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Abstract—Stochastic simulations based on nonequilib-
rium statistical mechanics describe the interactions among
many discrete atoms or molecules, and thus describe the
dynamics of materials processing in applications ranging
from inorganic crystalline films to amorphous polymer
melts. In general, nonequilibrium thermodynamics does
not yield a closed, low-dimensional dynamic equation, al-
though such a model would be desirable to analyze the dy-
namics and to optimize and control the process. An ap-
proach is described here in which targeted simulations are
combined with systematic tools to elucidate the dynamics
in a computationally tractable manner.

1. Introduction

Molecular simulations can be divided into catagories that
include molecular dynamics, molecular mechanics, and
Monte Carlo simulations, and all describe the interactions
among many discrete atoms or molecules [1, 2, 3]. These
simulations provide predictions of material structure and
properties based on known interactions among the atoms.
Describing long simulation times for processing dynamics
is difficult with molecular dynamics because the time scales
of atomic vibrations must be resolved, but Monte Carlo
simulations can provide predictions over macroscopic time
scales. For that reason the examples in this work are mod-
eled using Monte Carlo simulations. Although molecu-
lar simulations can be computationally intensive, they are
needed because closed form low-order equations are gener-
ally not provided by nonequilibrium thermodynamics [4].

One important issue in this presentation is to define the
state of the system. In a molecular dynamics simulation,
the state is the position and momentum of each particle,
while in a Monte Carlo simulation it based on the spatial
position only. However, because the simulations and their
initial conditions are stochastic, two simulations run under
nominally the same conditions will yield completely differ-
ent states. A more physically meaningful way to character-
ize the simulations is through overall system statistics like
densities and distributions. The simulations provide predic-
tions for such quantities, but the differential equations and
simulation algorithms are not expressed in terms of them.

Analyzing the dynamics of molecular simulations is dif-
ficult because the simulations are computationally inten-
sive and stochastic and they do not have a well-defined

Figure 1: A Monte Carlo simulation of gallium arsenide
film processing.

state. One approach to dynamic analysis and systems engi-
neering is that of equationless computing, in which deriva-
tives are computed as they are needed from the detailed
simulation, after postulating a low-order state based on
physical quantities of interest [5]. The approach described
here has the goal of automating the process of finding the
state and of constructing an explicit dynamic model, using
simulation data to identify the state and the model.

2. Examples

A goal of this research is to develop general methods for
dynamic modeling that apply in a wide range of molecular
simulations. We focus on materials processing applications
that are characterized as batch processes. In continuous
processing, linearized models are often sufficient for con-
troller design, but in batch processing, nonlinear models
are required that describe a range of states and operating
conditions. Two examples of batch processes are discussed
in this section: thin film processing and polymer reaction
engineering. Results are then presented for the thin film
application.

2.1. Thin film processing

Gallium arsenide is one of many III-V semiconductor
compounds that are used in high-performance optoelec-
tronic devices for fast communication. Detailed Monte



Figure 2: Polymer colloid processing. The particle is
100 nm.

Carlo simulations have been developed to describe the sur-
face evolution during thin film deposition of GaAs, using
scanning tunneling microscopy measurements and density
functional theory computations. We use the model of Itoh
and co-workers here [6]. Figure 1 shows a Monte Carlo
simulation of film evolution. The initial surface structure
has regular trenches, and as Ga is deposited, clusters form
in and on top of the trenches. The clusters then split after
reaching a width larger than the intertrench distance. This
model system was chosen for our study due to its compli-
cated surface structure and the past research in developing
the detailed model.

2.2. Polymer colloids

A second example we are studying is particle evolution
in polymer colloid processing. One of our simulations is
shown in Figure 2, as motivated by Chern and Poehlein
[7]. While the surface area of an actual GaAs film is
macroscopic, the polymer particles have nanometer scale
dimensions. This distinction becomes important in analyz-
ing the dynamics. A deterministic model may be desired
for the film roughness, while a probabilistic model may be
required for particle size distribution.

3. Approach

The goal of this work is to develop general and auto-
mated methods to represent the dynamics of molecular sim-
ulation in a compact manner. We divide this work into two
steps—identification of the state and development of a dy-
namic model.

3.1. Identification of state

Although the goal is to develop systematic methods, it
is unrealistic to think that no physical understanding would
be needed (especially in developing the approach). Spatial
correlation functions are often used to describe densities
and distributions in molecular simulations, and we use this
perspective here. Instead of using spatial positions to de-
scribe the current state of the system, a spatial correlation
function should be used that captures the spatial relation-
ship between material structures of interest. In the GaAs
film simulations, the surface structure is of interest, so we
characterize the surface by a step-step correlation function.
It describes not only the number of surface steps, but also
the distribution of distances between steps. Our hypothesis
is that the spatial correlation function does uniquely spec-
ify the state of the system. However, this representation
is high-dimensional and noisy. Additionally, no dynamic
equation exists to describe the evolution of this state.

Systematic tools are applied to search for a reduced rep-
resentation for the spatial correlation function. As a first
step, principal component analysis is used. Because the
dynamics are highly nonlinear, the coordinate dimension
may not be optimally embedded in a linear subspace of the
spatial correlation function. However, due to the extremely
high dimension of the correlation functions (almost 2000
in our example), principal component analysis is used to
reduce the dimension down to a level that is tractable for
other tools.

Two additional tools we have applied are nonlinear prin-
cipal component analysis (NLPCA) [8] and self-organizing
map (SOM) [9]. NLPCA is used to search for nonlinear
manifolds which contain the data, and can be implemented
using autoassociative neural nets. The methods must be
trained in an iterative procedure, but then provide an ex-
plicit coordinate map between the high dimensional space
and the reduced-dimensional manifold. An application of
NLPCA is presented in [10]. Self-organizing map is an-
other approach that uses training data to identify structure
in high-dimensional data. The dimension of the map is typ-
ically two-dimensional, with the data projected from the
original higher dimension. The training data is organized
by the map such that similar snapshots are nearby on the
two-dimensional surface. In contrast to NLPCA, no ex-
plicit coordinate map is provided by SOM.

3.2. Dynamic modeling

Several approaches are possible in constructing a com-
pact dynamic model. The molecular simulations do not
necessarily provide any clear mathematical structure for
the model, and one approach is black-box nonlinear sys-
tem identification. The molecular simulations can be used
as the experiment, with coefficients in the dynamic model
estimated using this data. This is a research direction of
interest to us, with results presented elsewhere [12].

An alternative approach is to exploit the reduced-order



state representation and construct a vector field at discrete
positions in this space. In constructing such a vector field,
one must establish the type of dynamic model that is de-
sired. Should the space be discrete or continuous? Should
time be discrete or continuous? Should the model be
stochastic or deterministic? The examples of Section 2 mo-
tivate the importance of the later choice. Although molec-
ular simulations are inherently stochastic, the noise might
be viewed as an artifact due to the finite simulation domain
(film growth) or it may be an important part of the dynam-
ics due to the small physical dimension (polymer colloid
particles).

Cell-to-cell mapping provides a framework in which to
model dynamics that are discrete in space and time [13].
The space is discretized into cells, and simulations are per-
formed beginning in each cell, over some period of time. A
deterministic model may be created if each cell is mapped
to one cell only, while a Markov chain [14] is computed if a
cell is mapped to multiple cells with nonzero probabilities.
An application of Markov models to molecular simulations
has been presented by one of the authors [15], in which
the space is discretized, and in which time may be either
continuous or discrete.

4. Results

Results are presented here for the application of prin-
cipal component analysis and self-organizing map to the
gallium arsenide film processing example. Although this
study is primarily associated with the identification of the
reduced state, the SOM procedure organizes the state space
into typical surfaces or groups, which can then be used as
the cells in a cell-to-cell map.

The first step is to select a spatial correlation function to
represent the surface. Because the surface (pictured in Fig-
ure 1) is dominated by atomic height steps, we describe the
surface in terms of the number of steps and the distances
between the steps. Because the surface is anisotropic, the
distances between steps on this 120x120 site surface must
be computed separately in the directions along the trenches
and perpendicular to them. The resulting step-step correla-
tion (SSC) function has a dimension of 1920. A portion of
a step-step correlation function is shown in Figure 3. The
peaks represent common surface features, such as a typical
cluster size represented by an up-step followed by a down-
step at some distance.

Ten simulations are performed and averaged for each
snapshot to reduce the effect of noise. Simulations are
performed up to a deposition of 0.20 mL, with snapshots
taken at increments of 0.01 mL. Simulations are also per-
formed over a range of gallium deposition rates, from 0.06
to 0.20 mL/s. The SSC functions for the resulting 161 snap-
shots are combined in a single PCA analysis, yielding six
dominant modes of the SSC. The six mode reconstruction
is shown in Figure 3 along with the original SSC. The PCA
reconstruction matches the original well, and additionally
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Figure 3: Reconstruction step-step correlation function of
one snapshot (flux of 0.16 mL/s at 0.20 mL deposited). The
original SSC is obtained by averaging over 10 realizations.

appears to have a positive effect of smoothing out noise.
The PCA procedure thus reduced the dimension from

1920 to 6. This six-dimensional state is then used to train
the self-organizing map. After the training, each of the 60
map nodes has a prototype vector representing a typical
SSC function. Each snapshot is matched with some pro-
totype vector, and snapshots that are matched to the proto-
type vector are then considered to be in the same group, or
cell. Figure 3 also shows the prototype vector for the snap-
shot, which is difficult to distinguish in the figure due to the
similarity between the snapshot and the prototype vectors.

A second comparison is made in Figure 4. In this Figure,
a prototype vector for one of the SOM nodes is compared
to the two snapshots that were matched to it. These snap-
shots are thus viewed to be in the same group, because their
surface features are similar. Note that they were generated
under the same gallium flux (0.20 mL/s) and that they are
associated with adjacent coverages of 0.18 and 0.19 mL,
so it is physically realistic that they would be grouped to-
gether.

5. Conclusions

This presentation describes a general approach to under-
standing and modeling process dynamics from molecular
simulations. Spatial correlation functions are first used
to describe the state of the system, and then systematic
methods are used to search for low-dimensional dynamics.
A low-dimensional representation then enables the brute-
force construction of a vector field or cell-to-cell map on
the state space, using the molecular simulations to con-
struct the vector field. The computational feasibility of the
method has been demonstrated in a few preliminary exam-
ples. Further work continues on assessing the tractability of
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Figure 4: Step-step correlation functions of two snapshots
that are matched to the same SOM prototype vector. The
original SSC functions are the average over 10 Monte Carlo
simulations. A flux of 0.20 mL/s was used for both snap-
shots, with coverage levels of 0.18 and 0.19 mL.

the method and its general applicability in molecular simu-
lations.
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