programming is used

to solve for both the time-varying and time-independent optimal control policies.

Feedback is enabled by conducting real-time microscopy to track individual particle

locations for the order parameter calculations, and is integrated in the policy lookup

table to update the control action for the next time step.

The control policy breaks meta-stable states and kinetic bottlenecks in the assem-

bly process, by switching between different input λ’s. This out-of-equilibrium assem-

bly strategy reduces the amount of time spent in the defective states, which would

otherwise not be eliminated with a near-equilibrium approach in a similar amount

of time. The near 100% yield of defect-free two-dimensional crystals in the experi-

ment with the optimal control policy proves the feasibility of using the model-based

feedback control to robustly control the stochastic colloidal self-assembly process.

The comparison between different control strategies in Chapter 5 indicates that,

besides the optimal control policies, simple time-varying control, such as the “tog-

gling” strategy, can also improve the yield compared to that of a time constant control

88



strategy. This phenomenon reveals that the defect-correction comes from suppress-

ing the strong compression force for particle rearrangement. The performance of the

time-based “toggling” approach depends on the selection of the switching frequency.

A switching frequency that is too slow is essentially the same as restarting the assem-

bly process, while switching too fast could not provide long enough time for particle

rearrangement. Thus a tradeoff exists between the fast and slow switching frequency,

and with a switching time near to the system characteristic time, a satisfying perfor-

mance can be achieved.

The optimal open-loop control policy built on the Markov state model, presented

in Chapter 5, features the switch between the high and the low λ’s, which is same

as the toggling strategy. However, it uses more high input levels towards the end

of process to reduce the chance of destroying assembled highly crystalline crystals,

which could instead happen in the toggling strategy. As indicated in the single exper-

imental results in Chapter 5, an assembled perfect structure might not form a highly

crystalline state once destroyed. Therefore, the model-based optimal open-loop policy

could potentially lead to a possible improvement compared to the toggling strategy.

Colloidal self-assembly processes are stochastic, the dynamics evolved from the

same state is different every time the process is initialized. Open-loop control strate-

gies update control actions only depend on time, regardless of the system state.

Without feedback, open-loop control might result in undesired relaxation in a highly

ordered state and undesired compression in a defective state. On the contrary, feed-

back control updates control actions based on the system state, thus overcoming

the aforementioned issues to improve the robustness of the performance from system

uncertainties. Moreover, a time-dependent optimal control policy updates control

actions based on both time and system state, this could theoretically further improve

the performance of the control by adding an extra degree of freedom.

Results in Chapter 6 reveal several important factors in building an accurate
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low-dimensional Markov state model. First, dynamic input trajectories that switch

between different input levels, can more efficiently generate samples to cover a richer

dynamics, compared to a constant input trajectory; second, model built with a tran-

sition time similar to the system characteristic time is more robust to the number of

samples, compared to that of a shorter transition time; third, discretizing the state

space with a clustering algorithm, based on the metric distance, can avoid the policy

modification in the gridding approach for unsampled states; fourth, a balance the

number of states and the number of samples is important when sampling is limited.

To ensure the model accuracy, an averaged of at least five samples per state are

suggested.

In summary, this thesis has demonstrated the implementation of a Markov decision

process based dynamic programming framework on a colloidal self-assembly process

for rapid production of perfect crystals. Several open-loop and closed-loop control

policies are investigated to illustrate the mechanism of defect correction. The analysis

of Markov state model accuracy is also presented. The framework in this study is

built on first-principle concepts that can be generalized to any molecular, nano-, or

micro-scale assembly process where, there is a global actuator to control the dynamics

and a modeling of the relation between the actuator and the system dynamics. The

capability of system state measurement as feedback is desirable but not required, since

a quality optimal open-loop control policy can also be calculated with the proposed

framework.

7.2 Outlook

The proposed framework in this thesis provides a viable approach to rapidly elimi-

nate defects, which is one of the biggest challenges in colloidal self-assembly. It opens

up new opportunities in a wide range of domains, and the application of the frame-

work has already been demonstrated in other systems such as the crystallization of
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Na3SO4NO3·H2O in a batch system [42, 43]. However, there are still open issues need

to be further explored.

7.2.1 Control Input Selection

The use of dynamic programming is subjected to “curse of dimensionality”. To deal

with this, discrete input levels are used in the framework. The selection of the discrete

input levels is important and nontrivial to the performance of the control.

Starting with a pool of candidate input levels identified with heuristic experience,

the four input levels in this study are selected via trial-and-error, based on their

free energy landscape analysis. The free energy landscape reveals the equilibrium

property of the system in the order parameter space, and indicates the equilibrium

configuration of the system at that particular input level. The high input level is used

to ensure the reachability of the perfect structure, and the low input level is used for

a rapid relaxation to eliminate defects. Intermediate levels are included to partially

relax the assembly while maintaining the ordered structure. The thermodynamic

properties under the intermediate input levels should be significantly different from

each other to avoid redundancy. Theoretically, more input levels should lead to better

control policies, given the increased freedom with additional actions. The two upper

limit input levels can be defined as the two physical limits of a global actuator.

However, the selection of the number and the magnitude of the intermediate levels is

more challenging.

Besides the above free energy landscape analysis based approach, the discrete

input levels can also be defined with information from optimized input trajectories

with a continuous input domain, from a simpler yet similar system. One example

is the model predictive controlled results illustrated in Appendix A of this thesis.

The optimized input trajectories can indicate the most often used input levels in the

control. Starting with these input levels, one can more efficiently define the discrete
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set of the input levels. However, this approach might require additional efforts in

constructing models and solving for the optimal control input.

7.2.2 System State Measurement and Representation

In situ measurement of system states is required in a feedback control, and rather then

it is also required in understanding and verifying a model. However, self-assembly

systems at nano- and micro-scales are always subjected to the capability of state

measurement and representation, due to the lack of sensing and the high system

dimension. This is especially challenging in a large system for three-dimensional

structure production.

By virtue of the particle size, optical video microscopy is used in our system to

monitor individual particle location. When a larger quantity of smaller sized parti-

cles are used for three-dimensional crystals, the capability of measuring the system

state and the imaging processing time are all critical in practical applications. For

these systems, other in situ measurement techniques should be explored. For ex-

ample, scanning electron microscope (SEM) for two-dimensional optically invisible

structures and transmission electron microscope (TEM) for three-dimensional struc-

tures. Recent developments in liquid-cell electron microscopy has enabled the imag-

ing process of in-solution structures, and overcomes the difficulties encountered in

liquid measurements using TEM [87]. A recent application of liquid-cell microscopy

in monitoring the one-dimensional solution-phase CdSe/Cds self-assembly dynamics

demonstrates the potential of using this technique for in-solution measurements with

nano-meter resolution [100]. To broaden the proposed framework in this thesis, the

system measurement techniques should be further explored.

Another aspect for future work is the exploration of the order parameters. Rep-

resenting a high-dimensional system in a lower and physically meaningful space can

significantly help explain the dynamics and design the controller. The two order
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parameters used in this thesis capture the formation of grain boundaries, however,

previous findings indicate that they can not always distinguish a state with a single

point vacancy. The two order parameters are calculated as averages over all the par-

ticles, instead, the distribution of individual particle order parameters can be used.

Besides, other dimensionality reduction approaches including spatial statistics [56],

dynamic PCA [63], and diffusion mapping [116], should also be further explored for

a more efficient identification of physically meaningful order parameters.

7.2.3 Combination with Other Systems

The self-assembly process considered in this study is composed of spherical particles

in a radially inhomogeneous electric field. Variations of the system settings including

particle shape and electric field geometry can lead to a broader application. For

example, changes on the particle shape can introduce different geometric structures in

the assembly; the location and the number of the electrodes can change the geometry

of the electric field for a more complex control.

A combination with other manufacturing methods should also be explored. For

example, the capability of manipulating individual particles via acoustic tweezers

[108, 126] enables the possibility of correcting defects locally. The combination of a

global driving force via an electric or magnetic field for a holistic control and a local

defect correction mechanism, like the acoustic tweezers, could potentially provide

more effective control over the system. Such a combination can also be extended to

template-guided assembly in an external field mediated system as in Ref. [66]. In

these systems, the global driving force might instead be the templates which define

the bigger structure of the crystal, while the electric field, or other externally applied

fields function as correction forces for better crystallinity.

Furthermore, coupling coated particles, like Janus particle and DNA coated par-

ticles, with externally applied fields could also provide a promising route for rapid
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assembly of highly ordered structures. The assembly dynamics in these systems are

controlled by both the inter-particle reactions determined by the particle surface prop-

erties, and the particle-field interactions manipulated by the external force field. As

in Ref. [71], the assembly is a combined result of both the particle surface property

and the global driving force (temperature). Assembly of coated particles is usually

enabled when particles come in contact with each other, and the highly crystalline

state is usually achieved at equilibrium state. If combined with externally applied

fields to provide a global driving force to rapidly drive the particles in contact with

each other, the assembly process could potentially be accelerated.

7.2.4 Optimal Policy Design

Dynamic programming avoids the demanding online computation by employing an of-

fline calculation scheme. However, when the number of state and inputs increase, even

computed offline, the computational demand can be unmanageable. One alternative

to dynamic programming is the approximate dynamic programming, which instead

of an optimal policy, solves the optimization with approximated value functions to

conduct the Bellman optimality iteration [79]. Approximate dynamic programming

has been mainly studied in artificial intelligence and communications, however, it

remains largely unexplored in the application of colloidal self-assembly control.

Another direction to explore could be the combination of model predictive control

and the dynamic programming to take care of both computational issue and the

system stochasticity, as in Ref. [83].

The performance of any model-based control depends on the quality of the model.

When it is challenging to obtain an accurate model, model-free techniques such as

reinforcement learning can be used instead. Reinforcement learning is similar to

the idea of dynamic programming that it evaluates and stores the reward or cost

associated with different actions for each state, and selects the best combination of
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actions according to a predefined criterion/objective function. This algorithm requires

the system to visit each state many enough times to perform a statistically evaluation

of each control action before converging to a final optimal policy. However, visiting

each state for many enough times is usually costly and even inaccessible for a practical

application. One way to mitigate this challenge is to start with a heuristic policy or

an optimal policy from a similar system.

7.2.5 Extension to Continuous Systems

This thesis has focused on optimal control in a batch system. However, before colloidal

self-assembly can be used for mass production, an understanding of the dynamics and

control in a continuous system is required.

One possible construction of a continuous system can be the roll-to-roll production

used in printing, similar to a plug flow reactor shown in Figure 28. The dispersed

particles are continuously added and the assembled structure is continuously removed

at a velocity of V with a unit of “length/time”. This system will enable both an open-

loop and a closed-loop control, with either online and off-line calculation. For the

open-loop control, the control policy is designed ahead without the instant system

state as feedback, only the state at the outlet will be considered in the objective

function. While in the closed-loop control design, the system state is measured at

point a which is ∆L away from point b, and the updated control action based on

feedback is applied at point b. The distance ∆L is defined as V × ∆t, where ∆t is

the time needed to obtain the system state information and the control policy.

However, the design of the assembly driving force, the simulation of the system

dynamics, the measurement of the system state, and the maintenance of the assembled

structure might all differ from that of a batch system, and can be more challenging.

Other challenges also need to be addressed for experimental manufacturing. First,

the possible block in the channel caused by the crystal growth makes it nontrivial
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Figure 28: Continuous flow system for colloidal self-assembly in the format of a plug
flow reactor. V is the velocity with unit length/time and ∆t is the time needed for
state measurement and control action calculation.

to make a device for such a continuous system. To address this issue, potential

approaches include the design of reactor structures, the choice of materials, and the

design of the flow patterns. Second, to experimentally implement the control policy,

the computational time to develop the control policy and to obtain a feedback is

confined in a practical time interval. Third, the possible noise in the measurement and

the delay of the actuator will also add to the complexity of experimentally controlling

a continuous process.

Controlling self-assembly of nano- and micro-scale colloidal particles is a promising

yet challenging route of manufacturing new materials with novel properties. The use

of colloidal self-assembly for a continuous mass production of three-dimensional struc-

tures with low defect density, still remains largely unexplored, and requires further

studies.
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APPENDIX A

COLLOIDAL SELF-ASSEMBLY WITH MODEL

PREDICTIVE CONTROL

Besides the proposed framework, I also investigated the application of model predic-

tive control on the colloidal self-assembly system [105]. In this chapter, a Model Pre-

dictive Control (MPC) method is proposed to facilitate self-assembly of a quadrupole

colloidal system for defect-free two-dimensional crystals. A Langevin equation model

is developed to model the thermodynamics of the colloidal system and provides pre-

dictions for optimization. A finite prediction horizon is used to optimize the input tra-

jectory over different control horizons. The stochastic optimization problem is solved

using simulated annealing, and simulation results of the optimized input trajectory

demonstrate that the MPC algorithm proposed in this section is able to accelerate

the process of crystallization of the quadrupole colloidal system.

A.1 Introduction

Based on the operating principles and other properties, predictive control technology

can be divided into different categories, among which model predictive control has

been widely studied and applied because of its particular merits over other predictive

control technologies. There are three main advantages of MPC technology as sum-

marized by Qin and Badgwell [80]: (1) the incorporation of an explicit model into the

control calculation allows the controller to deal directly with all significant features of

the process dynamics; (2) the consideration of process behavior over a future horizon

makes it possible to account for disturbances, which ensures that the process moves

more closely to the desired state; (3) the ease of adding various constraints on input,
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state and output leads to tighter control at the optimal constrained steady-state for

the process. This third feature distinguishes MPC from other control methodologies

[80]. Decades of research has revealed the promising future of MPC in various indus-

trial applications spanning from industrial plant design to chemical production. A

summary of different applications can be found in Ref. [80].

Considering the success of MPC in industrial applications [1, 27, 72, 80], we im-

plement MPC in our simulated quadrupole colloidal system, aiming to produce a

defect-free two-dimensional hexagonal SiO2 crystal. In this Appendix, we present

the application of MPC to a colloidal assembly system with a nonlinear stochastic

Langevin equation as our dynamic model. The purpose of this paper is to introduce

a control method with real-time feedback to reliably manipulate the formation of

colloidal crystals on a micro scale in a quadrupole system, by using an external elec-

tric force. The specific experimental system being modeled, the theory of our control

strategy, and the analysis of the control results are described in detail in the following

sections.

A.2 Problem Statement

In order to study the self-assembly mechanism of colloidal particles, we consider a

colloidal system of SiO2 particles developed by Michael A. Bevan’s research group

at Johns Hopkins University [54]. In this system, 174 identical SiO2 particles with a

nominal size of 1.5 µm are suspended in deionized water in a container made of glass

microscope cover slips (50 mm x 24 mm x 150 µm) [54]. Four separate, tunable 1 MHz

AC electrode tips are attached to the edge of the container and are connected in series

with a function generator to generate an electric field inside the container [54]. We

simulated this system with a Brownian Dynamics (BD) simulation where the particle-

particle, and particle-field interaction forces are considered [53]. Previous results

have demonstrated that the particle movements can be manipulated by applying
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different magnitudes of voltages to the system [54]. Based on this observation, we

want to design an optimal input trajectory of the voltage to efficiently manipulate

the assembly of the SiO2 particles into defect-free two-dimensional hexagonal crystals,

optimizing speed and accuracy. Unlike most of the previous research, in our case, the

current crystal information is considered as feedback and is utilized to further optimize

the control policy for subsequent moves.

A.3 Theory and Method

A.3.1 Dynamic Model–Langevin Equation

Developed in 1908 by French physicist Paul Langevin (1872-1946), the Langevin

equation is a stochastic equation that provides a simple but still accurate way to

describe the Brownian motion of the characteristic parameter of a system [62]. The

simplicity and accuracy of the Langevin equation in describing Brownian motion has

earned tremendous attention in mathematics, physics, and engineering.

In our colloidal system, we used the Langevin equation as a model to simulate the

colloidal assembly process to capture the dynamics of the order parameters identified

for our particular system [54].

Developed from the Fokker-Plank equation [9], the Langevin equation for our

system is given as the following:

dx

dt
= D1(x, u) +

√
D2(x, u)w(t) (44)

where x is the state of the system, and in our colloidal system x = C6 ∈ (0, 6)

is the order parameter defined as the average number of hexagonally close packed

particles around each particle [54]. u is the input control parameter, D1(x, u) is the

drift function, D2(x, u) is the diffusion landscape, and w ∼ N(0, 1) is an independent

identically distributed Gaussian white noise term with zero mean and unit variance.

The Free Energy Landscapes (FELs), which describes the change of free energy as

a function of system configuration under a fixed thermodynamic condition, is chosen
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Figure 29: (a) FELs calculated via BI method based on BD simulation, (b) DLs
calculated via BI method based on BD simulation, (c) FELs from simplified analytical
model, (d) DLs from simplified analytical model.

here as a modeling method to capture the state of our colloidal assembly system. The

justification of the use of FEL in our Langevin model lies in the fact that the system

is time-invariant [96, 97].

The corresponding discrete-time Langevin equation with a sampling interval of

∆t is given as:

xk+1 = xk + ∆t D1(xk, uk) +
√

2D2(xk, uk)∆t w(t) (45)

where the subscript k is a discrete time index. FELs can be expressed in analytic

form according to [61, 117],

F (x, u) = KT

∫ dD2(x,u)
dx

−D1(x, u)

D2(x, u)
dx (46)

where K = 1.38066 × 10−23J/K is the Boltzmann constant, and T = 293K is the

temperature given in Kelvin.
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In previous work, the effective actuator, and the effective configuration state which

can be experimentally measured, have been identified to be field voltage Vpp and C6,

respectively [53, 54]. Thus the BD simulation has been implemented under different

values of u, which has a one-to-one relationship with the field voltage Vpp [53] (note

u here corresponds to λ in [53]). Under each value of u, 300000 time steps were

simulated, with the time step being 1 ms. The C6 value has been calculated and

recorded at each time step. The set of all possible u values is chosen to be u ∈

[0.5, 4.0] where a step size of 0.5 for u is used empirically so that the trajectories

of C6 under different voltage levels are distinguishable yet not too different so that

useful information is obtained. The Bayesian inference (BI) method [10, 49, 98] is

then applied to the recorded C6 trajectories, resulting in diffusion landscapes (DLs)

and FELs as shown in Figure 29.

Inspired by the numerical DLs and FELs from BD simulation, we developed the

simplified analytic expression of FELs and DLs:

F (xk, uk) = 10KT (xk − 2.1− 0.75uk)
2 (47)

D2(xk, uk) = 4.5× 10−3e−(xk−2.1−0.75uk)2 + 0.5× 10−3 (48)

where the state x denotes C6 and u is the controller/actuator, such that the resulting

DLs and FELs curves, shown in Figure 29 (c) and (d), are similar to the numerical

simulations from BD. We call the system characterized by FELs and DLs in Eqn. 47

and Eqn. 48 the simplified colloidal assembly system.

According to the development of FELs in both Figure 29 (a) and (c), and referring

to the calculation of transition probability between two states along the energy curve

as in Ref. [3], it can be seen that given any constant control value, the probability

for either system to transit from any value of x to another is positive. Thus, given

long enough time, it is possible for either system to visit the whole state space from

any initial state, i.e. the system is ergodic. Moreover, both sets of FELs show that
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a higher u corresponds to a higher x at the energy minimum. As was discovered

in previous work, for the quadrupole system, a higher x (C6) corresponds to higher

crystallization [53]. Thus the highest possible x is desirable.

Next we adopt the Langevin model, Eqn. 45, to represent the dynamics of the

order parameter x of this simplified system. Combining Eqn. 45 and Eqn. 46 gives

the modified Langevin model as:

xk+1 = xk +

(
D2(xk, uk)

dx
− dF (xk, uk)

dx

D2(xk, uk)

KT

)
∆t

+
√

2D2(xk, uk)∆t wk (49)

A.3.2 Objective Function–Cost Function

Model predictive control falls into the category of optimal control, where the control

action is obtained by online computation. The basic concept of MPC is to use a

dynamic model to forecast system behavior over a prediction horizon, and optimize

the forecast to produce the best control move over the control horizon [81]. In MPC,

an optimized input trajectory is designed at each control interval based on the current

system state and the prediction from the model, subject to the constraints of the

system. However, only the first control input is applied to the system at the next

time step. This strategy ensures that the latest update of the actual measured output

is considered in the optimization and accounts for the disturbance introduced by any

uncertainties in the system [80, 81].

A function J is defined according to the objective of the optimization. Therefore

it is called the objective function (sometimes named as the cost function if it is to be

minimized) [81].

For our discrete-time simulation system, we define the cost function as:

J(x, u) =
N∑
k=1

Jk(x(k), u(k)) (50)

where, J(x, u) denotes the cost function to be minimized and is a function of both

the state of the system and the manipulated parameter. Jk(x(k), u(k)) is defined as
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the cost at each time point k as following:

Jk(x(k), u(k)) = (x(k)− xtarget)2 (51)

where x = C6 ∈ (0, 6) is the order parameter defined as the average number of

hexagonally close packed particles around each particle [54]. xtarget = C6target = 6

indicates a perfect hexagonal crystal in a two-dimensional case, and this is the desired

state of our system. The optimal control is defined in a way such that J(x, u) is

minimized subject to the physical constraints of both x and u:

min
u
J(x, u) (52)

In our study, N is chosen as an integer to denote a finite control horizon.

A.3.3 Optimization–MATLAB Optimizer

In order to solve the optimization, different MATLAB optimization solvers were in-

vestigated using MATLAB R2011a. However, considering the stochastic property of

this system, only non-gradient based methods were considered, including direct search

(patternsearch), simplex search methods (fminsearchbnd), and simulated annealing.

Results from all these optimization solvers were analyzed according to their stability,

convergence and ease of use. We chose simulated annealing for two reasons: (1) it is

reliable when dealing with our nonlinear, stochastic Langevin model; (2) it provides

more convenience to modify the internal arguments of the solver compare to the other

investigated solvers.

A.4 Result and Discussion

The MPC controller is implemented in the Langevin equation to perform an online

optimization, using the simulation from our Langevin equation model.

To demonstrate the effects of the external electric force on our colloidal system,

100-realization-averaged C6 trajectories from a system under different voltage mag-

nitudes without feedback control are recorded and compared. In this test, the input
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Figure 30: Averaged C6 trajectories over 100 realizations for different constant input
u from system without a feedback control policy.

parameter u, which is the parameter corresponding to the actual experimental volt-

age, is set as a constant value throughout a 200-second simulation process. The input

is discretized into 8 evenly spaced intervals between 0 and 4 with an increment of 0.5.

The C6 trajectories of all these 8 input values are compared. The results are shown

in Figure 30.

From Figure 30, we observe that as the input u increases, the steady state of

C6 goes higher and higher which matches our theoretic expectation from Figure 28

that, with a stronger applied electric force, the particles are pushed closer to each

other and thus achieve a higher C6 value eventually. However, for intermediate values

of u, the slope in C6 decreases, which means an intermediate input leads to slower

crystallization in our colloidal system. Also, in Figure 30, we can conclude that the

C6 trajectories never reach the state of C6 = 6, which is defined as the ideal hexagonal

crystal in our colloidal system. This phenomenon is due to the edge effects of the

system since particles at the edge of the system will never have six neighbors.
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Comparison of the average cost from both the controlled and uncontrolled sys-

tem reveals that the MPC optimization policy is able to accelerate the self-assembly

process and maintain the system at the desired state.

In these tests, we chose a prediction horizon (Np) equal to the length of the control

horizon (Nc). Different Nc values were tested aiming to identify a suitable control

horizon according to their effectiveness. For each Nc, the horizon is divided into

evenly spaced control intervals. The corresponding number of intervals is denoted as

s. The length of each control interval is denoted as h with a unit of second, which is

also the time between each input adjustment. The relationship between Nc, s and h

is given as:

Nc = s× h (53)

According to this scheme, different combinations of s and h for different control

horizons were tested. The tested number of control intervals, s, includes 2, 3, 5, 7, 8, 10, 12

with the lengths of control interval, h, of 1, 2, 4, 5, 10, 20 and 40 for each s. Again,

the optimization is based on the expectation value, C6, over 20 independent realiza-

tions. C6 trajectories from each of these s values that give the lowest average cost

are denoted as the best C6 trajectories and are compared with the uncontrolled C6

trajectory, with input u set to be four constantly throughout the whole process. The

result is shown in Figure 31.

In Figure 31, s2 − h4 indicates the combination of s = 2 and h = 4. This

comparison reveals an obvious advantage of the controlled C6 trajectory over the

uncontrolled trajectory in the sense that the C6 in the controlled system reaches its

highest value about 40% faster than the uncontrolled system. The state of C6 is also

well maintained after it reaches its steady state. These observations indicate that the

controller is able to accelerate the formation of a highly ordered crystal faster than

the uncontrolled system and maintain the formation of the crystal. In addition, from

Figure 31, the difference between each best C6 trajectory from the controlled system
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Figure 31: Comparison of best controlled C6 trajectories for each number of control
interval s versus uncontrolled C6 trajectory with input u = 4.

is not noticeable, which suggests that the choice of optimal s−h combination should

depend on the computational time it takes to finish the optimization, considering the

similarity in their performance.

For a clearer evaluation of the performance of each s − h combination, a 100-

realization-averaged cost for each of these combinations is calculated and the results

are shown in Figure 32.

According to Figure 32, we can conclude in general that within each s, as the

control interval length h gets larger, the 100-realization-averaged cost gets higher and

higher, which means the control policy gets worse. This phenomenon matches the

theoretical expectation that the less frequently the control policy updates with the

latest feedback, the less accurate the control output is. However, for very small h,

the cost increases, suggesting that the control horizon is too short.

Between each step, as s increases, the average cost increases for a same control
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interval h. This observation is probably due to the fact that the simulatedannealing

MATLAB solver does not converge well for large values of s in our nonlinear, stochas-

tic Langevin model. However, as can be seen in Figure 31, all values of s give similar

performance, relative to the uncontrolled case.

Further, the analysis of several typical optimized control policies demonstrates

that the use of a low input value u at the beginning and a high value of u towards the

end of the simulation process gives a more efficient assembly process. Figure 33 illus-

trates the average input u trajectories over 100 realizations for several combinations

s3− h4, s5− h5, and s8− h2.

According to Figure 33, these three typical input trajectories indicate a similar

trend: at the beginning of the process, the controller applies a high input u value, but

a sudden drop in the input is observed immediately afterward. This strategy makes

sense if we look at the uncontrolled input trajectories shown in Figure 30, which

indicates that a very low or very high input value u would lead to a faster increase
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over 100 realizations.

in the C6 value, therefore accelerating the crystallization process. After the sudden

drop, the control policy applies higher input values and eventually utilizes high values

of the input throughout the remaining process. This utilization of high input values

is also consistent with the observation in Figure 30 that a higher input value would

result in a higher C6 value in the end.

Besides the effectiveness of the control policy, a low time cost required to perform

the optimization is desired for practical application. In order to investigate the change

in time needed for different s− h combinations, we recorded the computational time

for 10 realizations, using s values of 2, 3 and 5 with the same h as mentioned before.

The reason for investigating the time cost for a smaller number of realizations is

because all the 100-realization simulations are carried out on a cluster where the time

recorded to finish each job is dependent on the CPU used in the cluster, a confounding

factor that prevents direct comparisons between jobs. The results are shown in Figure
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Figure 34: Computational time for controlled system with control steps of s = 2, s =
3, s = 5 and 10 realizations.

34 for these 10-realization studies using a 3.40 GHz Intel(R) Xeon(R) CPU with 16.0

GB memory.

Figure 34 shows the average time needed for a single optimization for each s− h

combination. According to Figure 34, a clear trend can be identified: as the step s

increases, the time needed to finish each optimization increases. The same trend is also

observed that when keeping each step s constant, the time increases as h increases.

The above observation makes sense because an increase in either s or h would result

in a heavier computation load by increasing the control horizon, therefore elongating

the computational time. These observations, together with Figure 31, would aid in

the choice of optimization policy for practical uses, considering both the optimality

and the computational time. Overall, these results show that only a short control

horizon is needed, and this also minimizes computation.

Despite the fact that our control policy is able to give a better result over the
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uncontrolled system for our colloidal self-assembly system in respect of the speed of

assembly, the computation time needed to finish a single optimization is longer than

the updating time h for all these above tested steps at the moment. In order to make

our control policy practical, reduction of the optimization time is required. Further

work on identifying a more effective optimization algorithm is the subject of ongoing

work.

A.5 Conclusion

According to the results, the MPC control policy is capable of accelerating the crys-

tallization process while maintaining the desired state. From all the comparisons

between the controlled and uncontrolled C6 trajectories, conclusion can be made that

the controlled system gives better outputs than the uncontrolled system. In addi-

tion, the time needed to perform an optimization process increases as the control

step and control interval increase. Considering the computational time consumption

of the controlled system, future work is needed to shorten the optimization time for

practical applications.
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[54] Juárez, J. J. and Bevan, M. A., “Feedback controlled colloidal self-
assembly,” Advanced Functional Materials, vol. 22, pp. 3833–3839, 2012.
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Chodera, J. D., Schütte, C., and Noé, F., “Markov models of molecular
kinetics: Generation and validation,” J. Chem. Phys., vol. 134, p. 174105, 2011.

[79] Puterman, M. L., Markov decision processes: discrete stochastic dynamic
programming. New Jersey: Wiley-Interscience, 2005.

[80] Qin, S. J. and Badgwell, T. A., “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, pp. 733–764, 2003.

[81] Rawling, J. B. and Mayne, D. Q. Madison: Nob Hill Publishing, 2009.

[82] Risken, H. New York: Springer, 1996.

[83] Rivotti, P. and Pistikopoulos, E. N., “A dynamic programming based
approach for explicit model predictive control of hybrid systems,” Computer &
Chemical Engineering, vol. 72, pp. 126–144, 2015.

[84] Rocchi, L., Chiari, L., and Cappello, A., “Feature selection of stabilomet-
ric parameters based on principal component analysis,” Medical and Biological
Engineering and Computing, vol. 42, pp. 71–79, 2004.

[85] Rogers, W. B., Shih, W. M., and Manoharan, V. N., “Using dna to
program the self-assembly of colloidal nanoparticles and microparticles,” Nature
Reviews, vol. 1, pp. 1–13, 2016.

[86] Rohrdanz, M. A., Zheng, W., Maggioni, M., and Clementi, C., “De-
termination of reaction coordinates via locally scaled diffusion map,” J. Chem.
Phys., vol. 134, p. 124116, 2011.

[87] Ross, F. M., “Opportunities and challenges in liquid cell electron microscopy,”
Science, vol. 350, 2015.

[88] Rycenga, M., Camargo, P. H. C., and Xia, Y., “Template-assisted self-
assembly: a versatile approach to complex micro- and nanostructures,” Soft
Matter, vol. 5, pp. 1129–1130, 2009.

[89] Santiso, E. E. and Trout, B. L., “A general set of order parameters for
molecular crystals,” J. Chem. Phys., vol. 134, p. 064109, 2011.

[90] Schall, P., Cohen, I., Weitz, D. A., and Spaepen, F., “Visualization
of dislocation dynamics in colloidal crystals,” Science, vol. 305, pp. 1944–1948,
2004.
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Colloidal self-assembly is widely studied as a promising route to manufacture

highly ordered structures for applications as metamaterials. While near-equilibrium

self-assembly could produce defect-free crystal, the time required is usually unmanage-

able in practical applications. On the contrary, rapid assembly via out-of-equilibrium

approaches could reduce the amount of process time, but the assembled structure

is usually terminated in defective states. Therefore, a gap exists between the speed

and the quality of the structure in a colloidal self-assembly system. To overcome

this challenge, this thesis proposes a model-based optimization framework for op-

timal feedback control over a colloidal self-assembly process for rapid assembly of

defect-free two-dimensional crystals.

The proposed framework features: first, the use of an externally applied electric

field as a global actuator to influence the particle movement; second, the use of two

order parameters to represent the high dimensional system in a reduced dimension

state space; third, the use of the Markov state model to capture the stochasticity in the

system; fourth, the use of dynamic programming to design the optimal control policy;

and fifth, the use of an optical microscope for in situ measurements as feedback.

The feasibility of the framework is first demonstrated with a static optimal control

policy, and its performance is evaluated against fast quench and near-equilibrium

approaches. The framework is then expanded to construct a time-dependent optimal

control policy, and the performance is compared with widely used time-varying control

strategies in both simulation and experiments. The refinement of the framework,

more specifically, the construction of the Markov state model is also revisited for



better efficiency.

The major contributions of this thesis include: (1) it proposes a novel approach

to rapidly control colloidal self-assembly processes for perfect crystal with optimal

control theories; (2) it demonstrates for the first time in lab, the realization of optimal

feedback control of a colloidal self-assembly process; (3) it reveals the benefits of

feedback in a stochastic process control, not only to compensate for model inaccuracy,

but also to shorten the process time; (4) it also investigates the Markov state model

accuracy and provides a more efficient construction of accurate Markov state models.

The framework in this study is built on first-principle concepts, and it can be

generalized to any molecular, nano-, or micro-scale assembly process where there

exists a global actuator to affect the dynamics, a model to represent the relation

between the actuator and the system, and a measurement of system state for feedback.

Since micron-sized colloidal particles also serve as model systems to study the phase

transition behavior and crystallization kinetics for atomic and molecular crystals, the

framework can also be extended to these systems for optimal control.
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